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Abstract—We consider secret sharing schemes with a

classical secret and quantum shares. One example of such

schemes was recently reported whose access structure

cannot be realized by any secret sharing schemes with

classical shares. In this paper, we report further quantum

secret sharing schemes whose access structures cannot be

realized by any classical secret sharing schemes.

I. Introduction

Secret sharing [13] is a cryptographic scheme to

encode a secret into multiple pieces of information

(called shares) so that only qualified sets of shares

can reconstruct the original secret. Secret sharing

has become even more important as its application

to the cloud storage is spreading [1]. The security

criterion of secret sharing is usually information

theoretic one and thus cannot be broken even by

quantum computers [14].

Quantum supremacy [12] is the potential ability

of quantum computing devices to solve problems

that classical computers practically cannot. Dis-

covery of new quantum supremacy is important

in research of quantum information processing.

Since majority of secret sharing schemes are se-

cure against both classical and quantum computers,

quantum supremacy cannot be found in that respect.

On the other hand, the author recently reported new

quantum supremacy in the access structure of secret

sharing [8]. An access structure of a secret sharing

schemes is a set of qualified share sets and forbidden

share sets, where a share set is said to be forbidden

(resp. qualified) if the set has no information about

the secret (resp. can reconstruct the secret) [11].

Specifically, when we use the famous [[5, 1, 3]]

binary quantum stabilizer error-correcting code to

encode a 1-bit classical secret into five quantum

shares, its access structure cannot be realized by

any secret sharing schemes with classical shares.

However, it was not clarified whether or not there

exists another secret sharing schemes with quantum

shares whose access structures cannot be realized

by classical shares. In this paper, we use different

necessary conditions on the existence of access

structures realized by secret sharing schemes with

classical shares, and report 9 new quantum secret

sharing schemes whose access structures cannot be

realized by secret sharing schemes with classical

shares.

II. Quantum Error-Correcting Codes and Secret

Sharing

Quantum error-correcting codes have been used

for constructing secret sharing schemes for quantum

secrets [5], [7], [9]. Since classical information can

be regarded as a special case of quantum informa-

tion [10], it is easy to construct a secret sharing

scheme for a classical secret from a quantum error-

correcting code. Suppose that we have a k-bit string

~s as a classical secret and we want to encode ~s into

n shares. For this goal, we select a binary [[n, k, d]]

quantum error-correcting code Q, where [[n, k, d]]

means that the code encodes k qubits into n qubits

and has the minimum distance d. We prepare a k-

qubit quantum state |~s〉 and encode |~s〉 into n qubits

|~x〉 by Q. Then each qubit in the quantum codeword

|~x〉 is distributed to each of n participants.

We say that a secret sharing scheme has t-privacy

if any set of t shares has absolutely no information

about the secret, and has r-reconstruction if any

set of r shares uniquely reconstruct the secret [3].

For simplicity, r is assumed to be smallest possible

and t to be largest possible. For a secret sharing

scheme to be useful, we must know r and t. We will

relate r and t in order to demonstrate the quantum

supremacy.
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III. Quantum Supremacy in Access Structures

Suppose that one has n−d+1 or more shares. Then

the number of missing shares is d − 1 or less. By

setting the quantum state of missing shares to any

state (e.g., the completely mixed state) and treating

them as erasures, the quantum erasure correction

procedure reconstructs the n shares |~x〉 from avail-

able shares [8], and the secret ~s can be reconstructed

from |~x〉. This means that r ≤ n − d + 1.

On the other hand, when we have a secret sharing

scheme with a classical secret and quantum shares

and a set of shares can reconstruct the secret, then

the complementary set of shares has absolutely no

information about the secret [11]. This implies that

t ≥ d − 1.

The difference r − t is called the threshold gap.

When we construct a secret sharing scheme from

a binary [[n, k, d]] quantum error-correcting codes,

we have

r − t ≤ n + 2 − 2d. (1)

On the other hand, when we have a secret sharing

scheme in which each classical share has log2 q bits

and the classical secret has k log2 q bits, we must

have [2]

r − t ≥
r + 1

q
. (2)

A secret sharing scheme with classical shares is

said to be linear if the reconstruction from shares

to secrets is a linear map [4]. Most of studied secret

sharing schemes with classical shares are linear, as

they enable efficient encoding and reconstruction

by linear algebraic algorithms. When a scheme is

linear, we must have [3]

r − t ≥
qm − 1

qm+1 − 1
(n + 2) +

qm+1 − qm

qm+1 − 1
(k − 2m)

(for all 0 ≤ m ≤ k − 1). (3)

We consider the case that each share is one bit or

one qubit, and search for an access structure that can

be realized by quantum shares but cannot be realized

by classical shares. If we have a binary [[n, k, d]]

quantum code and we also have

n + 2 − 2d <
n + 2 − d

2
, (4)

then by Eqs. (1) and (2) the binary [[n, k, d]] quan-

tum code realizes an access structure that cannot

TABLE I

Parameters of binary [[n, k, d]] quantum error-correcting codes

that exhibit quantum supremacy in the access structures of

associated secret sharing schemes

n k d Eq. (4) Eq. (5)

6 1 3 true false

11 1 5 true false

12 1 5 true false

17 1 7 true false

18 1 7 true false

27 3 9 false true with m = 2

28 3 9 false true with m = 2

29 1 11 true false

30 1 11 true false

be realized by secret sharing schemes with classical

1-bit shares, thus it exhibits quantum supremacy in

the access structure.

In addition, if we have a binary [[n, k, d]] quantum

code and we also have

n + 2 − d <
qm − 1

qm+1 − 1
(n + 2) +

qm+1 − qm

qm+1 − 1
(k − 2m)

(for some 0 ≤ m ≤ k − 1), (5)

then by Eqs. (1) and (3) the binary [[n, k, d]] quan-

tum code realizes an access structure that cannot

be realized by linear secret sharing schemes with

classical 1-bit shares, thus it also exhibits quantum

supremacy in the access structure.

Grassl [6] maintains the table of best binary

quantum error-correcting codes. We searched for

codes with properties (4) or (5), and found the codes

in Table I.

IV. Conclusion

As a continuation of the author’s recent paper [8],

we searched quantum error-correcting codes that

give secret sharing schemes whose access structures

cannot be realized by classical information process-

ing. We reported 9 new codes having access struc-

tures impossible by classical information processing

in Table I. However, it remains unknown whether

or not there exist infinitely many quantum error-

correcting codes having access structures impossible

by classical information processing. It is a further

research agenda.
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