

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821771

Juliana Hildebrandt, Till Kolditz, Dirk Habich, Wolfgang Lehner

Lower Bound-oriented Parameter Calculation for AN Coding

Erstveröffentlichung in / First published in:

International Symposium on Information Theory and Its Applications, ISITA. Singapore,
28.-31.10.2018. IEEE, S. 590-594. ISBN 978-4-88552-318-2.

DOI: http://dx.doi.org/10.23919/ISITA.2018.8664399

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821771
http://dx.doi.org/10.23919/ISITA.2018.8664399

Lower Bound-oriented Parameter Calculation
for AN Coding

Juliana Hildebrandt Till Kolditz Dirk Habich Wolfgang Lehner
Database Systems Group

Technische Universität Dresden, Nöthnitzer Straße 46, 01187 Dresden
{juliana.hildebrandt, till.kolditz, dirk.habich, wolfgang.lehner}@tu-dresden.de

Abstract—The hardware as well as software communities have
recently experienced a shift towards mitigating bit flips issues in
software, rather than completely mitigating only in hardware. For
this software error mitigation, arithmetic error coding schemes
like AN coding are increasingly applied because arithmetic
operations can be directly executed without decoding and bit
flip detection is provided in an end-to-end fashion. In this case,
each encoded data word is computed by multiplying the original
data word with a constant integer value A. To reliably detect b
bit flips in each code word, the value A has to be well-chosen, so
that a minimum Hamming distance of b+ 1 can be guaranteed.
However, the value A depends on the data word length as well as
on the desired minimum Hamming distance. Up to now, a very
expensive brute force approach for computation of the value for
A is applied. To tackle that in a more efficient way, we present a
lower bound-oriented approach for this calculation in this paper.

I. INTRODUCTION

Recent studies have shown that future hardware is becoming
less and less reliable and that multi-bit flips may prevail
over single bit flips [1]–[4]. Scaling today’s single bit flip-
centric hardware-based protection techniques to cover multi-
bit flips is possible, but this introduces large performance,
chip area, and power overheads, which will become non-
affordable in the future [1], [4]. Thus, a shift towards miti-
gating these reliability issues at higher software layers, rather
than completely mitigating these issues only in hardware is
observable [4]–[6]. For this software-based error mitigation,
arithmetic error coding schemes (AN coding) are a well-known
and effective technique [7], [8]. Most recently, AN coding is
applied in different domains like compiler [9]–[11] or database
systems [12]. Advantages of AN coding are: (1) arithmetic
operations can be directly executed without decoding and (2)
bit flip detection is provided in an end-to-end fashion [8]–[12].
The latter means that after encoding data, errors are detectable
during data transportation, data storage, and data processing.

Problem Statement: AN coding is a very simple error
detection code, because encoded data words—code words—
are computed by multiplying each original information word
with a constant integer value A [7], [8]. As a result of this
multiplication, the domain of code words expands such that
only multiples of A become valid code words and all others
are considered as invalid code words. Now, to reliably detect b
bit flips in each code word, a value for A has to be used which
guarantees a minimum Hamming distance of b+1, whereby A

depends on the information word length l and on the number
of detectable bit flips b [8], [12]. Moreover, it is usually not
some arbitrary value for A sought but a small one, so that
the domain of code words is small [8], [12]. Unfortunately,
only a very expensive brute force approach for calculation of
this parameter value for A exists. Therefore, only few As are
known covering few combinations of l and b [8], [12].

Our Contribution and Outline: To overcome that, we
developed a novel computation technique for the parameter
value A based on equivalence classes of code word pairs. In
detail, we make the following contributions in this paper:

1) We briefly recap necessary preliminaries in Section II.
In particular, we review the brute force approach for the
calculation of the parameter value A.

2) Then, we introduce our novel approach to compute a
lower bound on the minimum Hamming distance of a
code based on code word differences in Section III.

3) In Section IV, we apply our lower bound approach to
compute the parameter value A in a more efficient way.

4) In Section V, we present our evaluation results.
Finally, we conclude the paper with a summary in Section VI.

II. PRELIMINARIES

AN coding is an error detecting code preserving arithmetic
operations [7], [8]. Let D = [0, 2l) with l ∈ N be a set of
information words, then the code words c are computed by
multiplying each original information word d ∈ D with a
constant integer value A, c = d · A. We denote the set of
all code words as CA

[0,2l). As a result of this encoding, all
multiples m of A, 0 ≤ m < A·2l are valid code words, but all
other values—including multiples m′,m′ < 0∨m′ ≥ A ·2l—
are non-valid code words. Let k be the bit width of A
(k = dlog2 Ae). Thus, the greatest code word A · (2l − 1)
can be encoded binarily with k + l bits, because

log2dA · (2l − 1)e ≤ log2dAe+ log2d2l − 1e = k + l. (1)
We define the common code word length k+ l as n. Since the
bits of the information word and the additional bits are non-
separable in each code word, AN coding is a non-systematic
error code. For an efficient decoding, an odd A should be
used, so that a multiplication d = A−1 · c mod 2l with the
multiplicative inverse A−1 ∈ Z2l can be applied instead of a

Final edited form was published in " 2018 International Symposium on Information Theory and Its Applications (ISITA). Singapore 2018", S. 590-594,
ISBN 978-4-88552-318-2

https://doi.org/10.23919/ISITA.2018.8664399

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

division d = c/A for decoding [12]. An error is detected using
c 6≡ 0 mod A [8]–[12].

AN coding has only one parameter A which has a high
impact on the error detection capability [7], [8], [12]. Based
on that, the most challenging issue for AN coding is to find
an appropriate value for A for given l and b with l ∈ N as
the information word length and b ∈ N as the number of bit
errors that should be reliably detected. Additionally, the value
for A should be as small as possible (length k), so that the
resulting code word length n = l + k is as small as possible
as well [8], [12]. Up to now, a brute force approach consisting
of two components is applied for this parameter calculation.

Component 1 determines the minimum Hamming distance
for given A and l and we denote this minimum Hamming
distance as dmin(CA

[0,2l)). This is the smallest number of bits,
which has to be changed to convert one code word into
another one. Consequently, the number of bit flips which can
always be reliably detected is dmin(CA

[0,2l)) − 1. To calculate
this minimum Hamming distance dmin(CA

[0,2l)), the brute
force approach iterates over all pairs of distinct code words
(c, c′) ∈ (CA

[0,2l))
2 and determines the Hamming distances

dH(c, c′) for each pair. Then, the minimum of these distances
is dmin(CA

[0,2l)) for given A and l.
Component 2 computes a small value for A for given l and

b by looping over all possible odd As starting with A = 3.
For each A, the minimum Hamming distance dmin(CA

[0,2l)) is
computed using Component 1 [12]. This iteration ends with
the first A satisfying the condition dmin(CA

[0,2l)) = b + 1.

III. LOWER BOUND FOR MINIMUM HAMMING DISTANCE
BASED ON CODE WORD DIFFERENCES

To avoid the brute force computation, we will now introduce
our novel approach in this section. For that, we abstract
from AN coding as a specific error code by looking at a
common error code C with a given set of code words in
the domain of [0, 2n). Based on that, we are able to interpret
code words as natural numbers and can compute differences
between two arbitrary code words. With the help of this
difference consideration, we can determine a lower bound for
the minimum Hamming distance of this code C in a non-brute
force way.

A. Delta equivalence classes

Let n be a natural number (code word length) and let
m,m′ ∈ [0, 2n),m ≤ m′ be natural numbers (code words).
Then, for each difference ∆ ∈ N,∆ < 2n exist 2n −∆ pairs
of values such that m′−m = ∆. Thus, we create equivalence
classes for pairs of values in [0, 2n) with the same difference
∆:

[∆] = {(m,m′)|m,m′ ∈ [0, 2n) ,∆ = m′ −m,m ≤ m′} .
(2)

Example 1. Let n = 4. Thus
[2] = {(0, 2), (1, 3), (2, 4), ..., (13, 15)} and
[3] = {(0, 3), (1, 4), (2, 5), ..., (12, 15)}

(3)

are equivalence classes for the differences 2 and 3.

B. Signed-Digit Expansions for Differences

Let m, 0 ≤ m < 2n be a natural number and mp ∈
{−1, 0, 1}, 0 ≤ p < n with the condition

m =
n−1∑
p=0

mp · 2p. (4)

We call mn−1 . . .m1m0 a signed-digit expansion (SDE) with
length n of a number m. This representation is redundant [13],
[14], because each number m can be represented by different
SDEs. The (Hamming) weight of an SDE mn−1 . . .m1m0 is
defined in [14] as the number of its non-zero digits. In the
following, the symbol 1 is used for −1.

Example 2. Let n = 4 and m = 3. Then, 0011, 0101,
0111, 1101, and 1111 are all SDEs for m with length 4,
where the weights are 2, 2, 3, 3, and 41.

For each equivalence class [∆], ∆ ∈ N, we can divide the
pairs m,m′ ∈ N in further equivalence classes of SDEs with
length n for ∆:[

∆n−1∆1∆0

]
={(m,m′) | (m,m′) ∈ [∆],∀p : m′p −mp = ∆p}

(5)

where mp and m′p are the values ∈ {0,1} at position p in
the binary representation of m and m′. Thus, an equivalence
class with the digit 1 at position p contains only pairs (m,m′)
fulfilling the condition that m′ has digit 1 at position p and
m has digit 0 at position p. Similarly, an equivalence class
with the digit 1 at position p contains only pairs (m,m′)
fulfilling the condition that m′ has digit 0 at position p and
m has digit 1 at position p. Thus, an equivalence class with a
non-zero digit at position p contains only pairs (m,m′) with
different digits at position p. Consequently, the weight of an
SDE is the Hamming distance of all pairs in the corresponding
equivalence class.

Example 3. Let n = 4 and ∆ = 3. Thus
[0011] = {(0, 3), (4, 7), . . . } ⇒ dH(0, 3) = dH(4, 7) = 2
[0101] = {(1, 4), (3, 6), . . . } ⇒ dH(1, 4) = dH(3, 6) = 2
[0111] = {(2, 5), (10, 13)} ⇒ dH(2, 5) = dH(10, 13) = 3
[1101] = {(5, 8), (7, 10)} ⇒ dH(5, 8) = dH(7, 10) = 3
[1111] = {(6, 9)} ⇒ dH(6, 9) = 4

(6)

To summarize, for each difference ∆ of natural numbers
m,m′, there is at least one delta equivalence class with a
minimal number of non-zero digits. This minimal number is
a first lower bound on the Hamming distance of all pairs
(m,m′),∆ = m′ −m.

C. Minimal Hamming Distance of Pairs with Difference ∆

A non-adjacent form (NAF) is an SDE without adjacent
non-zero digits. As it is known from [13], for a given number
∆, the minimal weight of an SDE of ∆ is the weight of the
NAF. Additionally, each number ∆ has a unique NAF (with
an arbitrary number of leading zeros).

1For fixed n, there is only a finite number of SDEs for each m, 0 ≤ m <
2n . For an arbitrary n, there is an infinite number of SDEs for each integer
m 6= 0 [13].

Final edited form was published in " 2018 International Symposium on Information Theory and Its Applications (ISITA). Singapore 2018", S. 590-594,
ISBN 978-4-88552-318-2

https://doi.org/10.23919/ISITA.2018.8664399

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Example 4. The SDEs 11, 111, 1101, 1111, 11101,
11111 etc. are adjacent forms of the value 3. The non-
adjacent form of 3 is 101.

From [15] we know, that the weight of the NAF of a natural
number ∆ is the number of 1-digits in the result of the binary
bit operation XOR(3∆,∆). We also know from [15], that
there is a sequence a(∆) calculating the weight of the NAF
for each ∆ ∈ N. This is OEIS sequence A007302:

a(0) = 0, a(∆) =

{
a(∆

2) if 2|∆,
1 + a(∆±1

4) if 4|(∆± 1).
(7)

Both calculation approaches lead to the same result. Then, an
open challenge is, that we have a given code length n and
that the NAF of a number ∆ > 3

4 · 2
n has non-zero values at

position p = n. This is a contradiction.

Example 5. Let n = 7 and 0 ≤ m < m′ < 27. We want to
find the lower bound for Hamming distances of pairs of natural
numbers (m,m′) with the difference ∆. For differences from
1 to 3

4 · 2
7 = 96 it is valid to use sequence a(∆). But let

∆ = 123. The NAF of 123 is 10000101. This means, that
all pairs (m,m′) ∈ [10000101] require distance 3 and must
have the following property. Like explained in Section III-B,
the digit at position 7 of m′ is 1. Thus, for the higher value m′

must hold m′ > 27, which is a contradiction. The equivalence
class [10000101] contains no values2.

For those cases, we have to find the SDE with length n with
the smallest number of non-zero digits. All SDEs for natural
numbers ∆ > 3

4 · 2
n start with at least two 1-digits. Those

SDEs for 2n−2x ≤ ∆ < 2n with length n,a minimal x, and a
minimum number of non-zero values start with n−x 1-digits
end with the NAF for ∆− 2n + 2x. The value for x is

x = dlog2(2n −∆)e. (8)

Example 6. Let n = 7 and ∆ = 123. The NAF of ∆ is
10000101. It has length n + 1 = 8 and a non-zero value at
position n. The SDE with length n and with the least number
of non-zero values is 1111 101. First we have

x = dlog2(2n −∆)e = dlog2(5)e = 3. (9)

The SDE starts with n− x = 7− 3 = 4 1-digits. Second, the
SDE ends with the NAF of

∆− 2n + 2x = 123− 128 + 8 = 3, (10)
which is 101.

Thus, for ∆ > 3
4 · 2

n, the number of non-zero digits in the
SDE with length n and the least number of non-zero values
is the sum of n − x and a(∆ − 2n + 2x). This leads to the
adapted (finite) sequence

ã(∆) =

{
a(∆) if ∆ ≤ 3

4 · 2
n,

n− x + a(∆− 2n + 2x) else, (11)

2The reader will remark that there are values for ∆ between 1
2
· 2n and

3
4
· 2n whose NAF has also more than n digits. Those NAFs have the form

101xxx.... The NAF of 86 is 10101010. For those cases it can be shown
that there exists an SDE of the form with length n and with the same minimal
number of non-zero digits with the form 11xxx.... For 86 we have the SDE
1101010. Consequently, it is sufficient to consider only those values for ∆
with ∆ > 3

4
· 2n.

ã(∆)

a(∆)

0 16 32 48 64 80 96 112 128
0

2

4

6

∆ −→

−
→

a(∆),
ã(∆)

p(1) = 64p(4) = 43

Fig. 1. Sequences a(∆), and ã(∆) for n = 7, and multiples of A = 3

which is defined for 0 ≤ ∆ < 2n. Fig. 1 shows the comparison
of the sequences a(∆) and ã(∆). The determination with the
XOR operation can be adapted for ∆ by the sum of n−x and
the number of 1-digits in XOR(3 · (∆− 2n + 2x),∆− 2n +
2x). To summarize, every code C with a given set of code
words in the domain of [0, 2n) (code length equals n) has
a finite number of different code word differences. For each
code word difference, there exist different SDE equivalence
classes containing at least one pair of natural numbers. It might
happen, that an SDE does not contain any elements. However,
it can be guaranteed, that the minimum Hamming distance
dmin of a code C is not smaller than the minimum of the
SDE of the lowest weight of all code word differences ∆. But
it can not be guaranteed, that an SDE equivalence class with
length n and the least number of non-zero values contains at
least one pair of code words. In those cases, another SDE
equivalence class with a greater number of non-zero digits
contains at least one pair of code words. Thus, the minimum
Hamming distance dmin of a code is greater than or equal to
the minimum of the weight of an SDE with length n of each
possible code word difference (lower bound).

D. Optimizations

Two optimizations for two different situations are possible.
First, let a code C and thus, its length n and the (ordered)
set D of code word differences be given. To calculate the
lower bound on dmin(C), we have to iterate over the code
word differences ∆ ∈ D with the objective of finding the
minimum dmin = min{ã(∆)|∆ ∈ D}. We iterate over the
code word differences in ascending order starting with the
lowest code word difference. Initially, dmin can be set to the
highest possible value, namely n. If for a difference ∆ a
smaller value ã(∆) is found, dmin is set to ã(∆). In the finite
sequence ã(∆), there is one highest position p(dmin) where
dmin occurs. All higher positions contain higher values. Thus,
for each adapted intermediate result dmin, we can calculate
the highest position, where dmin − 1 occurs. Greater code
word differences ∆ lead to higher values. The highest position,
where a lower bound on the Hamming distance dmin − 1 can
occur, is

p(dmin − 1) = 2n − 2n−dmin+1. (12)
Each time dmin is decreased during the iteration, the highest
position to test can be set to p(dmin − 1).

Example 7. Let n = 7 and a code with the differences
{3, 6, 9, . . . , 93} be given. During the iteration, the actual
value dmin is set to 2, because ã(3) = 2. The last position ∆,

Final edited form was published in " 2018 International Symposium on Information Theory and Its Applications (ISITA). Singapore 2018", S. 590-594,
ISBN 978-4-88552-318-2

https://doi.org/10.23919/ISITA.2018.8664399

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

where ã(∆) = dmin − 1 = 1 occurs, is p(dmin − 1) = p(1) =
27 − 26 = 64. At this point we know, that we have to test all
differences up to 64, because for all higher differences ∆ holds
ã(∆) ≥ 2 and the actual minimum of dmin is only decreased, if
we find a difference with ã(∆) < 2. Fig. 1 illustrates sequence
ã(∆) for n = 7 and highlights the given code word distances
as well as p(1) = 64.

Second, let a code C be given. We want to decide, if the
lower bound on dmin(C) is lower than a given value b. If
dmin(C) ≥ b, then for all code word distances ∆ < 3

4 · 2
n

holds a(∆) ≥ b. We know, that there is one lowest position
p(a(∆)) for each sequence element, where the weight a(∆)
occurs the first time. If the code contains pairs of code words
with a lower difference than p(a(∆)) (a difference at a lower
sequence position), the code has a lower Hamming distance
than b. This position can be derived from a(∆) for ∆ < 3

4 ·2
n.

It holds p(0) = 0, p(1) = 1 and p(b) = 4 · p(b− 1)− 1. It can
be shown by induction and is also known from [15, sequence
A007583], that

p(b) =
22b−1 + 1

3
. (13)

for b > 0. Thus, it holds for the smallest code word difference
∆ of a given code C and the given minimum Hamming
distance b to test

∆ < min

(
22b−1 + 1

3
,

3

4
· 2n
)
⇒ dmin(C) < b. (14)

Example 8. Let n ≥ 7 and b = 4. The smallest possible code
word difference for a code with the Hamming distance 4 is

p(4) <
22·4−1 + 1

3
= 43. (15)

Thus, the smallest possible code word difference of a code
with the Hamming distance dmin(C) ≥ 4 is 43. For codes
with n ≥ 7 and a lower smallest code word difference holds
dmin(C) < 4. Fig. 1 shows the value p(4).

IV. LOWER BOUND-ORIENTED PARAMETER
CALCULATION FOR AN CODING

As presented in Section II, to compute a small value A for
given l (information word length) and b (guaranteed maximum
number of detectable bit flips) two components are important.
With the lower bound approach of the previous section, we
can optimize this computation as follows.

A. Optimization of Component 1

To optimize the computation of the minimum Hamming
distance for an AN code with given l and A, we can easily
apply our introduced lower bound approach, because all code
word distances are multiples m of A, 0 < m ≤ A · (2l − 1).

Example 9. Let A = 3 with (k = 2) and l = 5, thus n =
l + k = 7. Fig. 1 shows the sequences a(∆) and the adapted
sequence ã(∆). Gray bars highlight the relevant multiples of 3,
the values from which we have to determine the lower bound
on the minimum Hamming distance for this setting.

1: procedure CALCA(b, l)
2: A← 22b−1+1

3
. Smallest possible A

3: found ← ⊥
4: while !found do
5: n← dlog2(A)e+ l . Sum of l and bit width of A
6: p← min(A · (2l − 1), 2n − 2n−b+1)
7: found ← >
8: m← A . Odd multiple of A
9: while m ≤ p∧ found do . Iterating over the multiples

10: if ã(m) < b then
11: found ← ⊥
12: end if
13: m← m + 2A . Next odd multiple
14: end while
15: if !found then
16: A← A + 2 . Next odd A
17: end if
18: end while
19: return A
20: end procedure

Fig. 2. Calculation of the smallest A guaranteeing the detection of b− 1 bit
flips for a given information word length l.

To determine the minimum Hamming distance of an AN
code with given A and l, we simply have to iterate over
all multiples of A from A to A · (2l − 1). Furthermore the
first optimization explained in Section III-D can be applied.
There is a further AN-code specific optimization. Because of
ã(2∆) = ã(∆) for ∆ ≤ 3

4 · 2
n and ã(2∆) ≥ ã(∆) otherwise,

we do not have to test even multiples of A.

B. Optimization of Component 2

In order to determine the smallest value for A for a given
information word length l and a desired minimum Hamming
distance of b (to detect up to b− 1 bit flips), we usually have
to iterate over all odd values for A ≥ 3 and to check the
lower bound on the minimum Hamming distance of each code
as explained in Section IV-A. Here, the second optimization
described in Section III-D can be easily applied if l > 1. Thus,
we only have to loop over odd values for A with A ≥ p(b),
because the smallest code word difference is A.

C. Lower Bound-oriented Algorithm

The algorithm for the lower bound-oriented calculation for
parameter A for a given information word length l and a
desired minimum Hamming distance of b is depicted in Fig. 2.
In general, the algorithm structure equals the brute force
approach, whereby each component is optimized as presented
above. In both approaches we iterate over the odd values for A
(line 16). In contrast to the brute force approach, the algorithm
needs no nested loop for the iteration of code words, but only
one per value for A (line 4). The two optimizations in (12)
and (13) are applied in lines 6 and 2.

V. RESULTS

We compared the lower bound-oriented approach3 with the
brute force for verification. Table I contains a qualitative
comparison of the calculated values for A per l and dmin.
Each row contains the results of the brute force approach
(upper line) and the results of the lower bound calculation

3Our code is available: https://brics-db.github.io/ANCodeParameter/

Final edited form was published in " 2018 International Symposium on Information Theory and Its Applications (ISITA). Singapore 2018", S. 590-594,
ISBN 978-4-88552-318-2

https://doi.org/10.23919/ISITA.2018.8664399

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

TABLE I
SMALLEST A FOR GIVEN l AND dmin(CA

[0,2l)
) IN THE FORM A/k.

dmin
l 2 3 4 5 6 7 8 9

4 3/2 19/5 89/7 557/10 4397/13 17779/15 119897/17 577881/20
X X X 565/10 7 4815/13 7 23153/15 7 169585/18 7 1141127/21 7

8 3/2 29/5 185/8 1939/11 12779/14 55831/16 711805/20 5816601/23
X X X X X X 835017/20 7 7651641/23 7

12 3/2 37/6 267/9 3349/12 27825/15 214229/18 2686553/22 25781083/25
X X X X X X X X

16 3/2 47/6 393/9 4547/13 58659/16 687927/20 - -
X X X X X X 7933071/23 91221601/27

20 3/2 53/6 555/10 6311/13 - - - -
X X X X 97569/17 1033069/20 15977383/24 -

24 3/2 61/6 555/10 13837/14 - - - -
X X X X 157605/18 2053185/21 29533329/25 -

28 3/2 71/7 737/10 17619/15 - - - -
X X X X 180111/18 3199675/22 - -

32 3/2 79/7 737/10 18613/15 - - - -
X X X X - - - -

(lower line). A checkmark (X) symbolizes a match between
the brute force and the lower bound approach, missing values
are indicated by a minus (−)4. As we can see, the lower
bound approach computes the same values for A in most of
the cases. Sometimes the lower bound calculation results in
higher values, in particular for low information word lengths l.
The reason for that is the lower bound consideration, but the
approach never results in lower values for A.

Furthermore, we also compared the runtimes as highlighted
in Fig. 3 on a regular CPU without vectorization. Both
algorithms are implemented in C/C++ and compiled with gcc,
whereby the execution was done single-threaded. As we can
see in Fig. 3a, the brute force approach results in a less
execution time than the lower bound approach for small values
for l, whereas the differences are marginal. The reason is that
the lower bound approach operates similarly to a brute force
approach with small overhead in this case. However, for longer
information word lengths l, the lower bound approach is much
faster and the speedup of the lower bound approach grows
exponentially compared to the brute force approach as shown
in Fig. 3b. Only for gray values in Table I, the brute force was
faster than the lower bound approach.

VI. CONCLUSION

In this paper, we considered AN coding with the challenge
of computing an appropriate value for the parameter A,
where the value depends on the information word length l
and on the number of detectable bit flips b. Up-to-now, this
calculation was done using an expensive brute force approach.
To overcome that, we proposed a novel lower bound-oriented
algorithm, which outperforms the brute force approach as
clearly evaluated. With our approach, we are now able to
efficiently compute the values for A for many combinations
of l and b, which is e.g., necessary for the efficient application
of AN coding for database systems as proposed in [12].

4At the time of publication, the calculations were not finished yet. In
particular, for the brute force approach. An updated table can be found on
our website: https://brics-db.github.io/ANCodeParameter/

20µs

25µs

210µs

215µs

220µs

225µs

230µs

0 2 4 6 8 10 12 14 16 18

tbf,

−→

tlb

l −→

dmin = 3, Lower Bound
dmin = 3, Brute Force
dmin = 5, Lower Bound
dmin = 5, Brute Force
dmin = 7, Lower Bound
dmin = 7, Brute Force

(a) Execution time

2 4

2 2

20

22

24

26

28

210

212

0 2 4 6 8 10 12 14 16 18

tbf
tlb

−→

l −→

baseline 1
dmin = 3
dmin = 5
dmin = 7

(b) Speedup

Fig. 3. Execution times for the calculation of A with given l, dmin with
brute force (tbf) and the lower bound approach (tlb).

ACKNOWLEDGMENTS

This work was partly supported by the German Federal
Ministry of Education and Research (BMBF) within the
EXPLOIDS project under grant 16KIS0522K and by the
German Research Foundation (DFG) within the Cluster of Ex-
cellence “Center for Advancing Electronics Dresden (cfaed)”
(Resilience Path).

REFERENCES

[1] S. Y. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE Micro,
vol. 25, no. 6, pp. 10–16, 2005.

[2] Y. Kim, R. Daly, J. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in Int. Conf. on
Software Architecture (ICSA), 2014, pp. 361–372.

[3] O. Mutlu, “The rowhammer problem and other issues we may face as
memory becomes denser,” in Design, Automation and Test in Europe
(DATE), 2017, pp. 1116–1121.

[4] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. R. Nassif, M. Shafique,
M. B. Tahoori, and N. Wehn, “Reliable on-chip systems in the nano-
era: lessons learnt and future trends,” in Des. Automation Conf. (DAC),
2013, pp. 99:1–99:10.

[5] S. Rehman, M. Shafique, and J. Henkel, Reliable Software for Unreliable
Hardware - A Cross Layer Perspective. Springer, 2016.

[6] M. Shafique et al., “Multi-layer software reliability for unreliable
hardware,” it - Inf. Technol., vol. 57, no. 3, pp. 170–180, 2015.

[7] A. Avizienis, “Arithmetic error codes: Cost and effectiveness studies for
application in digital system design,” IEEE Trans. Computers, vol. 20,
no. 11, pp. 1322–1331, 1971.

[8] M. Hoffmann, P. Ulbrich, C. Dietrich, H. Schirmeier, D. Lohmann, and
W. Schröder-Preikschat, “A practitioner’s guide to software-based soft-
error mitigation using AN-codes,” in IEEE 15th Int. Symp. on High-
Assurance Syst. Eng. (HASE), 2014, pp. 33–40.

[9] D. Kuvaiskii and C. Fetzer, “∆-encoding: Practical encoded processing,”
in DSN, 2015, pp. 13–24.

[10] N. A. Rink and J. Castrillón, “Trading fault tolerance for performance in
AN encoding,” in Proceedings of the Computing Frontiers Conf. (CF),
2017, pp. 183–190.

[11] U. Schiffel, “Hardware error detection using AN-codes,” Ph.D. disser-
tation, Dresden University of Technology, 2011.

[12] T. Kolditz, D. Habich, W. Lehner, M. Werner, and S. T. J. de Bruijn,
“AHEAD: adaptable data hardening for on-the-fly hardware error detec-
tion during database query processing,” in Proceedings of the 2018 Int.
Conf. on Management of Data (SIGMOD), 2018, pp. 1619–1634.

[13] U. Güntzer and M. Paul, “Jump interpolation search trees and
symmetric binary numbers,” Inf. Process. Lett., vol. 26, no. 4, pp. 193
– 204, 1987. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/0020019087900056

[14] C. Heuberger and H. Prodinger, “The hamming weight of the non-
adjacent-form under various input statistics,” Periodica Mathematica
Hungarica, vol. 55, no. 1, pp. 81–96, 2007. [Online]. Available:
https://doi.org/10.1007/s10998-007-3081-z

[15] OEIS Foundation Inc. (2017) The On-Line Encyclopedia of Integer
Sequences. [Online]. Available: http://oeis.org

Final edited form was published in " 2018 International Symposium on Information Theory and Its Applications (ISITA). Singapore 2018", S. 590-594,
ISBN 978-4-88552-318-2

https://doi.org/10.23919/ISITA.2018.8664399

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADPCBB5.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Juliana Hildebrandt, Till Kolditz, Dirk Habich, Wolfgang Lehner

