
Index Codes for Interlinked Cycle Structures with
Outer Cycles

Karanam Vikas Bharadwaj and B. Sundar Rajan, Fellow, IEEE
Department of Electrical Communication Engineering

Indian Institute of Science, Bangalore
emails:vikas,bsrajan@iisc.ac.in

Abstract—For side-information graphs called Interlinked Cy-
cle (IC) structures, which generalize cycles and cliques, Thapa,
Ong and Johnson (“Interlinked Cycles for Index Coding: Gener-
alizing Cycles and Cliques”, IEEE Trans. Inf. Theory, vol. 63,
no. 6, Jun. 2017 and “Interlinked Cycles for Index Coding:
Generalizing Cycles and Cliques”, in arxiv (arxiv:1603.00092v2
[cs.IT] 25 Feb 2018)) have given an index code construction and a
decoding algorithm, for the case where the IC structure does not
have any cycles consisting only of non-inner vertices (called outer
cycles). In this paper, for IC structures with outer cycles, we give a
set of necessary and sufficient conditions for the code construction
and the decoding algorithm of Thapa, Ong and Johnson to be
valid.

1. INTRODUCTION

The problem of index coding was introduced by Birk
and Kol in [1]. The index coding problem consists of
a single sender with a set of N independent messages
X = {x1, x2, . . . , xN}, and a set of M users D =
{D1, D2, . . . , DM}, connected to the sender by a single shared
error-free link, with the kth user identified as Dk = (Xk,Ak),
where Xk ⊆ X is the set of messages desired by Dk, the set
Ak ⊂ X is comprised of the messages available to user Dk

as side information. The set Ak satisfies Xk ∩ Ak = φ. In
a scalar linear index coding scheme, each message xi ∈ Fq ,
i ∈ [M ] and Fq is a finite field. Sender encodes M messages
to n symbols in Fq using a linear mapping and n is called
the length of the index code. Each user will decode their
desired messages using linear combinations of transmitted n
symbols and side information available to them. An index
coding problem is said to be unicast [2] if Xk ∩ Xj = φ for
k 6= j and k, j ∈ {1, 2, . . . ,M}, ie., no message is desired by
more than one user. The problem is said to be single unicast if
the problem is unicast and |Xk| = 1 for all k ∈ {1, 2, . . . ,M}.
A unicast index coding problem can be reduced into single
unicast index coding problem, by splitting the user demanding
more than one message into several users, each demanding one
message and with the same side information as the original
user. Single unicast index coding problems can be described
by a directed graph called as a side information graph [3],
in which the vertices in the graph represent the indices of
messages {x1, x2, . . . , xN} and there is a directed edge from
vertex i to vertex j if and only if the user requesting xi has
xj as side information.

The set of vertices in a directed graph G is denoted by
V (G) and the set of vertices in the out-neighbourhood of a
vertex q in G is denoted by N+

G (q).

Interlinked Cycle Cover (ICC) scheme is proposed as a
scalar linear index coding scheme to solve single unicast index
coding problems by Thapa et al. [4], by defining a graph
structure called an Interlinked Cycle (IC) structure. After a
correction announced in [5] by Thapa et al., the definition of
an IC structure is as given below. The correction is only in
the definition of IC structure and the code construction and
decoding algorithm continue to be the same as given in the
original version [4].

Definition 1 (IC Structure [5]). A side information graph G
is called a K-IC structure with inner vertex set VI ⊆ V (G),
such that |VI | = K if G satisfies the following four conditions.

1) There is no I-Cycle in G, where I-Cycle is defined as
a cycle which contains only one inner vertex.

2) There is a unique I-Path between any two different
inner vertices in G, where an I-path is defined as a
path from one inner vertex to another inner vertex
without passing through any other inner vertex (as
a result, K rooted trees can be drawn where each
rooted tree is rooted at an inner vertex and has the
remaining inner vertices as the leaves).

3) G is the union of the K rooted trees.
4) There are no cycles in G containing only non-inner

vertices (called as outer cycles).

The set V (G)\VI is called the set of non-inner vertices,
denoted by VNI . Let VNI(i) be the set of non-inner vertices
that are present in the rooted tree Ti of the inner vertex i.

For IC structures, Thapa et al. proposed a method of
construction of index code (presented below as Construction
1 in this paper) and a decoding algorithm to decode the
obtained index code (presented as Algorithm 1 in this paper).

Let the K-IC structure be called G and let |V (G)| = N . Let
V (G) = {1, 2, . . . , N}, VI = {1, 2, . . . ,K) be the set of the
K inner vertices and hence VNI = {K+1,K+2, . . . , N}. Let
xn ∈ Fq be the message corresponding to the vertex n ∈ V (G)
and where Fq is the finite field of characteristic 2 to which the
all the N messages at the sender belong to (note that in single
unicast setting, the number of messages will be equal to the
number of users, i.e., N =M ).

Construction 1 ([4]). Given the inner and non-inner vertices,
the following coded symbols are transmitted.

1) An index code symbol WI obtained by XOR of mes-
sages corresponding to inner vertices is transmitted,
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where WI =
K⊕
i=1

xi.

2) An index code symbol corresponding to each non-
inner vertex, obtained by XOR of message cor-
responding to the non-inner vertex with the mes-
sages corresponding to the vertices in the out-
neighbourhood of the non-inner vertex is transmitted,
i.e., for j ∈ VNI , Wj is transmitted, whereWj =
xj

⊕
q∈N+

G (j)

xq ,

where ⊕ denotes modulo addition over Fq .
Algorithm 1. It is the algorithm proposed by Thapa et al. [4]
to decode the index code obtained by using Construction 1 on
an IC structure, G.

• The message xj corresponding to a non-inner vertex
j is decoded directly using the transmission Wj and

• the message xi corresponding to an inner vertex i is
decoded using Zi =WI

⊕
q∈VNI(i)

Wq .

Definition 2. The class of side-information graphs which
satisfy only the first three conditions of Definition 1, is called
as “IC structures with outer cycles”.

This paper deals with IC structures with outer cycles and
the contributions may be summarized as follows:

• An important property of IC structures with outer
cycles is presented in Lemma 2.1 which is a basic
ingredient in the proof of Theorem 1.

• The class of IC structures with outer cycles for which
index code obtained from Construction 1 is decodable
by Algorithm 1 is characterized in Theorem 1. This is
achieved by giving a set of necessary and sufficient
conditions on the IC structures with outer cycles to
have the property mentioned.

• An alternate proof using Theorem 1 for the optimality
of Construction 1 for the case of IC structures without
outer cycles is given in Theorem 2.

The proofs of all the claims including Lemma 2.1 and
Theorems 1 and 2 can be found in [7] along with several
illustrative examples which have been omitted here due to
lack of space.

It is important to note that while the paper [6] also deals
with IC structures with outer cycles, the class of IC structures
with outer cycles considered in [6] is the one where there
is only one outer cycle. Also, the code construction and
the decoding algorithm presented therein are different from
Construction 1 and Algorithm 1.

The rest of the paper is organized as follows. Section
2 contains the main results. Section 3 contains illustrative
examples and Section 4 has concluding remarks and some
directions for further research.

2. MAIN RESULTS

Let the K-IC structure, G, have inner vertex set VI =
{1, 2, . . . ,K} and non-inner vertices VNI = {K + 1,K +

2, . . . , N}. Let Ti be the rooted tree corresponding to an inner
vertex i where i ∈ {1, 2, . . . ,K}. Let VNI(i) be the set of
non-inner vertices in G which appear in the rooted tree Ti of
an inner vertex i. For each i ∈ {1, 2, . . . ,K} and for a non-
inner vertex j which is at a depth > 2 in the rooted tree Ti,
define ai,j as the number of vertices in VNI(i) for which j
is in out-neighbourhood in G, i.e., for each i ∈ {1, 2, . . . ,K}
and for j ∈ VNI(i),

ai,j , |{v : v ∈ VNI(i), j ∈ N+
G (v), j 6∈ N+

Ti
(i)}|.

Also, for each i ∈ {1, 2, . . . ,K} and for a non-inner vertex j
not in the rooted tree Ti, define bi,j as the number of vertices
in VNI(i) for which j is in out-neighbourhood in G, i.e., for
each i ∈ {1, 2, . . . ,K} and j ∈ V (G)\V (Ti),

bi,j , |{v : v ∈ VNI(i), j ∈ N+
G (v)}|.

The following lemma shows that bi,j can take one of the
two values, either the value 0 or 1.

Lemma 2.1. Given an IC structure with outer cycles G with
inner vertex set VI = {1, 2, . . . ,K}, we have bi,j ∈ {0, 1} for
each i ∈ {1, 2, . . . ,K} and j ∈ V (G)\V (Ti).

The following theorem characterizes the IC structures with
outer cycles for which the index code construction and the
decoding algorithm of Thapa, Ong and Johnson [4] remain
valid in spite of the presence of the outer cycles.

Theorem 1. Given an IC structure G with outer cycles, the
index code obtained from Construction 1 on G is decodable
by Algorithm 1 if and only if G satisfies the following two
conditions c1 and c2.
Condition 1 (c1). ai,j must be an odd number for each i ∈
{1, 2, . . . ,K} and j ∈ VNI(i)\N+

Ti
(i).

Condition 2 (c2). bi,j must be zero for each i ∈ {1, 2, . . . ,K}
and j ∈ V (G)\V (Ti).

For an IC structure without outer cycles that the Construc-
tion 1 gives an optimal index code follows from the results
in [4]. The following theorem gives an alternate proof using
Theorem 1.

Theorem 2. An IC structure which has no cycles containing
only non-inner vertices satisfies both the conditions c1 and c2.

3. ILLUSTRATIVE EXAMPLES

Example 1. Consider G1, a side-information graph which is
an IC structure with outer cycles, shown in Fig. 1. G1 is an
IC structure with outer cycles and with inner vertex set VI =
{1, 2, 3, 4, 5, 6} because

1) there are no cycles with only one vertex from the set
{1, 2, 3, 4, 5, 6} in G1 (i.e., no I-cycles),

2) using the rooted trees for each vertex in the set,
{1, 2, 3, 4, 5, 6}, which are given in Fig. 2a, 2b, 2c,
2d, 2e and 2f respectively, it is verified that there ex-
ists a unique path between any two different vertices
in VI in G1 and does not contain any other vertex
in VI (i.e., unique I-path between any pair of inner
vertices),

3) G1 is the union of all the 6 rooted trees.
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Fig. 1: IC structure G1 with VI = {1, 2, 3, 4, 5, 6} and outer
cycles {8, 9} {10, 11} and {7, 12}.

Also, notice that there are three disjoint cycles each of them
consisting of only the non-inner vertices, i.e., three outer cycles
{8, 9} {10, 11} and {7, 12}.
Verification of c1 and c2. From Table I, it is observed that c1
and c2 are satisfied by G1. As a result, Algorithm 1 can be
used to decode the index code obtained by using Construction
1 on the IC structure G1.

The index code obtained is WI = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕
x5 ⊕ x6, W7 = x7 ⊕ x1 ⊕ x12, W8 = x8 ⊕ x3 ⊕ x9, W9 =
x9 ⊕ x4 ⊕ x8, W10 = x10 ⊕ x5 ⊕ x11, W11 = x11 ⊕ x6 ⊕
x10, W12 = x12⊕x6⊕x7. Messages x7, x8, x9, x10, x11 and
x12 are decoded directly using W7, W8, W9, W10, W11 and
W12 respectively. The computation of Zi and the decoding of
xi, for i = 1, 2, . . . , 6 by Algorithm 1 is shown in Table II.
Thus, Algorithm 1 is used to decode the index code obtained
by using Construction 1 on G1.

Example 2. Consider G2, a side-information graph which is
a 5-IC structure, shown in Fig. 3. G2 is a 6-IC structure with
inner vertex set VI = {1, 2, 3, 4, 5} and an outer cycle {8, 9}
since

1) there are no cycles with only one vertex from the set
{1, 2, 3, 4, 5} in G2 (i.e., no I-cycles),

2) using the rooted trees for each vertex in the set,
{1, 2, 3, 4, 5}, which are given in Fig. 4a, 4b, 4c, 4d
and 4e respectively, it is verified that there exists a
unique path between any two different vertices in VI
in G2 and does not contain any other vertex in VI (i.e.,
unique I-path between any pair of inner vertices),

3) G2 is the union of all the 5 rooted trees.

Verification of c1 and c2. From Table III, it is observed that c1
is not satisfied (a1,8 = 2, an even number) and c2 is satisfied
by G2. As a result, Algorithm 1 fails to decode the index code
obtained by using Construction 1 on the IC structure G2. It is

verified as follows.

The index code obtained is WI = x1 ⊕ x2 ⊕ x3 ⊕
x4 ⊕ x5; W6 = x6 ⊕ x7 ⊕ x8; W7 = x7 ⊕ x3; W8 =
x8 ⊕ x4 ⊕ x9; W9 = x9 ⊕ x5 ⊕ x8; W10 = x10 ⊕ x3 ⊕
x11; W11 = x11 ⊕ x1. Messages x6, x7, x8, x9, x10 and x11
are decoded directly using W6, W7, W8, W9, W10 and W11

respectively. The computation of Z1 and the decoding of xi,
for i = 1, 2, . . . , 5 by Algorithm 1 is shown in Table IV. The
inability of the Algorithm 1 to decode x1 can also be observed
in Table IV. Thus, Algorithm 1 is fails to decode the index code
obtained by using Construction 1 on G2 since user requesting
message x1 does not have x8 in its side-information.

Example 3. This examples illustrates Theorem 2. Consider G3,
a side-information graph which is a 3-IC structure shown in
Fig. 5. Notice that G3 does not have any cycles consisting of
only non-inner vertices and that it is

1
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5

Fig. 5: The 3-IC structure G3 with VI = {1, 2, 3}.

indeed a 3-IC structure with inner vertex set VI = {1, 2, 3}
since

1) there are no cycles containing only one vertex from
the set {1, 2, 3} in G3 (i.e., no I-cycles),

2) using the rooted trees for each vertex in the set
{1, 2, 3}, which are given in Fig. 6a, 6b and 6c
respectively, it is verified that there exists a unique
path between any two different vertices in VI in G3
and does not contain any other vertex in VI (i.e.,
unique I-path between any pair of inner vertices),

3) G3 is the union of all the 3 rooted trees.
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Fig. 6: Figures showing rooted trees of inner vertices 1, 2, 3
of G3, respectively.
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Fig. 2: Figures showing rooted trees of inner vertices 1, 2, 3, 4, 5, 6 of G1, respectively.

Ti VNI(i) j ∈ V (Ti)\{VI ∪N+
Ti

(i)} ai,j j ∈ V (G1)\V (Ti) bi,j

T1 {8, 9, 10, 11} {9, 11} 1, 1 {7, 12} 0, 0
T2 {7, 8, 9, 12} {8, 12} 1, 1 {10, 11} 0, 0
T3 {10, 11} {10} 1 {7, 8, 9, 12} 0, 0, 0, 0
T4 {7, 12} {7} 1 {8, 9, 10, 11} 0, 0, 0, 0
T5 {7, 12} {7} 1 {8, 9, 10, 11} 0, 0, 0, 0
T6 φ φ − {7, 8, 9, 10, 11, 12} −

TABLE I: Table that verifies conditions c1 and c2 for G1.

Message xi Computation of Zi N+
G1

(i)

x1 WI ⊕W8 ⊕W9 ⊕W10 ⊕W11 = x1 ⊕ x2 ⊕ x8 ⊕ x10 x2, x8, x10

x2 WI ⊕W7 ⊕W8 ⊕W9 ⊕W12 = x2 ⊕ x5 ⊕ x7 ⊕ x9 x5, x7, x9

x3 WI ⊕W10 ⊕W11 = x3 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ x11 x1, x2, x4, x11

x4 WI ⊕W7 ⊕W12 = x4 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x12 x2, x3, x5, x12

x5 WI ⊕W7 ⊕W12 = x5 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x12 x2, x3, x4, x12

x6 WI = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x6 x1, x2, x3, x4, x5

TABLE II: Table that shows the working of Algorithm 1 on index code obtained from Construction 1 on G1.

Ti VNI(i) j ∈ VNI(Ti)\N+
Ti

(i) ai,j j ∈ V (G2)\V (Ti) bi,j

T1 {6, 7, 8, 9} {7, 8, 9} 1, 2, 1 {10, 11} 0, 0
T2 φ φ − {6, 7, 8, 9, 10, 11} 0, 0, 0, 0, 0, 0
T3 {8, 9, 11} {8} 1 {6, 7, 10} 0, 0, 0
T4 {10, 11} {11} 1 {6, 7, 8, 9} 0, 0, 0, 0
T5 {10, 11} {11} 1 {6, 7, 8, 9} 0, 0, 0, 0

TABLE III: Table that verifies conditions c1 and c2 for G2.

Message xi Computation of Zi N+
G2

(i)

x1 WI ⊕W6 ⊕W7 ⊕W8 ⊕W9 = x1 ⊕ x2 ⊕ x6 ⊕ x8 x2, x6

x2 WI = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 x1, x3, x4, x5

x3 WI ⊕W8 ⊕W9 ⊕W11 = x3 ⊕ x2 ⊕ x11 x2, x9, x11

x4 WI ⊕W10 ⊕W11 = x4 ⊕ x2 ⊕ x5 ⊕ x10 x2, x5, x10

x5 WI ⊕W10 ⊕W11 = x5 ⊕ x2 ⊕ x4 ⊕ x10 x2, x4, x10

TABLE IV: Table that shows the working of Algorithm 1 on index code obtained from Construction 1 on G2.

Conditions c1 and c2 are illustrated for G3 as follows. The
rooted trees T1, T2 and T3 have no non-inner vertices at depth
≥ 2 and hence c1 need not be verified. From Table V, it is
clear that bi,j = 0 for each i ∈ {1, 2, 3} and j ∈ V (G)\V (Ti).
It is thus verified that c1 and c2 are satisfied by G3.

Ti VNI(i) j ∈ V (G3)\V (Ti) bi,j

T1 {5, 6} {4} 0
T2 {4, 6} {5} 0
T3 {4, 5} {6} 0

TABLE V: Tables that verify c2 for G3.
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Fig. 3: IC structure G2 with outer cycles and with VI =
{1, 2, 3, 4, 5}.

4. CONCLUSION

IC structures with outer cycles for which the combination
of index code construction and the decoding algorithm of
Thapa, Ong and Johnson [4] is valid are characterized. In
other words, this paper explores index code construction for
IC structures with outer cycles, with any number of outer
cycles whereas in [6] IC structures with outer cycles with only
one outer cycle are considered. However, alternate index code
constructions and decoding algorithms for IC structures with
outer cycles that do not satisfy c1 and/or c2 remain to be
found. It can be verified that the code obtained in Example 2
is not decodable using any linear decoding algorithm (shown
explicitly in [7]). Characterizing the class of side-information
graphs for which Construction 1 gives a valid index code
(possibly with a different decoding algorithm) is an open
problem. Also the optimality of the obtained index codes is
a problem that remains to be solved.
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