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Abstract—This paper concerns the problem of estimating the
Internet flow duration distribution from indirect measurements
due to network constraints. The aim is to estimate the distri-
bution from observing: the possible superpositions (collisions)
of sampled flow durations, the flow arrivals-to-departures times
without identification of sampled flows and the number of
sampled flows in progress. For each type of data available, we
present estimators of the flow duration distribution, formulating
the problem in queueing system terms. We also propose data
streaming algorithms using sampling and sketching (through
counters) to obtain the considered partial information from flows.
At the core of this skampling (i.e. sampling and sketching)
approach is the ability to tune the flow sampling probability
for “optimal” flow load onto sketch entries (queues). Finally, we
present numerical results comparing the different estimators of
the flow duration distribution using two real Internet traces.

Index Terms—Internet traffic measurements, packet and flow
sampling, sketching, flow duration distribution, non-parametric
estimation.

I. INTRODUCTION

This paper concerns the measurement of flows of packets
in Internet traffic, in particular of associated distributions such
as those of flow sizes (number of packets in a flow) and
durations (time interval from the first to the last packet). These
distributions are important metrics in measuring and moni-
toring Internet traffic, each being used for traffic modeling,
management, anomaly detection and accounting (see e.g. [1]).
From the viewpoint of a user, the distribution of flow durations
is arguably the more important one, and is the focus of this
work.

Estimating such distributions poses unique challenges due to
the computational and storage costs associated with the large
volume of traffic. For example, a naive approach would be to
keep a flow table, updating it with each passing packet (updat-
ing packet counts for flow sizes, and times for flow durations).
However, such an approach is prohibitively expensive: each
table entry must store a unique flow key which must be read
and compared on each packet. This is especially slow when
flows with long bursts of short closely-spaced packets arrive,
each of which requires a flow key lookup.

As described in more detail in Sec. II, various packet
sampling and sketching techniques have been suggested to
overcome these challenges. In sampling, only a subset of all
packets are selected, making “sampled” flows, which form
the basis for inference. In sketching techniques, compact data
structures with fast update rules are used to inexpensively, but

only approximately, summarize information about the packet
stream, the errors being accounted for in the inference.

Our work is inspired by a combined sampling and sketching
approach for the flow size distribution, called skampling (a
portmanteau of sketching and sampling), developed in [2].
The approach in [2] comprises three main components. First,
sampling is performed at the flow level with probability p
(all packets of a flow, or none, will pass). Second, sampled
packets are hashed into an array of A counters based on
a flow key, so all packets from a given sampled flow are
mapped to the same counter. Third, after some measurement
interval the packet counts are exported and used to estimate
the flow size distribution. The key difficulty is that of flow
collisions: a given counter may have counted packets from
more than one flow, obliging the subsequent inference to
perform deconvolution. The key advantage is that the flow
sampling stage is performed free of flow table costs, and p can
be chosen to control the collision rate, and thereby to optimize
a tradeoff of “information destruction” caused by collisions
against the volume of collected data. The end result is a
computationally feasible method with a performance which
is comparable to that of true flow sampling, which is in fact
optimal.

In this work we propose a skampling approach for the
flow duration distribution D(t), which similarly to the case
of flow sizes above, involves sampling, then sketching and
“deconvolution”. Exactly as in the flow size case, the first
stage is a flow sampling step which acts on a flow key,
which we assume can be determined for each packet. We
also assume that the first, and for the moment also the last,
packets of flows can be identified, the archetypal examples
being the SYN and FIN packets of TCP connections which
constitute the majority of traffic in the Internet. (The ideas and
results of this paper apply to other types of flows provided
that suitable substitutes can be found for connection startup
and termination.) However, a crucial point is that because the
sketch will not store flow keys, we cannot match up the SYN
and FIN from the same flow j, so the flow duration cannot be
measured directly as tFINj

−tSYNj
. This being the case, how

then can durations be accessed, and what form of sketch can
capture this information?

To gain a handle on the problem we exploit a model of
flow structure, known to be accurate for backbone links ([3],



[4]), whereby flows arrive as a Poisson process of intensity
λ, with i.i.d. flow durations. Under these conditions, the
dynamics of flow arrivals and departures is precisely mirrored
by arrivals and departures to an M/G/∞ queue, where the
number of flows simultaneously active is just the number
of active servers, commonly referred to as “queue length”,
and where the service or sojourn time distribution is simply
the distribution D(t) of flow durations. Flow sampling with
probability p interacts in a very natural way with this model:
the sampled flows can be modelled by the same M/G/∞
queue with intensity reduced to λp = λp, and the subset of
these hashed to an entry in the sketch array of A elements
corresponds to a queue with λq = λp/A = λp/A.

The utility of the above model is that the literature on
the M/G/∞ queue documents many relationships between
queueing observables, for example busy period durations, and
the service time distribution D(t) of interest here, which
can form the basis of an inference method. Indeed, there
has been a growing interest in recent years (e.g. [5], [6]) in
statistical inference problems where partial measurements of
queues can be used to infer various queueing parameters.
Of the available approaches relevant to the estimation of
service distributions, we select three where the required data
is amenable to collection by simple counters acting on the raw
packet arrival information, based respectively on busy periods
(BP), queue length (QL), and “arrivals-to-departures” (AD)
information.

It may not be possible to measure the equivalent of a FIN
packet for some flow definitions, and it is well known that
even many TCP flows do not terminate correctly. It is therefore
important to see what can be done without FIN information.
Of the above approaches, it is BP that shows the most promise.
We accordingly also study a variant using an heuristic which
can estimate BP information without the need for FINs. Note
the inherent difficulty here: upon the arrival of a SYN packet,
the decision has to be made on whether it starts a new busy
period, or happens to fall within the duration of an existing
flow (in which case the busy period continues). The detail of
the approach requires going beyond the M/G/∞ model to
consider packet arrival structure within flows.

Because duration measurement involves timekeeping, the
situation is naturally more complex than the case of flow
size [2]. Whereas a single counter counting arrivals over a
measurement interval was sufficient in that context, here an
entry in the sketch array may involve multiple counters, and
require state dependent actions rather than a simple increment.
Moreover the need to measure time using counters implies that
time must be discretized, and tracked asynchronously of packet
arrival events.

Unless stated otherwise, we focus on a single sketch entry,
fed by a stream of flows which we think of as associated
to an M/G/∞ queue of arrival intensity λq . We follow the
approach of [2] by considering sketch entries to be mutually
independent. Final sketch estimates can therefore be obtained
by combining those from each entry in a straightforward way,
effectively increasing sample size by a factor of A.

The proposed skampling approaches for the flow duration
distribution are examined through simulation on two Inter-
net traces, for which they show excellent performance. In
particular, they outperform the sampling approaches of [7],
[8], [9], [10], in that estimation is improved over the main
body and the tail of the distribution, and in that they do not
assume any special asymptotic structure as was the case in
[8], [10]. Moreover, the performance is satisfactory for very
small sampling probabilities for flows, for example as low as
p/A=10−4, which cannot be handled by earlier approaches.

Our work can also be applied in other contexts such as
stream processing and “big data”, so long as the data consist of
objects (packets) that are grouped into types (flows), for which
there is an equivalent of a SYN packet. In stream processing,
the objects cannot be stored and must be analyzed on the
fly, and in the context of “big data”, fast data summaries are
needed. The corresponding metric of interest consists of the
frequencies of the durations of object types.

The paper is organized as follows. We review briefly the
literature in Sec. II. In Sec. III, we establish the sampling
framework based on the M/G/∞ queue, and derive the
estimators for the three types of partial information considered.
The sketching algorithms to obtain the considered partial in-
formation are presented in Sec. IV. The results are then applied
to two Internet traces in Sec. V and, finally, conclusions and
future directions are presented in Sec. VI.

II. RELATED WORK

Sketches have been proposed to measure many metrics
of interest including heavy hitters [11], super-spreaders [12],
frequency moments [13], entropy [14], flow size distribution
[15], and inverse distribution [16]. Very few works in this area
concern flow durations, with the exception of [17] and [18]
to the best of our knowledge. In [18], working with older
traces from backbone links, all flow durations are tracked
using a set of Bloom filters, each representing flows falling
in a certain range of bin durations. To track the durations of
long flows, an aging process is used. In [17], the interest lies
in characterizing long-lived flows with a dedicated efficient
data streaming algorithm. In both of these works, there is no
statistical estimation involved in the sense that the estimates
are obtained directly from the output of the complex sketching
algorithms.

On the sampling side, most of the focus has been on the
estimation of the flow size distribution [19], [20]. Assuming a
Bernoulli sampling of packets, the flow duration distribution
is estimated for large flows assuming a particular form of
the distribution in [21]. The works [7], [8], [9], [10] have
proposed an analytical framework under several methods of
sampling packets to estimate the flow duration distribution.
This approach requires modeling the duration distribution in
terms of the interarrival times (IATs) between packets and flow
size. The inversion of flow distributions (IATs and size) from
sampled flow quantities allows the flow duration distribution
to be estimated, but the procedure is prone to numerical issues
associated with the inversion.



Our work also involves sampling and inference (from
sketches) but is devoid of some of the earlier difficulties. First,
the sampling is at the level of flows, as opposed to packets.
Second, as a result, the considered inference procedures show
superior performance at suitable sampling rates, which can be
tuned at the sampling stage. These ideas have been suggested
explicitly and studied in [2] for the distribution of flow sizes.

III. INFERENCE ANALYSIS

In this section we deal with the queueing-theoretical un-
derpinning of the inference methods, essentially how the flow
duration distribution can be expressed in terms of accessible
arrival and departure information.

As described above, we suppose that sampled flows arrive
(to a sketch entry) in a Poisson stream at rate λq , and their
durations are assumed to be independent of each other and of
the flow arrival process. Therefore, the arrivals and departures
of flows can be formulated as an M/G/∞ queue model which
has been used extensively in the networking literature. This
is a semi-parametric model with arrival intensity λq and the
cumulative distribution function (CDF) D(t) characterizing
the system. In a slight abuse of notation, we will use the same
letter, D in this case, to denote the corresponding random
variable. The queue analysis is tractable. For example it is well
known that the number of flows in progress in equilibrium is
Poisson distributed with mean λqE[D].

We consider three types of accessible partial information:

(i) the indicator busy period process (1{Q(t)>0}), where
Q(t) is the queue length at time t, indicating whether
the system is in a busy or idle period;

(ii) the arrivals-to-departures information, consisting of times
from flow departures to their most recent flow arrival;

(iii) the queue-length process (Q(t))t≥0 in equilibrium over
a finite time interval.

The different partial information will be abbreviated as: BP
(Busy Periods), AD (Arrivals-to-Departures) and QL (Queue
Length). Note that the data of type QL is more informative
than those of types BP and AD, in the sense that both types BP
and AD can be reconstructed from the data of type QL, but not
vice versa. The BP and AD types cannot be ordered, in the
sense that neither can be reconstructed from the other. The
three types of partial information are considered separately
next. Different inference procedures will be used depending
on the partial information. These will be compared in Sec. V.
BP information. The aim here is to estimate the distribution
D(t) of flow durations using only the information of the
idle periods and busy periods of the queue. It is known (see
e.g. [22]) that the Laplace-Stieltjes transform (LST) of the
distribution B(t) of busy periods depends on λq and D(t)
through the formula

B̃(s) :=

∫ ∞
0

e−sxdB(x)

= Ĩ(s)−1 −
(
λq

∫ ∞
0

e−ste−λq

∫ t
0
(1−D(x))dxdt

)−1
, (1)

where Ĩ(s) = λq/(λq + s) is the LST of the distribution of
an idle period which is exponential with parameter λq . The
mean busy period derived from Eq. (1) gives

E[B] = (eλqE[D] − 1)/λq, (2)

which is finite if and only if the flow duration has finite
mean. From Eq. (1) we can obtain the distribution D(t)
which was noted in [23] and also investigated in [24] for the
M/G/∞ queue. More specifically, for two functions F (t)
and G(t), t > 0, define their convolution as the function
(F ∗G)(t) =

∫ t
0
F (t−x)dG(x), t > 0. Let C(t) = (B ∗ I)(t)

be the distribution of a busy cycle (the sum of a busy
period and an idle period). The renewal function associated
with the distribution C(t) is U(t) =

∑∞
k=0 C

∗k(t), where
C∗0(t) = 1{t≥0} and C∗k(t), k ≥ 1, is the k-fold convolution
of C(t). Since C̃(s) = B̃(s)Ĩ(s), it follows from Eq. (1) that

λq

∫ ∞
0

e−ste−λq

∫ t
0
(1−D(x))dxdt = Ĩ(s)(1− C̃(s))−1 (3)

and therefore

λqe
−λq

∫ t
0
(1−D(x))dx = (I ∗ U)(t). (4)

Solving with respect to D(t), we obtain

D(t) =
U ′(t)

(I ′ ∗ U)(t)
, t > 0, (5)

where U ′(t) =
∑∞
k=1(I ′∗B)∗k(t) is the density of the renewal

function and I ′(t) represents the exponential density function
with parameter λq .

Given a measurement window with n idle periods
I1, I2, . . . , In and busy periods B1, B2, . . . , Bn, we can es-
timate the sampling rate and busy period distribution as

λ̂q =
( 1

n

n∑
i=1

Ii

)−1
, B̂(t) =

1

n

n∑
i=1

1{Bi≤t}. (6)

Then, an estimator for D(t) is

D̂(t) =
Û ′(t)

(Î ′ ∗ Û)(t)
, (7)

where Û(t) and Î(t) are the empirical counterparts of U(t)
and I(t) obtained by using (6). Note that an estimate for E[D]
can be obtained directly through (2) by using the empirical
counterparts of λq and E[B]. See [23] for more theoretical
properties of the estimator D̂(t).

The effect of the magnitude of λq should also be noted
here, since it is a parameter we can control. For λq close
to 0, busy periods are very likely to be trivial, consisting
of a single flow, and with B = D. The estimator D̂(t) will
reflect this, though this is not immediately evident from the
expression (5). The downside is that there will be very few
busy period samples available. As λq increases, busy periods
will first become increasingly frequent, but will also begin to
become non-trivial (B>D), making inference harder. As λq
increases further they will begin to merge and so become fewer
in number, ultimately just a single continuous busy period,



thus starving BP-based methods of data. Without sampling (i.e.
λq = λ), this is the case under realistic network conditions,
where the queue will have 10’s or even 100’s of thousands
of concurrent flows. Control via sampling and hence smaller
λq is then essential to achieve a regime where there are a
sufficient number of BPs which are, intuitively, equal or close
to durations.
AD information. The partial information here consists of the
time intervals between flow departures and the immediately
preceding flow arrivals, referred to as the arrival-to-departure
times.

Let Yi be the time of the ith departure, Di the duration of
the flow ending with the ith departure, and Zi be the time
interval between Yi and the latest arrival preceding it, that
is, the arrival-to-departure time. Brown [25] showed that the
CDF of Zi given Di = d can be expressed as Z(z|d) =
(1− e−λqz)1{z<d}. Integrating over the values of d (see [25]
for details), the CDFs Z(t) and D(t) can then be related as
Z(t) = 1− (1−D(t)))e−λqt, which leads to

D(t) = 1− (1− Z(t))eλqt. (8)

Supposing that n departures and hence variables Zi are
observed, we can estimate the arrival rate λ̂q from the arrival
times of the sampled flows and the CDF Z(t) by Ẑ(t) =
n−1

∑n
i=1 1{Zi≤t}. By replacing these quantities in Eq. (8),

we obtain an estimator for D(t),

D̂0(t) = 1− (1− Ẑ(t))eλ̂qt. (9)

Since D̂0(t) estimates a CDF but is not necessarily a non-
decreasing function, the following final estimator is taken for
D(t):

D̂(t) = sup
0≤u≤t

D̂0(u). (10)

Theoretical properties of the estimator D̂(t) are considered in
[25], and an extension to the times between departures and
and the rth preceding arrivals in [5].

As in the BP case, λq plays an important role. For large λq ,
the duration of flows Di are relatively large compared to the
flow interarrival times, and therefore Zi tend to be smaller. In
view of (9), Ẑ(t) and hence D̂0(t) would tend to reach 1 more
quickly (smaller t), and so the estimation of D(t) for larger t
becomes more problematic. On the other hand for small λq ,
D̂0(t) is essentially Ẑ(t) by (9) but there will be very few, if
any, Zi samples available.
QL information. The last partial information considered in
order to estimate D(t) is the queue length process. The auto-
covariance function of the process (Q(t))t≥0 is

R(t) := Cov(Q(s), Q(s+ t)) = λq

∫ ∞
t

(1−D(x))dx (11)

(see e.g. [23], [6]). Differentiation yields

1−D(t) = − 1

λq
R′(t), t > 0. (12)

This relationship provides the basis for the construction of
an estimator of D(t). Supposing the observation time interval

t ∈ [0, T ] is discretized as ih, i = 1, . . . , n, with h > 0,
consider the sample mean Q = 1

n

∑n
i=1Q(ih), and let

R̂(jh) =
1

n

n−j∑
i=1

(Q(ih)−Q)(Q((i+ j)h)−Q) (13)

be the sample auto-covariance of Q at time lag jh. The
estimator of D(t) at time t = jh, j = 1, . . . , n, is given
by

D̂(jh) = 1 +
1

λ̂q

R̂(jh)− R̂((j − 1)h)

h
, (14)

where λ̂q can be estimated from the up-jump times of the
queue length process associated with flow arrivals. See [23]
for properties of some estimators related to D̂(jh).

Like the BP and AD cases above, a small λq translates to
a lack of data, but unlike them, large λq is not detrimental
to estimation. On the contrary, since the covariance function
depends on λq only via a prefactor, higher values simply
means more queueing events, and so the estimator variance
should monotonically improve with λq . Note however that this
does not imply vanishing bias in the limit or consistency, since
the measurement interval is finite and so the far tail of D(t)
is not sampled. This is borne out in our simulations reported
below.

IV. SKETCHING ALGORITHMS AND IMPLEMENTATION

In this section we describe how the partial information con-
sidered in Sec. III can be collected through appropriate choices
of sketch data structure/algorithm, acting on the packets from
the input flows. As before we consider these to be those
sampled flows directed to a single entry in the sketch array.

We measure time in discrete units of width ∆ seconds using
a counter, Ct, which is incremented at the end of each time
slot. This counter is special as it is accessed in two ways:
by the periodic increment just described, and independently
by the sketch data structure logic as described below, which
reacts to packet arrival events, which can occur at any time
(not slotted). For simplicity, we assume that packets do not
arrive precisely on slot boundaries.

We present results in the order AD, QL, and BP, of increas-
ing sketching complexity. We then define a fourth approach,
a BP based heuristic which does not require FIN packets. In
each case the algorithms described run over the course of some
observation window, exporting values as they go. At the end of
the window these values are used to form estimates of D(t).
AD information. A sketching algorithm for the AD infor-
mation Zi from Sec. III can be designed using only the Ct
counter, defined above. Only SYN and FIN packets are used,
others are ignored. The scheme works as follows, initialized
at the arrival of the first SYN packet. Each time a SYN packet
is seen, Ct is reset to zero. Whenever a FIN packet arrives,
the current value of the counter is exported. It should not be
forgotten here that Ct is also being incremented periodically
in the background at the end of each time slot.
QL information. A sketching algorithm to collect the QL
information can be implemented using two counters C and Ct,
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Fig. 1: Construction of busy and idle periods from flows.
representing respectively the queue length, and the number of
time slots since the last change of the queue state. Again only
SYN and FIN packets are used, others are ignored.

The scheme works as follows. At the beginning of the
observation window we assume the queue is empty and
initialize (C,Ct) = (0, 0). Each time that a SYN or FIN
arrives, C is incremented or decremented, respectively, and
at the end of such a time slot (C,Ct) is exported (before the
periodic Ct increment) and Ct = 0 is reset (just after the
periodic increment).

It is possible that C can be negative due to the arrival of
FIN packets from flows that are active at the beginning of the
observation window. In this case we subtract the minimum of
the exported C values from those values so the new minimum
is zero. It is still possible however that the queue was not
initially empty but this is not detected, in which case the
exported QL values will be too low by some positive integer.

From all the exported pairs (C,Ct), the queue length
process can be reconstructed straightforwardly.
BP information. Busy period measurements can be obtained
using the same values exported from the QL algorithm above,
an approach we refer to as the BP via QL.
Inferred BP information. We now define the inferred BP
algorithm, which uses an heuristic to estimate busy period
durations without using FIN packets.

To explain the basic idea, note that a busy period always
starts with a SYN packet (see flows 1 and 3 in Fig. 1) but
that, due to flow “collisions”, a SYN packet may fall within
the duration of another flow and hence may not initiate a busy
period (flows 1 and 2 in Fig. 1). Thus, the time between a
SYN packet and the previous packet is either an idle period (in
which case the SYN packet starts a busy period) or a (proper)
subset of an interarrival time (IAT) between two consecutive
packets of another flow.

Recall from Sec. III that an idle period is exponentially
distributed with parameter λq and hence has mean 1/λq . The
key insight is that in our skampling framework λq can be
chosen to be small enough so that an idle period will tend to
be larger than the IATs between consecutive packets of a single
flow, and hence even larger than the IATs within a busy period
with many flows. In such a regime whether a SYN packet starts
a busy period or not can be inferred by comparing the interval
between the SYN and the previous packet to a threshold value
Γ, based on some quantile of the idle period distribution.

In fact, we make Γ an increasing function of the number
of packets in the current (inferred) busy period to make idle
detection progressively harder to achieve, in order to reduce
the risk of a false positive, that is concluding that the SYN
begins a new busy period when this is not the case. The

Algorithm: Inferred BP information

Initialization: First time packet arrives in obs. window:
set Ct = 0, Cd = 0, and C = 1;

Loop: Upon packet arrival:
Case 1a: If 0 ≤ Ct ≤ Γ(C), or
Case 1b: Ct > Γ(C) and not a SYN: % BP continues

set Cd = Cd + Ct; Ct = 0; C = C + 1;
Case 2: If Ct > Γ(C) and a SYN % new BP

export Cd; set Ct = 0; Cd = 0; C = 1;

motivation is twofold: (i) burstiness of in-flow IATs means
that opportunities for false positives naturally grow with flow
duration; (ii) with reference to the well-known mouse/elephant
dichotomy for flows, a long busy period due to sampling an
elephant will be characterized by the higher IAT variability of
such flows. Details on the choice of Γ are left to Sec. V.

We now turn to the description of the inferred BP algorithm.
Three counters are needed:
Ct measures the intervals between consecutive packet ar-

rivals (Ct − 1 holds the number of slots since the last
arrival);

Cd holds the duration of the current busy period (units of
∆);

C holds the current size (# of packets) of the busy period.
Finally, Γ = Γ(C) denotes the idle detection threshold de-
scribed above. Some of the cases in the algorithm above
can be illustrated with the flows represented in Fig. 1. The
arrival of flow 2 corresponds to Case 1a and the arrival of
flow 3 to Case 2 (assuming the conditions involving Γ(C) are
satisfied). The arrival of the second packet in the same time
slot (tenth slot in Fig. 1) corresponds to Case 1a. The algorithm
incorporates some ideas of [17] for tracking durations of
long flows, where several counters with fast update rules and
exporting are used.

V. DATA STUDY

In this section, we will assess the quality of and compare
the proposed estimators using real Internet traffic data. We
consider two publicly available Internet traces, Auckland IX
and Waikato V.1 A summary of some of the trace statistics is
given in Table I. We assume that estimates of λ and the mean
flow load factor ρ = λE[D] are available. The arrival rate
λ can be estimated by counting SYN packets, and ρ can be
estimated over some preliminary short measurement interval.
The quality of the estimators will be evaluated as a function
of the mean load factor ρq = λqE[D] representing the level
of superposition (collision) of flows in the queue, which is
strongly tied to inference performance.

We first consider the ideal case in which the SYN and FIN
packets of flows can be observed (removing the flows with one
packet) from which the BP, AD and QL partial information
can be reconstructed in order to have a fair comparison across

1http://wand.net.nz/wits



Trace Duration # Packets # TCP Flows λ (flows/s) E[D](s)
Auck. IX 1h 38,308,012 1,371,756 346.8 11.0
Waik. V 1h25m 15,486,413 842,578 156.1 7.6

TABLE I: Traces summary.

the different methods with respect to the ground truth. The
existence of a small percentage of flows with only one packet
(SYN) or duplicate FIN packets could perturb momentarily
the quantities exported in the AD algorithm but will have
negligible impact in the estimation. For the QL information
the impact could be mitigated with additional changes similar
to the ones described at the end of the algorithm. On the other
hand, the inferred BP algorithm is more robust to these kinds
of flows. We give results for a single sketch entry and, in
addition to comparison across different methods, are interested
in the values of ρq for “optimal” performance. At the end of
the section, we consider the estimation of the flow duration
distribution with the inferred BP information (see Sec. IV).

The choice of time slot width ∆ impacts on the granularity
and accuracy of the data captured in the sketch, and on
the subsequent estimation. It is constrained in practice by
measurement infrastructure in terms of available processing
time and memory. For our off-line analysis here we use a
value of ∆ = 10−3s, or 1 millisecond, in all cases.
Model adequacy. The assumption of homogeneous Poisson
flow arrivals was examined for both traces through testing the
uniformity of the arrival time distribution, conditionally on
the number of arrivals. It passed standard statistical tests (e.g.
Kolmogorov-Smirnov). The other assumptions involved were
the independence of flow arrival times and duration times, and
that duration times form a sequence of i.i.d. random variables.
We did not test these here, but if there are reasons to suspect
violations, statistical tests are available, as described in [26].
BP information via QL. Fig. 2a concerns the estimation of the
(complementary) flow duration distribution for several values
of ρq for the Auckland trace, using the BP via QL skam-
pling scheme. For the considered values of ρq , the combined
sampling probability p/A (= p since A = 1 sketch entry is
considered) is smaller than 10−4.

For each value of ρq , we obtain 100 independent replications
of our D(t) estimates through randomly resampling the trace
data input to the sketch entry. We use these to empirically
measure the distributional properties of our estimators based
on a single sketch entry. This should not be confused with
using a sketch with A = 100 entries, where the flow samples
are generated via a hash function and so are not perfectly
independent across the sketch entries.

The plots show the median of 100 empirical (comple-
mentary) CDFs. In other words, we plot the median of the
100 estimates at each value of t with time truncated at 200
seconds, which covers more than 0.99 of the probability (i.e.,
D(200) > 0.99). The performance of the estimator in the tail
is better when ρq takes values between 0.5 and 1.5. The main
body of the distribution is estimated well over the full range
shown, as also seen from the small insert on the bottom left
of Fig. 2a.

As a criterion for quantifying the quality of the esti-

mator, for each replication we use the average difference
(1/T )

∫ T
0
|D(t)− D̂(t)| dt with T = 200. Fig. 3a shows box-

plots (constructed using the 100 replications) of the average
differences for the same ρq range. The tradeoff with respect to
ρq discussed earlier is seen here. When ρq is equal to 0.1, the
inversion difficulty due to collisions is smaller as busy periods
correspond essentially to the sampled flow durations; however,
the number of busy periods obtained is also smaller, increasing
the variability in the estimation (here, E[D] = 11 from Table
I, E[B] = 11.6, E[I] = 110.3, and dividing the length of the
trace by the mean busy cycle E[B] +E[I] gives 29.5 samples
of busy periods on average). When ρq = 2, we see the worst
result since there is both many more collisions in busy periods,
and fewer than “optimal” (see ρq = 1 below) sampled busy
periods available (here, E[B] = 35.3, E[I] = 5.5, and 88.2
samples of busy periods on average).

The outliers in the boxplots correspond to extreme cases due
to the sampling of very long flow durations which decrease
the sample size markedly. This is more likely as ρq increases.
The insert on the bottom left of Fig. 3a plots the medians
for a wider range of values ρq and fits a curve to them. We
can see that the smallest average difference is attained around
ρq = 1 (here, E[B] = 19, E[I] = 11, and 120 samples of
busy periods on average).

The “optimal” value ρq = 1 should perhaps not be sur-
prising. The performance of the estimator depends not only
on the load factor ρq but also on the number of sampled busy
periods in the estimation. For a fixed p, the mean busy cycle is
(eλqE[D]−1)/λq +1/λq by using (2). The minimum value of
the mean busy cycle is attained when λq = 1/E[D], yielding
ρq = 1 and p/A = 1/(λE[D]). At this value the number of
busy period samples is maximized, which is one of the key
factors controlling the quality of the estimation.

Figs. 4a and 4b depict the estimation of the flow duration
distribution and the boxplot of the average differences for the
Waikato trace, respectively, under the same settings used for
the Auckland data. From the distribution function, we see
that flows have smaller durations. The same behaviour of the
estimator is observed and similar conclusions can be drawn.
AD information. Fig. 2b presents the medians of 100 esti-
mates of D̂(t) for several values of ρq as above, but using the
Brown estimator with the Auckland trace (the vertical lines
observed are due to 1− D̂(t) being zero).

When ρq = 0.1, more values in the distribution tail are
estimated but with more variability than in the main body
of the distribution. The former is due to the following: as ρq
increases, the durations of flows tend to be larger compared to
the interarrival times between sampled flows, and so inference
regarding D(t) for large t becomes unreliable (see a related
discussion in Sec. III). The generalization of the Brown
estimator derived in [5] could be considered to improve the
estimation in the tail as mentioned in Sec. III. However, we
will not pursue this here, since the partial information uses the
FIN packets and can be viewed as problematic.

The respective boxplots of the average differences between
the true and estimated distribution functions over [0, 200] are
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Fig. 2: Flow duration distribution estimation for ρq = 0.1, 0.5, 1, 1.5, 2 – Auckland.
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Fig. 3: Average differences between D(t) and D̂(t) over (0, 200) – Auckland.
shown in Fig. 3b. The largest differences are attained at ρq =
0.1 because of the few samples of Zi obtained and at ρq equal
to 2 for the reasons given above. In order to describe the shape
of the differences, the insert on the bottom left shows the
median average differences for several values of ρq . We see
that the minimum difference is around ρq = 0.5. Comparing
Figs. 2a–3a with 2b–3b, we conclude that estimation based on
the AD information is worse than that of the BP information.

We omit the results for the Waikato trace since there are no
significant differences in the plots and similar conclusions can
be drawn.
QL information. Finally, the performance of the estimator in
Eq. (14) is shown in Fig. 2c using the respective algorithm
in the same setting. From the figure, we do not see much
difference in the medians of 100 estimates for the values
of ρq considered, with the exception of ρq = 0.1, where
the piecewise linear behaviour is due to the small changes
of the queue length over time. However, there is now more
variability in the estimation of the tail compared with the
other approaches (cf. Figs. 2a, 2b and 4a). The boxplots of the
average differences in Fig. 3c also confirm that estimation does
not depend much on ρq for the range of the values considered,
excluding ρq = 0.1. Comparing with the estimation provided
by the BP and QL partial information, the median of the
average difference in Fig. 3c is larger in the region between
ρq = 0.5 and ρq = 1. The same observations apply to the
Waikato trace, and we omit the figures for brevity.
Inferred BP information. Finally, we consider estimation of

the distribution of flow durations from the inferred BP infor-
mation. To define the function Γ of the algorithm described
in Sec. IV that sets the threshold value for the beginning of a
new busy period upon the arrival of a SYN packet, the well-
known mouse/elephant dichotomy for flows will be used (see
e.g. [21]). The following simplified definition will be used: a
mice (resp. elephant) is a flow with the size less than or equal
to (resp. more than) 30 packets. This definition may appear a
bit crude at first glance, but provides a functional separation
between long and short flows.

Indeed, these two types of flows are expected to have
different behaviours in the network. The flows with less than
30 packets operate mostly in the slow start period of the
TCP protocol. Long flows, on the other hand, are expected
to be regulated by the congestion avoidance regime of the
TCP protocol. When inspecting the packet transmission pattern
of elephant flows in the traces and as also reported in the
literature, one can observe that it is not regular but rather
characterized by periods of low transmission rates. In our
skampling framework we can control λq to be low, a long
busy period is then often due to sampling an elephant.

As discussed in Sec. IV, if Γ increases with the number of
packets in the current busy period, the arrival of a SYN packet
in a large IAT between packets of an elephant is less likely to
be classified as a new busy period.

We have tried several forms for the function Γ with an
exponential growth, settling on the function given by Γ(x) =
α+βeγmin(x,30), x ≥ 1, which depends on positive parameters



10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

t

1
−

D̂
(
t
)

 

 

true

0.1

0.5

1

1.5

2

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1

(a)

10
−3

10
−2

10
−1

10
0

0.1 0.5 1 1.5 2
ρ q

0 0.5 1 1.5 2

6

8

10

12
x 10

−3

 

 

median

fitted curve

(b)

Fig. 4: BP information via QL (Waikato): (a) Flow duration
distribution estimation for ρp = 0.1, 0.5, 1, 1.5, 2 and (b)
Average differences between D(t) and D̂(t) over [0, 200].

α, β and γ. Short busy periods are composed of (possible)
superposition of mice flows, where the time between a SYN
packet and the previous packet inside a busy period tends to
be small compared with an idle period. Therefore, we set α
as e.g. the 10th percentile of the idle period distribution (i.e.
I(α) = 0.1). As more and more packets are seen in a busy
period, this indicates that an elephant flow has been sampled
and Γ should increase as explained above. To fit β and γ, we
specify two values of the function Γ(x) at x = 20 and x = 30
packets, so that Γ(x) grows slowly until 20 and then quickly
up to 30 packets. The values Γ(20) and Γ(30) are taken as
the 25th and 50th percentiles of the idle period distribution,
respectively. The choice of Γ(30) as the median (ln 2)/λq
of the idle period counters the possibility of IATs between
packets of an elephant flow being of the same order as the
idle times (timeout values 15–60 sec). This is what could be
considered as the extreme end of the parameter setting where
the inferred BP algorithm has any chance to continue working:
if many IATs are an order larger than the idle times, no
algorithm can be expected to identify BPs even approximately.
Along similar lines, the selected form of the threshold Γ should
be critical in the cases closer to the “extreme” and conversely,
matter little for large idle periods (corresponding to smaller p
and ρq).

Fig. 5 depicts the duration distribution estimates when using
the inferred BP information. In contrast to Figs. 2–4 where the
results were given for a single sketch entry (queue), the results
now use the busy periods from all A sketch entries, each with
a given ρq . We implement the entries using random sampling
however, rather than hashing. We use A = 10, 20, 30.

For the Waikato trace, the mean idle period E[I] for ρq
equal to 0.25 is 30 seconds, while for Auckland, the mean
idle period for ρq equal to 0.5 and 1 are 22 and 11 seconds,
respectively. A larger mean idle period allows for a more
accurate decision when exporting the inferred busy periods.
For Waikato, the total number of true busy periods (with
A = 30) is 3810 and in 88.4% of them, the start of the the
busy period were correctly detected. In the case of Auckland,
with ρq = 0.5 (resp. ρq = 1.0) the total number of true
busy periods is 2296 (resp. 3748) from which 82.5% (resp.
73.7%) were correctly detected. (Note that the total number

of true busy periods is larger for Waikato due to the longer
trace duration.) We can always increase the mean of the idle
period (1/λq) by choosing a smaller p for a better detection
of the start of a busy period and compensating the decrease
of the number of busy periods by using larger A, though
with an increased operational cost. This is also related to the
comparison with a collision free approach, where only one
flow arrives per sketch entry. For Auckland, A = 9785 is
needed to avoid collisions on average for the same sampling
probability p ≈ 0.01 corresponding to ρq = 1 and A = 30.
However, in the former case there is no cost of exporting
the information of the counters. The underlying optimization
problem will be part of a future research; see below. Finally,
we note that the main body of the distribution is well estimated
for both traces as seen from Figs. 5a–5c.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a skampling (a hybrid of sampling
and sketching) approach to estimate the distribution of flow
durations on highly aggregated packet traffic links, nominally
the carriage of TCP connections in the Internet.

If we think of a sketch as an array of counters or sets of
counters into which flows are mapped via a hash function, it is
not immediately clear how durations can be measured, given
that counts will mix together the packets of many overlapping
flows. We overcome this “collision” problem in two ways,
first, by modelling the flow arrival process by an M/G/∞
queue, and second, by using a flow sampling pre-filtering step.
The queue based modelling allowed the considerable body of
work in the queueing theory literature to provide options for
inference approaches capable of “deconvolving” the collision
induced non-linearities in the counter data. The flow sampling
allows the flow collision rate to be reduced to a level where
these methods can perform well, yet without the need for a
costly flow table (which avoids collisions by indexing strictly
via flow keys).

Three inference approaches were selected based on queue-
ing theoretic relations, yielding sketching approaches involv-
ing either one, two, or three packet counters (note no re-
tention of flow key), which could reconstruct exploitable
queue quantities, or “partial queue information”, from the base
packet counter measurements. The best performing technique
was based on the busy periods of the queue. Assuming the
availability of both SYN and FIN packets of sampled flows, the
busy periods were reconstructed exactly from the queue length
process, which was tracked with two counters, one recording
the queue length and the other recording times between its
changes. Because FIN packets (or their equivalent under other
flow definitions) are not always available, we also proposed a
modified heuristic based on the busy period technique which
does not require them. It involved three counters, of which two
track discretised time intervals, and the other counts the busy
period size (number of packets). The counters are incremented
and/or reset according to temporal or packet arrival triggers.
The proposed skampling methods were assessed on two real
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Fig. 5: Flow duration distribution estimation - inferred BP information with several queues whose number is indicated in the
legend.
Internet traces, showing excellent performance even for very
small sampling probabilities.

Several questions related to this work could be pursued
in the future. In terms of improving the current busy period
based heuristic approach, one could investigate the case where
some flows do have a FIN packet available which can be
exploited, and others not. A better understanding of the choice
of the threshold function Γ(x) would be desirable as well.
More broadly, other queueing relations could be considered,
such as aggregation of the busy periods of the queue pro-
cess over an observation window, reducing the frequency at
which counts would have to be exported from the sketch.
Another important question concerns a full analysis of how
to optimize performance subject to some cost metric (such
as total memory use for fixed estimation variance) within the
proposed skampling approach. In this work, the flow sampling
probability was chosen so as to optimize the load factor ρq
per sketch entry, or “queue”, with respect to the number of
samples available, however there are other parameters at play
which impact both on estimation quality and implementation
cost. For example, increasing the size A of the sketch array
improves estimation but increases memory costs, and more
powerful queueing approaches may involve more counters per
sketch entry, increasing statistical performance, but again at
the cost of more expensive memory.
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