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Abstract—Delay Tolerant Networks (DTNs) rely on the cooper-
ation of nodes in a network to forward a message from its source
to its destination. Most of previous studies on DTNs have focused
on the design of routing schemes under the hypothesis that each
relay node is willing to participate in the forwarding process.
However, the delivery of a message incurs energy and memory
costs. In this paper we handle the problem of how to incentivize
mobile nodes to participate in relaying messages using a reward
mechanism. We consider heterogeneous relay nodes where the
cost for taking part in the forwarding process varies as a function
of the mobility patterns of the relays. We show that under fairly
weak assumptions on the mobility pattern, the expected reward
the source pays remains the same irrespective of the information
it conveys to the relays, provided that the type of information does
not vary dynamically over time. We also characterize the effect
of time to live (TTL) counters on the delivery probability and
memory usage. Using simulations based on a synthetic mobility
model and real mobility traces, we perform a few tests that show
a good accordance among theoretical and simulation results.

Index Terms—Delay tolerant networks, Reward incentive
mechanism, Information setting.

I. INTRODUCTION

Delay Tolerant Networks (DTNs), also known as Inter-
mittently Connected Mobile Networks, are mobile wireless
networks in which there is no persistent end-to-end link from a
source to a destination. DTNs take advantage of mobile nodes
to ensure the communication between users; the connectivity
is maintained by mobile nodes which communicate when they
are in range of each other. When a node receives a message
and is not in range of any other node at that time, it stores the
message in its buffer and forwards it to another node whenever
a useful communication opportunity arises.

Various routing protocols have been proposed for DTNs,
their aim being to increase the delivery probability at low
costs. Some routing protocols attempt to enhance the delivery
ratio by aggressively replicating the messages (e.g., flooding).
Other protocols employ specially crafted metrics, which cap-
ture some sort of knowledge of the domain under considera-
tion, to achieve this purpose (e.g., forwarding routing) [3].

Two-hop routing provides a good compromise between de-
lay and resource consumption when compared against flooding
or epidemic routing [1]. In addition, from the standpoint of
feasibility and implementation, the optimal control can be
implemented by the source node, with no need to install new
routing control protocols on relay nodes; one can prescribe
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target performance metrics (e.g., delay) and then determine
to which relays the source node should deliver messages to,
and for how long the delivery process should last [1], [2].
Currently, there are no corresponding results for multi-hop
routing protocols. Finally, it has been shown in [2] that if
we have a network with a complete mixing of the trajectories
of the nodes, two-hop routes are sufficient to achieve the
throughput capacity region of the network. For this reason,
we shall assume a two-hop routing protocol in the remainder
of this paper.

A. Problem Statement

DTNs overcome the problems associated to intermittent
connectivity and guarantee communication through coopera-
tion between nodes; each node is supposed to be willing to
participate in relaying messages of other nodes. However, as
in any fully distributed system, nodes may misbehave; certain
nodes may not be able to relay messages of other nodes in
order to save resources (especially energy), which in turn
degrades network performance. Hence, one of the fundamental
questions in the realm of DTNs concerns incentives: how to
incentivize mobile nodes to participate in relaying messages?

To handle this problem, in [18] a reward mechanism was
proposed in order to encourage nodes to relay messages of
others. Under this mechanism, the source node promises a
reward to each relay who accepts relaying its message, but
informs them that only the first one to deliver the message
to the destination will effectively receive the reward. A relay
accepts to forward the message to the destination if the
proposed reward offsets its expected cost, as estimated by the
relay when it meets the source. The assessment of the reward
expected by the relay depends on the time at which it meets
the source, and on any information given by the source to
the relay that may assist the relay in the estimation of its
probability of success. The model proposed in [18] assumed
a homogeneous mobility for all relays: all the relays have
the same statistics for the inter-contact time with the source
and the destination. However, in many applications real traces
reveal the existence of heterogeneity in mobile relays [17].
Indeed, in real traces [4] we observed that different types of
mobile nodes have very different characteristics in terms of
their communication ability and mobility patterns.

In this paper, we generalize the results of [18] to a het-
erogeneous mobility model in which relays can have different
statistics for inter-contact times. The heterogeneity also gives
rise to a richer set of structures of information sharing from
which the source can choose from, and its analysis involves an
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application of results on order statistics [9]. When the source
meets a relay, it has now four options of information sharing
strategies, as opposed to the three discussed in [18].

1) full information: the source reveals to the relay the
number and the age of all existing copies of the message in
the network.

2) partial information: in this case we distinguish two
options: (a) the relay will be informed about the identities of
the relays that got the message before or (b) the relay will
know the number of copies circulating in the network, but not
the identities of nodes involved in previous contacts.

We note that in the homogeneous case (a) and (b) give
the same information. In the heterogeneous case considered in
this paper, in contrast, knowing the identity (and the mobility
pattern) of nodes involved in previous contacts gives additional
information for the computation of the success probability.

3) no information: the source does not reveal any infor-
mation to the relay, in which case the relay only knows at
what time it met the source.

B. Related studies

There is a vast literature on incentive schemes to promote
cooperation in DTNs [10], [22], [6], [18], [19], [8], [14].
Shevade et al. [19] uses Tit-for-Tat (TFT) to design an
incentive-aware routing protocol that allows selfish DTN nodes
to maximize their individual utilities while conforming to TFT
constraints. Mobicent [8] is a credit-based incentive system
which integrates credit and cryptographic technique to address
edge insertion and edge hiding attacks among nodes. PI [14]
proposes the inclusion of an incentive on the bundle sent by
the source to incentivize selfish nodes to cooperate in message
delivery.

Game theory is one of the common tools used to study
strategic behavior. Ning et al. [16] proposed a credit-based
incentive scheme to promote nodal collaboration in a DTN
with multiple interest types; they assume that a message may
be desired by multiple destinations. The authors formulate
nodal communication as a two-person cooperative game. Wei
et al. [21] proposed a user-centric reputation based incentive
protocol. They defined a game-theoretic framework to design
costs that leads to a Perfect Bayesian Equilibrium.

Reputation mechanisms involving social networks have also
been considered to cope with selfish behavior. MobiGame [21]
is a user-centric and social-aware reputation based incentive
scheme for DTNs. [13] proposes socially selfish routing in
DTNs, where a node exploits social willingness to determine
whether or not to relay packets for others. In [20], authors
proposed an incentive driven dissemination scheme that en-
courages nodes to cooperate and chooses delivery paths that
can reach as many nodes as possible with fewest transmissions.

A fundamental aspect that is usually ignored in the DTN lit-
erature concerns the challenge to transmit feedback messages.
In DTNs, feedback messages may experience large delays
and for this reason the exchange of rewards between relays
should not require feedback to other nodes. To overcome
such a challenge, the mechanism proposed in [18], and also

considered in this paper, assumes that a relay receives a
positive reward if and only if it is the first to deliver the
message to the destination. Similar ideas have been consid-
ered in [6], where a credit-based incentive system using the
theory of minority games is adopted to attain coordination
in a distributed fashion. The mechanism considers costs for
taking part in the forwarding process which vary with device
technologies or users habits.

The mechanism investigated in this paper is a generalization
of the one studied in [18] in which the relay nodes were
assumed to be homogeneous with identical statistical model
of mobility. Motivated by the fact that a realistic mobility
is heterogeneous [4], we generalize the results in [18] to
heterogenous DTN network where different pairs of nodes
might meet at different rates.

C. Summary of the Contributions

Incentive mechanisms under heterogenous settings (Sec-
tion III): we propose a model to enable incentives in DTNs
accounting for relays that can have different inter-contact time
statistics, under multiple information sharing structures. We
show that the average reward paid by the source is independent
of the information sharing setting and depends upon the
mobility pattern only through the mean inter-contact times.

For exponentially distributed inter-contact times, we also
give expressions for the reward the source must promise to
a relay, as a function of the instant of time at which the
encounter occurs and the information sharing structure under
consideration.

TTL analysis (Section IV): we show that nodes equipped
with TTL caches can efficiently tune the TTL so as to trade
between the costs of actively searching for the destination and
the probability to satisfy the source demands.

Trace driven validation (Section V): we validate and
parameterize the proposed model using real traces collected
from taxi cabs in the city of Rome [4]. One of the main
observations we make from these trace-driven experiments is
that our results are robust against variations in the statistical
distribution of the mobility pattern. Specifically, even though
the actual inter-contact distribution may not be known, one can
compute the rewards assuming an exponential distribution, and
this will still result in a fair outcome for the relays and for the
source. By fair, we mean that neither the relay nor the source
gain by making the assumption of exponential inter-contact
times. This experimental evidence suggests that it is sufficient
to know the mean inter-contact times for this mechanism to
work.

The rest of this paper is organized as follows: in the next
section we introduce the system model and our working
assumptions. In Section III we present the main result -
the average reward paid by the source for a message is
independent of the information sharing setting and depends
upon the mobility pattern only through the mean inter-contact
times. In Section IV, we characterize the effect of the time
to live (TTL) counter on the delivery probability and energy
storage. Section V provides simulation results, performed



using both synthetic as well as real traces, that validate our
analytical findings. Section VI discusses the assumptions and
the potential improvements to the model and Section VII
concludes.

II. SYSTEM MODEL

Consider a heterogenous DTN wherein nodes are equipped
with wireless interfaces allowing communication with other
mobiles in their proximity. The network comprises a source
node, a destination node and N mobile relays. The set of
relay nodes is denoted by R = {r1, . . . , rN}, where rk refers
to the node with identifier k. Assume that the source and
the destination are fixed and that they are not in range of
each other. The source seeks help from relays to send its
messages. A contact occurs when two nodes move within the
transmission range of each other. As the density of relay nodes
is assumed to be sparse, we consider contacts exclusively
between relays and the source or the destination. Such routing
strategy is referred to as two-hop routing, as messages that
reach the destination traverse two-hops.

To incentivize relay transmissions, the source promises to
each relay it meets a (time-varying) reward with the condition
that only the first relay to deliver the message to the destination
will get its reward. When a contact between a relay and the
source occurs, the relay can choose to participate in delivering
the message. If the relay chooses to participate, it receives
the message and incurs an energy reception cost denoted by
Cr. The reception cost Cr is fixed and is the same for all
relays. The relay should have enough buffer space to store the
message and carry it until encountering the destination. Let Cs
be the energy cost per time unit for storing and carrying the
message. Finally, if a relay is the first to meet the destination
among all relays that have the message, it delivers the message
and receives the reward promised by the source. Sending the
message to the destination incurs a transmission cost denoted
by Cd. Hence, the reward proposed by the source has to, at
least, offset the expected cost as estimated by the relay to
deliver the message to the destination.

The source can use a number of different mechanisms
to implement micropayment to relays. For instance, it can
issue electronic cheques encrypted with the public-key of the
destination. The first relay who delivers the message sends the
e-cheque to the destination who decrypts it and returns it to
the relay.

A. The Role of Information

Relay nodes estimate costs and revenues associated to the
delivery of messages to the destination based on the expected
time to reach the destination and the probability of success
(i.e. the probability to be the first one to deliver the message
to the destination). The success probability, in turn, depends
on 1) how many relays have already joined the transmission
efforts (counts), 2) their identities and 3) the time instants at
which they have met the source.

Aiming towards reducing its costs, the source can act
strategically, and choose the amount of information to share

TABLE I
AVAILABLE INFORMATION UNDER DIFFERENT SHARING STRATEGIES

Information statistics previous contacts info.
sharing strategy (CDFs) counts identities instants
Full (F ) X X X X
Partial with
identities (P+) X X X
Partial without
identities (P−) X X
None (N) X

with relays. We consider four information sharing strategies,
with increasing levels of information provided by the source
to the relays. The strategies are summarized in Table I, and
vary according to the three factors that determine the success
probability, as discussed in the previous paragraph. In our
analysis we assume that the information sharing strategy is
fixed and given and does not discriminate between relays
or between the times at which the source meets the relays.
In addition, in all cases we assume that relays know the
inter-contact time distributions between each relay, the source
and the destination, i.e., statistical information is common
knowledge. In section V, it will be shown using simulations
that knowledge of the inter-contact times is not essential. It
is sufficient to know the mean inter-contact times in order to
compute the rewards in a fair manner.

To appreciate some of the implications of the different
information settings, we compare the payments requested by
the relays to the source under the different settings. Under the
full information setting, if a relay knows that there are many
copies of a message in circulation, it will infer that it has a
higher risk of failure compared to if it were the first one to
meet the source. Therefore, the larger the number of copies
of a message in circulation, the higher the reward requested
by the relay. Under the no information setting, in contrast, the
first relay who meets the source will certainly underestimate
its probability of success and ask for a higher reward compared
to the setup wherein it knew it were the first to encounter the
source.

A natural question which we will address in Section III
refers to the optimal information sharing strategy from the
perspective of a strategic source who aims towards minimizing
its costs. As suggested in the paragraph above, the full infor-
mation setting favors higher payments to late arrivals, whereas
the no information setting favors newcomers. Interestingly, we
will show that the balance between newcomers and late arrivals
implies that the expected payment incurred by the source is
the same in all the considered settings.

B. Mobility Patterns

Next, we introduce the considered mobility model. Let
T̃ is (resp. T̃ id) be a random variable characterizing the time
between any two consecutive contacts between relay i and the
source (resp. the destination). We assume that the inter-contact



times between relays and the source (resp. the destination) are
independent and non-identically distributed. In addition, we
assume that the contacts between relays and the source or
the destination are instantaneous, i.e., the duration of these
contacts can be neglected.

The instant at which a message is generated by the source
can be seen as a random point in time with respect to the
contact process of a relay with the source. Hence, the random
time between the instant at which the message is generated and
the instant at which relay i will meet the source corresponds
to the residual life of its inter-contact time, which we denote
by T is . Similarly, the time instant at which relay i meets the
destination after contacting the source is a random point in
time with respect to the contact process of this relay with the
destination. Hence, the time to meet the destination is given
by the residual life of the inter-contact time distribution with
the destination, and is denoted by T id. The complementary
cumulative distribution function (CCDF) of T is (resp. T id) is
denoted by F is(x) = P(T is > x) (resp. F id(x) = P(T id > x)).
The mean residual inter-contact time of relay i with the source
and the destination is given by E[T is ] = E[(T̃ is)

2]/(2E[T̃ is ]) and
E[T id] = E[(T̃ id)

2]/(2E[T̃ id]), respectively.

III. EXPECTED COSTS AND REWARDS

In this section, we shall first compute the probability of
success as estimated by a relay that meets the source. Then,
we compute the reward that this relay will ask the source, so as
to assist in the transmission of the message. Finally, we shall
investigate the cost incurred by the source for transmitting
a message to the destination. Both these quantities will be
studied in all the four information settings. All proofs are
available in our technical report [?].

A. Probability of Success

Let si, i = 1, .., N , be the random time at which the source
meets the i-th relay. We denote by s the vector (s1, .., sN ).
In order to simply the notation, we shall write s−n to denote
the vector (s1, .., sn−1, sn+1, .., sN ) and sm:n = (sm, .., sn).

Let L be an ordered set comprising all the possible orderings
of the N nodes in the system, |L| = N !. The elements in
L are ordered in lexicographic order. Let ` ∈ L denote an
ordering of the N nodes in the system, and let `m ∈ L be
the m-th ordering. Then, `(i) = rk if the i-th node to meet
the source under ordering ` is node rk. Node `(i) meets the
source at time si. We denote by `−1(rk) the index of relay
rk in vector `, i.e., `−1(rk) = i if `(i) = rk under ordering `.
To simplify notation, we shall write `−n to denote the vector
(`1, .., `n−1, `n+1, .., `N ) and `m:n = (`m, .., `n).

Let p(k)j (s, `) be the success probability estimated by the j-
th relay to meet the source under setting k ∈ {F, P+, P−, N}.
Let pj(s, `) be the actual success probability of relay `(j)
accounting for all contact times. The probability of success of
rk under the full information setting given s and ` is given
by p(F )

`−1(rk)
(s, `). Recall that p(F )

j (s, `) depends only on s1:j
and `1:j . Similar notation is used for the other settings. To
simplify presentation, with some abuse of notation we may

drop elements from s whenever they are unnecessary. The
first and last nodes to meet the source satisfy the following
relations,

p
(P+)
1 (s1, `) = p

(P−)
1 (s1, `) = p

(F )
1 (s1, `), (1)

p
(F )
N (s, `) = pN (s, `). (2)

The first equality in (1) follows from the fact that the first
relay to meet the source obtains the same information under
the partial and full information settings. Similarly, (2) follows
from the fact that in the full information setting, the last relay
knows the contact times of all other relays with the source.

Let frk(x) be the pdf of the meeting time between rk and
the source, and let fi(x, `) be the pdf of the meeting time
between the i-th relay in ` and the source. Given `, we have
fi(x, `) = fr`(i)(x). Then,

f (s, `) =

N∏
i=1

fi(si, `), f (sj:k, `) =

k∏
i=j

fi(si, `) (3)

f(s1:N ) =

N !∑
m=1

f(s1:N , `m) (4)

Let fi(s, `) be the pdf of the meeting time between the source
and the i-th relay in `, conditioned that the first i−1 encounters
between the source and relays have already occurred. We let

fi:j(s, `) =

∏j
k=i fk(sk, `)∫∞

si+1=si:sj=sj−1

∏j
k=i fk(sk, `)dsj:i+1

(5)

Then, if j = i we have

fi(s, `) =
fi(si, `)

1− Fi(si−1, `)
(6)

If inter-contact times are exponentially distributed, the fol-
lowing proposition provides closed-form expressions for the
probability of success. Let λi (resp., µi) be the inter-contact
rate between relay i and the source (resp., the destination).

Proposition 1 (See the proofs in appendix A). Full informa-
tion setting: given information about previous inter-contact
time instants through the first n entries of s and `, we have

p
(F )
`(n)(sn) =

n−1∏
k=1

e−µ`(k)(sn−sk)
N∑
i=n

µ`(n)∑N
l=i+1 λ`(l) +

∑i
l=1 µ`(l)

×

i∏
k=n+1

N∑
j=k

λ`(j)∑N
l=k λ`(l) +

∑k−1
l=1 µ`(l))

Partial information setting with identity information: given
the number and the identity of relays that previously contacted
the source, we have

p(P
+)

n (sn) =

n−1∏
i=1

λiψ(i, n)×



N∑
i=n

i∏
k=n+1

N∑
j=k

λj∑N
l=k λl +

∑k−1
l=1 µl

µn∑N
l=i+1 λl +

∑i
l=1 µl

where

ψ(i, n) =

{
(e−µisn−e−λisn )

(λi−µi)(1−e−λisn )
, if λi 6= µi,

sne
−λisn/(1− e−λisn), otherwise

Partial information setting without identity information:
given only the number of relays that previously contacted the
source, n− 1, we have

p(P
−)

n (sn) =

Cn−1
N−1∑
i=1

n−1∏
j=1

λ`i(j)ψ(`i(j), n)

N∏
k=n+1

e−λ`i(k)sn×

N∑
i=n

i∏
k=n+1

N∑
j=k

λj∑N
l=k λl +

∑k−1
l=1 µl

µn∑N
l=i+1 λl +

∑i
l=1 µl

where

ψ(`i(j), n) =

 (e
−µ`i(j)

sn−e−λ`i(j)sn )
(λ`i(j)−µ`i(j))(1−e

−λ`i(j)
sn )

, if λ`i(j) 6= µ`i(j),

sne
−λ`i(j)sn/(1− e−λ`i(j)sn), otherwise

No information setting: given solely statistical information
about inter-contact times, we have

p(N)
n (s) =

N∑
m=1

Cm−1
N−1∑
i=1

m−1∏
j=1

(1−e−λ`i(j))
N∏

k=m+1

e−λ`i(k)p(P )
m (s)

B. Expected Cost for a Relay

Next, our goal is to compute the expected cost estimated
by a relay to transmit a packet. Let V (k)

i (s, `) be the net
expected cost incurred to transmit a packet to the destination,
as estimated by the i-th node in ` under setting k. Let
R

(k)
i (s, `) be the expected reward offered by the source to

the i-th node in ` to transmit a packet to the destination under
setting k, k ∈ {F, P+, P−, N}. Recall that the reward is
granted only to successful nodes. Then,

V
(k)
i (s, `) = cr+csE(T

`(i)
d )+(cd−R(k)

i (s, `))p
(k)
i (s, `) (7)

The first term in the net expected cost (7) is the reception
cost, which is always incurred. The second term represents the
expected in transit (storage) cost. It is directly proportional to
the mean of the residual inter-contact time between relay `(i)
and the destination. The last term is the cost of transmitting
the message to the destination which in turn confers a reward
to the relay. This term enters into play only if relay `(i) is the
first one to reach the destination, which explains the factor
p
(k)
i (s, `).

C. Expected Reward Paid by the Source

Relay rk will accept to forward a message to the destination
if the reward promised by the source offsets it expected cost,
that is, if R(k)

i (s, `) is such that E(V
(k)
i (s, `)) ≤ 0. Thus the

minimum reward that the source has to promise relay rk =
`(−1)(i) is

R
(k)
i (s, `) = cd + C`(i)/p

(k)
i (s, `) (8)

where C`(i) = cr + csE(T
`(i)
d ). Thus we have

R(k)(s, `) = cd +

N∑
i=1

C`(i)pi(s, `)/p
(k)
i (s, `). (9)

Note that the reward requested by relay rk depends on the
information given by the source only through the estimated
probability of success p(k)j (s, `).

Now we turn our attention to the expected reward paid by
the source when the expectation is taken over all possible
meeting times. This quantity can be thought of as the long-run
average reward per message the source will have to pay if it
sends a large number of messages (and assuming that message
generation occurs at a much slower time scale than that of the
contact process).

Lemma 1 (See the proofs in appendix B). The expected
reward paid by the source under setting (k) is given by

R(k) =

cd +
∑
`m∈L

N∑
i=1

C`m(i)

∫ ∞
s1=0:si=si−1

f(s1:i, `m)

p
(k)
i (s, `m)

ϕi(s, `m)dsi:1

(10)

where

ϕi(s, `m) =

∫ ∞
si+1=si:sN=sN−1

pi(s, `m)f(si+1:N , `m)dsN :i+1

(11)

From the probability of success estimated by the relays in
the four settings, we can prove that the expected reward paid
by the source for delivering its message is the same in all four
settings, as stated in Theorem 2.

Theorem 2 (See the proofs in appendix C). The ex-
pected reward to be paid by the source under setting k ∈
{F, P+, P−, N} is

R(k) = cd +

N∑
i=1

Cri (12)

Theorem 2 shows that the excepted reward paid by the
source remains the same irrespective of the information it
conveys. As mentioned in Section II-A, this is due to the
balance of the flow between late arrivals and newcomers: the
former are favored by the sharing of information, whereas the
later benefit from information concealing.

IV. THE EFFECT OF TIME TO LIVE (TTL)

Next, we consider the scenario wherein relays stop trying
to forward a packet after a prescribed period of time. To this
aim, we associate to each node and to each packet a time to
live (TTL) counter. After this time is elapsed, the message will



be dropped. The counter associated to node i ticks at rate µ′i.
We further assume that the time between ticks is exponentially
distributed. By the time the timer at node i ticks, its packet is
dropped and the node enters into sleep mode.

In what follow, we study the impact of the TTL counter
accounting for the tradeoff between energy gains and the
probability that the destination does not receive the packet of
interest. We address the following question: what is the impact
of the TTL on the delivery probability and on the energy spent
by relays in order to transmit the message?

We consider a single source-destination pair, and assume
exponentially distributed inter-contact times. Future work con-
sists of extending the analysis to relays equipped with TTL
caches that transmit multiple packets between different source-
destination pairs.

Recall that µi is the rate at which relay i meets the
destination. Let µ′i = µiε, with 0 < ε < 1. Let Wi be the
time it takes for relay i to either meet the destination or drop
a packet when its TTL expires, whatever occurs first. Then,
Wi is an exponentially distributed random variable, with rate
µi(1 + ε). Let D be the probability that the destination does
not get the packet of interest, assuming that the source sets
incentives so that all relays opt to assist in the transmission,

D =

N∏
i=1

εµi
εµi + µi

=

(
ε

ε+ 1

)N
(13)

Then, ε = D1/N/(1−D1/N ).
Let ρi be the mean reduction in the length of time during

which relay i tries to transmit a packet, due to the TTL counter,

ρi = E[T id]− E[T̃ id] =
1

µi
− 1

µi(1 + ε)
=

ε

1 + ε
E[T id] (14)

where T id and T̃ id are the times invested in transmitting a
packet before and after equipping node i with TTL counters,
respectively. Let G be the relative gain of a relay node i
in terms of the expected in transit (storage) cost due to the
introduction of the TTL counter. Thus

G =
csE[T id]− csE[T̃ id]

csE[T id]
=

ε

1 + ε
(15)

Note that neither D nor G depend on the rates at which relays
meet the destination. We write D(N,G) as a function of N
and G, D(N,G) = GN , 0 ≤ G < 1. Therefore, a linear
increase in G yields a sub-linear increase in D(N,G).

V. SIMULATION RESULTS

To validate our theoretical results, we run simulations using
two types of mobility traces: (i) synthetic traces generated us-
ing the ONE (Opportunistic Network Environment) simulator
[12] and (ii) real traces collected from taxi cabs in the city of
Rome [4]. Our goals are to (a) parameterize the inter-contact
times using real data and validate our analytical model, (b)
assess the average reward set by the source under a realistic
setting and (c) estimate the instantaneous rewards received by
relays over time.
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Fig. 1. Empirical average reward under the four information settings vs the
theoretical reward With N = 10, Cd = 0.4, Cr = 0.04, Cs = 0.01
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Fig. 2. Empirical average reward and the energy cost of a relay under the
four information settings for N = 10

The key metrics that we extract from our traces are the
inter-contact time distributions between relays and the source,
and between relays and the destination. In our simulations,
when the source meets a relay it uses the inter-contact time
distribution between relays and the destination to compute the
success probability as estimated by the relay. This probability
of success is then used to obtain the reward that the source
promises to the relay. In addition, from the traces we determine
which relay gets the reward from the destination, for each
message generated by the source. Finally, we make use of the
mean inter-contact time between relays and the destination to
compute the desired metrics of interest, using the theoretical
results presented in Section III, and contrast them against our
simulation results.

A. Rewards and Costs under Synthetic Traces

In our initial set of simulation results, we consider mobility
traces generated using the Random Way Point mobility model
(RWP). In this setting, our simulations were conducted using
the ONE simulator [12]. Under the RWP model, each node
moves independently to a randomly chosen destination with
a randomly selected velocity. Upon reaching the destination,
the node waits for a period of time (known as pause time)
before choosing another destination and velocity. We consider



N = 10 relays placed randomly in an area of 2500×2500 m2.
The transmission range of each relay is 10 m. To take into
account the heterogeneity, we have considered two classes
of relays: the first class contains 10 relays who choose
their velocities and pause times uniformly at random in the
ranges [1, 13.9] m/s and [0, 14400] s, respectively. The second
class contains 6 relays that choose their velocities and pause
times uniformly at random in the ranges [0.5, 1.5] m/s and
[0, 3600] s, respectively. We collect inter-contact times for a
simulation time of over 1 year. Once the inter-contact time
distribution is generated, we use it to compute the reward
promised to each relay at each contact (refer to our technical
report [?] for further details on the inter-contact times and
additional statistics obtained via simulations).

To compute the probability of success and the reward
requested by a relay to deliver a message we use the results
presented in Proposition 1 making the assumption that the
inter-contact times between relays, the source and the destina-
tion are exponentially distributed. Each message is generated
by the source every 10 hours. This period of 10 hours will
be called a time-slot. In Figure 1 we plot the analytical
and the empirical average reward paid by the source as a
function of time (measured in time-slots) under the three
information settings. The empirical average reward at time-
slot t is given by 1

t

∑t
n=1R(n), where R(i) is the reward

paid by the source for the message generated at time-slot
n. We observe that the empirical reward under the three
information settings converges to the theoretical reward given
by Theorem 2. In addition, the convergence time of the full and
partial information settings is faster when contrasted against
the no information case.

Next, we consider the rewards and costs (of energy and
storage) associated to the relays. For this purpose, we tag a
relay chosen arbitrarily among the 10 relays, and plot the
empirical average reward received by that relay from the
source as well as the associated average cost, as a function
of the time-slot (see Figure 2). We observe that the reward
paid by the source in the four settings offsets the expected
cost of that relay as predicted by the analytical model.

B. Sensitivity Analysis and Robustness

Next, we further investigate the sensitivity of our results
with respect to the assumption that inter-contact times are
exponentially distributed. To this aim, we consider a source
and relays that assess rewards using the exponential assump-
tion even when the inter-contact times between relays and
the source or destination follow other distributions. As in
the previous section, we consider N = 10 relays, each of
which associated to a different inter-contact time distribution
(see Table II). Figure 3 shows that the empirical reward
under the four information settings converges to the theoretical
reward given by Theorem 2. Similarly, in Figures 4 and
5 we consider hyper exponential and Weibull inter-contact
distributions, respectively. We note that the proposed reward
mechanism remains robust against changes in the mobility
patterns. In particular, the observations made about Figure 3
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Fig. 3. Empirical average reward under the four information setting vs the
theoretical reward With N = 10, Cd = 0.4, Cr = 0.04, Cs = 0.01
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Fig. 4. Empirical average of the reward and the energy cost for a relay with
hyper exponential distribution of the inter-contact time under four information
settings for N = 10, Cd = 0.4, Cr = 0.04, Cs = 0.01

also hold for Figures 4 and 5: the empirical rewards converge
to the theoretical values given by Theorem 2.

TABLE II
CONTACT RATES OF RELAYS WITH SOURCE AND DESTINATION

Relay Distribution λ µ
r1 Exponential 0.6530 0.7945
r2 Exponential 0.5296 0.2824
r3 Hyperexponential 0.6714 0.6704
r4 Hyperexponential 0.6685 0.6670
r5 Weibull 0.2483 0.2492
r6 Weibull 0.1647 0.1996
r7 Weibull 0.2500 0.2000
r8 Folded normal 0.1999 0.1991
r9 Folded normal 0.2002 0.2015
r10 Folded normal 0.1991 0.2005

C. Real-World Traces

Next, we consider a dataset comprising traces of taxis
moving in the city of Rome. Each taxi is equipped with
an Android tablet device running an application that updates
the current position of the taxi every 7 seconds. This dataset
contains GPS coordinates of approximately 320 taxis collected
over 30 days. The traces were compiled in February 2014 [4].
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Fig. 6. Position of the source and the destination in the city of Rome

In this simulation scenario, we consider a source-destination
pair in the centre of Rome. The distance between the source
and the destination is roughly 2.8 Km. Using Google Maps,
Figure 6 shows the positions of the source and the destination.
The transmission range of each taxi is 50 m.

We collect inter-contact times of 16 taxis with the source
and the destination. In Fig. 7, we illustrate the density func-
tion of the contact time for a taxi with the source and the
destination, which can be seen to be non-exponential. Table
III shows the contact rates between each taxi and the source
(resp. the destination), denoted by λi (resp. µi).

During the simulations, the source generates a message
every 24 hours. As in Section V-B, the source computes the
reward to be promised to relays assuming an exponentially
distributed inter-contact time distribution.

Figure 8 shows the empirical average reward paid by the
source as a function time for 10 taxis and for the four infor-
mation settings. The curves clearly shows the close agreement
between the analytical and simulation results. Recall that
the expected reward proposed by the source to a relay was
computed analytically under the exponential approximation
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Fig. 7. Inter-contact time frequencies between a taxi, the source (top) and
the destination (bottom).
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TABLE III
CONTACT RATES OF THE TAXIS WITH THE SOURCE AND DESTINATION.

Relay λ µ Relay λ µ
t1 0.0613 0.0298 t6 0.0731 0.0445
t2 0.0423 0.0345 t7 0.0452 0.0322
t3 0.0616 0.0382 t8 0.0691 0.0513
t4 0.0340 0.0370 t9 0.0596 0.0309
t5 0.0842 0.0510 t10 0.1095 0.0252

for inter-contact times, whereas the simulation results were
obtained using the empirical inter-contact time distribution.
Figure 9 shows the empirical average reward as well the
expected cost as a function of the time slot. It is interesting
to note that the empirical average reward earned by the taxis,
in the four information setting, converges to the theoretical
reward calculated using the proposed analytical model.

VI. DISCUSSION OF ASSUMPTIONS AND LIMITATIONS

In this section we discuss the main assumptions that were
adopted to yield a tractable model.

a) Information setting: We assume that mobile relays
know the inter-contact time distribution between every node
and the source as well as the destination. This assumption
may be restrictive in some settings. Nonetheless, with growing
mobile access to the Internet and cloud-based services, we
envision a shared knowledge base maintained by the nodes.
Such knowledge base makes our incentive reward mechanism
realistic in practical settings such as those related to smart
cities. The analysis of real-world traces indicates that our
results are robust against the distribution of inter-contact times.
Thus, making use of the exponential assumption for inter-
contact times, knowledge of contact rates suffices to obtain
a good assessment of costs and rewards.

b) Mobility patterns: A key challenge in developing
our results has been to make general assumptions about the
mobility of DTN nodes. In particular, the properties derived
from the proposed model hold under any set of time-invariant
heterogeneous mobility patterns. It is well known that human
mobility patterns change during a day. Future work consists in
accounting for time-variant mobility processes, and extending
our results to consider time-of-the-day effects.

c) Buffer management: In this paper we presented pre-
liminary results on the impact of time to live (TTL) counters
on the delivery probability and relay memory usage, account-
ing for a single message to be transmitted from a source to its
destination. Buffer management using TTL caches allows us
to trade between delivery probability, memory footprint and
congestion in the network. A detailed analysis of the impacts
of the TTL parameters on system performance, as well as
the study of the interplay between the delivery of multiple
contents, are left as subject for future work.

VII. CONCLUSION

In this work, we investigated incentive mechanisms for
heterogeneous mobile networks. We considered a source node
working under one of four information sharing structures and

showed that the expected reward to be paid by the source
to relays remains the same irrespectively of the information
it conveys. Finally, sensitivity analysis performed using ex-
tensive simulations indicated that the average reward paid by
the source under different information sharing assumptions,
in realistic settings, closely matches the expected reward
estimated by our model.
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APPENDIX

A. Proof of proposition 1

Assume that the inter-contact times between a relay
i = 1, .., N and the source (resp. the destination) fallow an
exponential distribution with rate λi (resp. µi).

1) Full information setting : The source gives information
about when (the instant time) and who (identity) is encoun-
tered before. Thus, we know the vector of the contact times
s = (s1, .., sn) and

−→
` where `(i) denotes the relay who

encounter the source at si, i = 1, .., n.
The probability that none of the relays who got the message
before time sn have not yet deliver it to the destination is

n−1∏
k=1

e−µ`(k)(sn−sk)

.
Next, we calculate the probability of a relay to be the

first to encounter the destination. For example, Let X1, .., Xn

be an exponential random variables with respective param-
eters λ1, .., λn, the probability that the minimum is Xi is
λi/
∑n
j=1 λj . Thus, the probability that the relay `(n) is the

first to meet the destination among the relays 1, .., n− 1 and
before that the other relays, i.e. relays that are not yet meet
the source, get the message from the source is,

µ`(n)∑N
l=n+1 λ`(l) +

∑n
l=1 µ`(l)

For each time interval (si, si+1], i > n the probability that
a relay i, who have not yet the message, get the message from
the source before that the others who have the message deliver
it to the destination is:

i∏
k=n+1

N∑
j=k

λ`(j)∑N
l=k λ`(l) +

∑k−1
l=1 µ`(l)

.
Hence, the probability that the relay `(n) is the first

to deliver the message to the destination in time interval
(si, si+1], n ≤ i < N is,

µ`(n)∑N
l=i+1 λ`(l) +

∑i
l=1 µ`(l)

×
i∏

k=n+1

N∑
j=k

λ`(j)∑N
l=k λ`(l) +

∑k−1
l=1 µ`(l)

Thus, the probability of the relay `(n) to be the first to meet
the destination after the instant meeting time sn is,

N∑
i=n

µ`(n)∑N
l=i+1 λ`(l) +

∑i
l=1 µ`(l)

×
i∏

k=n+1

N∑
j=k

λ`(j)∑N
l=k λ`(l) +

∑k−1
l=1 µ`(l)

(16)

2) Partial information setting with identity information:
The source informs the relay about who got the message before
but not about the instant time when they had the message. We
assume that the source informs the relay about the identity
of the encountered relays. Next we are going to calculate,
p
(P+)
n (sn), the probability of success as estimated by the relay
n who met the source at sn.

Proof. p(P
+)

n (sn) is (1) the probability that none of the relays,
who had the message before, have not yet met the destination
and (2) the probability that the relay n is the first to meet the
destination among all relays who have the message.

(1) The probability that a relay i = 1, .., n − 1 who have
the message before sn does not yet meet the destination can
be expressed as,∫ sn

0

λie
−λise−µi(sn−s)

1− e−λisn

=

{
λi

λi−µi
e−µisn−e−λisn

1−e−λisn , if λi 6= µi,

λisn
e−λisn

1−e−λisn , otherwise

Thus, the probability that none of the relays 1, .., n − 1
that received the message before sn did not deliver it to the
destination is,

∏n−1
i=1

λi(e
−µisn−e−λisn )

(λi−µi)(1−e−λisn )
, if λi 6= µi,

∏n−1
i=1 λisn

e−λisn

1−e−λisn , otherwise

(17)

(2) The probability that the relay n is the first to deliver the
message to the destination is calculated as in full information
setting, equation (16).

Hence,

p(P
+)

n (sn) =

n−1∏
i=1

λiψ(i, n)×

N∑
i=n

i∏
k=n+1

N∑
j=k

λj∑N
l=k λl +

∑k−1
l=1 µl

µn∑N
l=i+1 λl +

∑i
l=1 µl

where

ψ(i, n) =

{
(e−µisn−e−λisn )

(λi−µi)(1−e−λisn )
, if λi 6= µi,

sne
−λisn

1−e−λisn , otherwise

3) Partial information setting without identity informa-
tion: The source informs the encountered relay only about the
number of relays that have the message. The relay is informed
only about how many relays got the message before. We are
going to calculate the probability of success as estimated by
a relay n which met the source at the instant time sn.

Proof. The probability that the relay n is the first to deliver
the message to the destination is: (1) the probability that the



relay who got the message before have not yet delivered it to
the destination and (2) the probability to be the first to meet
the destination among all relays who have the message.

(1) As the relay does not know the identity of relays who
got the message before, thus the probability that the message
has not reached the destination is: the sum of all possible
ordering of n − 1 element from N − 1 that the n − 1 relays
met the source and they have not delivered the message to the
destination yet times the probability that the other relays (i.e.,
(N − 1)− (n− 1)) have not met the source. this probability
is calculated as follows

Cn−1
N−1∑
i=1

n−1∏
j=1

λ`i(j)ψ(`i(j), n)

N∏
k=n+1

e−λ`i(k)sn (18)

(2) The probability that the relay n is the first to deliver the
message to the destination is calculated as in full information
setting, equation (16).

Hence, the probability that the relay n is the first one who
delivers the message to the destination knowing that n − 1
they have already the message is:

p(P
−)

n (sn) =

Cn−1
N−1∑
i=1

n−1∏
j=1

λ`i(j)ψ(`i(j), n)

N∏
k=n+1

e−λ`i(k)sn×

N∑
i=n

i∏
k=n+1

N∑
j=k

λj∑N
l=k λl +

∑k−1
l=1 µl

µn∑N
l=i+1 λl +

∑i
l=1 µl

where

ψ(`i(j), n) =

 (e
−µ`i(j)

sn−e−λ`i(j)sn )
(λ`i(j)−µ`i(j))(1−e

−λ`i(j)
sn )

, if λ`i(j) 6= µ`i(j),

sne
−λ`i(j)sn/(1− e−λ`i(j)sn), otherwise

4) No information setting: The source does not give any
information to the relay. The relay only knows the instant
meeting time s with the source.

Proof. Given s the instant meeting time of a relay n, 1 ≤ n ≤
N with the source and note by λi (resp. µi) the meeting rate
of a relay i, i ≤ N with the source (resp. the destination). The
probability that m − 1 relays from N − 1 have already met
the source before time s is

Cm−1N−1

m−1∏
j=1

(1− e−λ`i(j))
N∏

k=m+1

e−λ`i(k)

The probability of success of the relay i if he knows how
many nodes have already the message is p(P

+)
i (s). Hence, the

probability of success of a relay n, 1 ≤ n ≤ N if it does not
have any information is:

p(N)
n (s) =

N∑
m=1

Cm−1
N−1∑
i=1

m−1∏
j=1

(1−e−λ`i(j))
N∏

k=m+1

e−λ`i(k)p(P
+)

m (s)

B. Proof of lemma 1

Proof. The expected reward paid by the source under setting
(k) is

R(k)

= cd +

∫ ∞
s1=0:sN=sN−1

∑
`m∈L

R(k)(s, `m)f(s, `m)dsN . . . ds1

= cd +

∫ ∞
s1=0:sN=sN−1

∑
`m∈L

N∑
i=1

C`m(i)
pi(s, `m)

p
(k)
i (s, `m)

f(s, `m)dsN :1

= cd +
∑
`m∈L

N∑
i=1

C`m(i)

∫ ∞
s1=0:sN=sN−1

pi(s, `m)

p
(k)
i (s, `m)

f(s, `m)dsN :1

(19)

if we set

ϕi(s, `m) =

∫ ∞
si+1=si:sN=sN−1

pi(s, `m)f(si+1:N , `m)dsN :i+1

(20)
we get the expression of Lemma 1:

R(k) =

cd +
∑
`m∈L

N∑
i=1

C`m(i)

∫ ∞
s1=0:si=si−1

f(s1:i, `m)

p
(k)
i (s, `m)

ϕi(s, `m)dsi:1

(21)

C. Proof of Theorem 2

Proof. We calculate the expected reward to be paid by the
source in all information settings.

1) Full Information Setting: We relate p
(F )
j (s, `), The

probability of success for the the j-th relay to meet the source
under the full information setting, to pj(s, `) by removing the
dependency of pj(s, `) on sj+1, sj+2, . . . , sN . We get

p
(F )
j (s, `)

=
∑

`m∈L
`m(1:j)=`(1:j)

∫ ∞
sj+1=sj :sN=sN−1

pj(s, `m)fj+1:N (s, `m)dsN :j+1

=

∑
`m∈L

`m(1:j)=`(1:j)

∫∞
sj :sN−1

pj(s, `m)
∏N

i=j+1 fi(si, `m)dsN :j+1∑
`m∈L

`m(1:j)=`(1:j)

∫∞
sj :sN−1

∏N
i=j+1 fi(si, `m)dsN :j+1

(22)

Let define gi(si, `m) as follows

gi(si, `) =
∑

`m∈L
`m(1:j)=`(1:j)

∫ ∞
si+1=si:sN=sN−1

N∏
j=i+1

fj(sj , `m)dsN :i+1

Thus

p
(F )
i (s, `) =

∑
`m∈L

`m(1:j)=`(1:j)
ϕi(s, `)

gi(si, `)
(23)



Now we are going to calculate the average reward paid by
the source taking into consideration all the possible scenarios
for sending a message using the full information setting. From
Lemma 1 we have:

R(F ) − cd

=

N !∑
m=1

N∑
i=1

C`m(i)

∫ ∞
s1=0:si=si−1

f(s1:i, `m)gi(si, `m)
ϕi(s, `)∑
ϕi(s, `)

dsi:1

=

N∑
i=1

CriΨi(s) (24)

where Ψi(s) =

N∑
j=1

∑
`m∈L:

`m(j)=ri

∫ ∞
s1=0:sj=sj−1

f(s1:j , `m)gj(sj , `m)
ϕj(s, `)∑
ϕj(s, `)

dsj:1 (25)

Next, we are going to show that Ψi(s) = 1.

Ψi(s, `) =

N∑
j=1

∑
`m(1:j)∈Lj :

`m(j)=ri

∑
˜̀m∈L:

˜̀
m(1:j)=`m(1:j)∫ ∞

s1=0:sj=sj−1

f(s1:j)gj(sj , `m)
ϕj(s, `m)∑
ϕj(s, `)

dsj:1

=

N∑
j=1

∑
∀`m(1:j):

`m(j)=ri

∫ ∞
s1=0:sj=sj−1

f(s1:j , `m)gj(sj , `m)dsj:1

=

N∑
j=1

∑
∀`m(1:j):

`m(j)=ri

∫ ∞
s1=0:sj=sj−1

f(s1:j , `m)gj(sj , `m)dsj:1

=

N !∑
m=1

N∑
j=1

1`j(m)=ri

∫ ∞
s1=0:sN=sN−1

f(s1:N , `m)dsN :1

=

N !∑
m=1

∫ ∞
s1=0:sN=sN−1

f(s1:N , `m)dsN :1

= 1

Hence, the expected reward to be paid by the source under the
full information setting is:

R(F ) = cd +

N∑
i=1

Cri (26)

2) Partial Information setting: In the partial information
setting the source informs the relay about the set of encoun-
tered relays (i.e. the relays who had already the message), but
it does not divulge the relays infection time. We distinguish
two cases: The source can either 1) divulge the number and
the identity of relays who met the source before, let denote
this case by P+. Or 2) divulge just the number of relays who
met the source i.e. the relay will not know the identity of
relays, let denote this case by P−. Next we will calculate the
expected reward to be paid by the source in the two cases of
the partial information setting.

Partial Information with identity of relays for previous
contacts: From Lemma 1, we have:

R(P+) − cd =
N !∑
m=1

N∑
i=1

C`m(i)

∫ ∞
s1=0:si=si−1

f(s1:i, `m)

p
(P+)
i (s, `m)

ϕi(s, `m)dsi:1

(27)

Note that p(P
+)

i depends on s only through si. Therefore,
we replace the order of the integrals in the expression above,
and write

R(P+) = cd +

N !∑
m=1

N∑
i=1

C`m(i)

∫ ∞
si=0

f(si, `m)

p
(P+)
i (s, `m)

Φi(s, `m)dsi

(28)

where

Φi(s, `)

=

∫ si:si

s1=0:si−1=si−2

∫ ∞
si+1=si:sN=sN−1

pi(s, `)

N∏
j=1

j 6=i

fj(sj , `)ds−i

=

∫ si:s2

si−1=0:s1=0

∫ ∞
si+1=si:sN=sN−1

pi(s, `)

N∏
j=1

j 6=i

fj(sj , `)ds−i

=

∫ si:s2

si−1=0:s1=0

f(s1:i−1, `)ϕi(s, `)ds1:i−1

= gi(si, `)

∫ si:s2

si−1=0:s1=0

p̂
(F )
i (s, `)

i−1∏
j=1

fj(sj , `)ds1:i−1 (29)

Next, we derive a simple expression for p(P
+)

i (s, `) as a
function of p(F )

i (s, `),

p
(P+)
i (s, `)

=

∫ si:si

s1=0:si−1=si−2

p
(F )
i (s, `)f1:i−1(s, `)dsi−1:1

=

∫ si:si
s1=0:si−1=si−2

p
(F )
i (s, `)

∏i−1
j=1 fj(sj , `)dsi−1:1∫ si:si

s1=0:si−1=si−2

∏i−1
j=1 fj(sj , `)dsi−1:1

=

∫ si:s2
si−1=0:s1=0

p
(F )
i (s, `)

∏i−1
j=1 fj(sj , `)ds1:i−1∫ si:s2

si−1=0:s1=0

∏i−1
j=1 fj(sj , `)ds1:i−1

(30)

We have p(P
+)

i (s, `) depends on `. This is because we are
assuming that the i-th node in ` knows the identities of the
previous i − 1 nodes encountered by the source. Therefore,
p
(P+)
i (s, `) depends on ` through its first i entries.
Let

hi(si, `m) =

∫ si:s2

si−1=0:s1=0

i−1∏
j=1

fj(sj , `m)ds1:i−1 (31)

Note that whereas the function h integrates over encounters
that occurred previous to si (backward), the function g inte-
grates over future encounters (forward). Then, p(P

+)
i (s, `) can



be written as a function of g and h as follows,

p
(P+)
i (s, `) =

1

gi(si, `)hi(si, `)

∑
∀`m:

`m(1:i)=`(1:i)

Φi(s, `m) (32)

Note that (32) is analogous to (23). Replacing (32) into (28)
we get,

R(P+) − cd

=

N !∑
m=1

N∑
i=1

C`m(i)

∫ ∞
si=0

f(si, `m)

p
(P+)
i (s, `m)

Φi(s, `m)dsi

=

N∑
i=1

Cri
N∑
j=1

N !∑
m=1

`m(j)=ri

∫ ∞
sj=0

f(sj , `m)

p
(P+)
j (s, `m)

Φj(s, `m)dsj

=

N∑
i=1

CriΞi(s, `) (33)

where

Ξi(s, `) =

N∑
j=1

N !∑
m=1

`m(j)=ri

∫ ∞
sj=0

f(sj , `m)

p
(P+)
j (s, `m)

Φj(s, `m)dsj

(34)

Next, we are going to show that Ξi(s, `) = 1.

Ξi(s, `)

=

N∑
j=1

N !∑
m=1

`m(j)=ri

∫ ∞
sj=0

f(sj , `m)

p
(P+)
j (s, `m)

Φj(s, `m)dsj

=

N∑
j=1

∑
∀`m(1:j):

`m(j)=ri

∑
∀ ˜̀m:

˜̀
m(1:j)=`m(1:j)

∫ ∞
sj=0

f(sj , `m)

p
(P+)
j (s, `m)

Φj(s, ˜̀
m)dsj

=

N∑
j=1

∑
∀`m(1:j):

`m(j)=ri

∫ ∞
sj=0

f(sj , `m)gj(sj , `m)hj(sj , `m)∑
∀ ˜̀m:

˜̀
m(1:j)=`m(1:j)

Φi(s, ˜̀
m)

×
∑
∀ ˜̀m:

˜̀
m(1:j)=`m(1:j)

Φj(s, ˜̀
m)dsj

=

N∑
j=1

∑
∀`m:

`m(j)=ri

∫ ∞
sj=0

f(sj , `m)gi(si, `m)hi(si, `m)dsj

= 1 (35)

Hence, the expected reward paid by the source under the
partial information setting with identity information about
previous contacts is :

R(P+) = cd +

N∑
i=1

Cri (36)

Partial Information Without Identity Information About
Previous Contacts: Now consider the partial information
setup wherein relays are not informed about the identities

of relays that have already encountered the source in the
previous contacts. As the arguments are very similar to the
ones presented in the previous setup, we focus only on the
key steps.

First, we derive p(P
+)

i (s, `), which is a function of i, si and
`(i).

p
(P+)
i (s, `)

=

∑
∀`m:

`m(i)=`(i)

∫ si:si
0:si−1

∫∞
si:sN−1

pi(s, `m)
∏N

j=1

j 6=i
fj(sj , `m)ds−i∑

∀`m:

`m(i)=`(i)

∫ si:si
s1=0:si−1=si−2

∫∞
si:sN−1

∏N
j=1

j 6=i
fj(sj , `m)ds−i

=
1

hi(si, `m)

∑
∀`m:

`m(i)=`(i)

Φi(s, `m) (37)

where

hi(si, `) =
∑
∀`m:

`m(i)=`(i)

∫ si:si

0:si−2

∫ ∞
si:sN−1

N∏
j=1

j 6=i

fj(sj , `m)ds−i

=
∑

∀`m(1:i):

`m(i)=`(i)

∫ si:s2

0:0

i−1∏
j=1

fj(sj , `m)gi(si, `m)ds1:i−1(38)

Note that (37) is analogous to (32). Considering now the
partial information setup without information about previous
contacts.

Replacing (37) into (28),

R(P−) − cd

=

N !∑
m=1

N∑
i=1

C`m(i)

∫ ∞
si=0

f(si, `m)

p
(P−)
i (s, `m)

Φi(s, `m)dsi

=

N∑
i=1

Cri
N∑
j=1

N !∑
m=1

`m(j)=ri

∫ ∞
sj=0

f(sj , `m)

p
(P−)
j (s, `m)

Φj(s, `m)dsj

=

N∑
i=1

CriΞi(s, `) (39)

where

Ξi(s, `) =

N∑
j=1

N !∑
m=1

`m(j)=ri

∫ ∞
sj=0

f(sj , `m)

p
(P−)
j (s, `m)

Φj(s, `m)dsj

(40)

Next, we are going to show that Ξi(s, `) = 1.

Ξi(s, `)

=

N∑
j=1

N !∑
m=1

`m(j)=ri

∫ ∞
sj=0

f(sj , `m)

p
(P−)
j (s, `m)

Φj(s, `m)dsj



=

N∑
j=1

∫ ∞
sj=0

fri(sj)

p
(P−)
j (sj , ri)

N !∑
m=1

`m(j)=ri

Φj(s, `m)dsj

=

N∑
j=1

∫ ∞
sj=0

fri(sj)hj(sj , `)∑N !
m=1

`m(j)=ri
Φj(s, `m)

N !∑
m=1

`m(j)=ri

Φj(s, `m)dsj

=

N∑
j=1

∫ ∞
sj=0

fri(sj)hj(sj , `)dsj

=

N !∑
m=1

g(`m)

= 1

3) No information: The source doesn’t give any informa-
tion about the previous contacts to the encountered relay.
Recall that p(N)

ri (s) is the probability of the relay ri to be
the first to meet the destination, given that it encountered the
source at time s, as estimated by such node.

We start by deriving an expression for p(N)
ri (s) as a function

of Φi(s, `); the probability that the i-th node, to meet the
source under ordering `, is the first to meet the destination, as
estimated by such node which is given by (29). As Φi(s, `)
depends on s only through si, we denote it by Φi(s, `). Then,

p(N)
ri (s) =

N !∑
m=1

Φ`−1
m (ri)

(s, `m) (41)

Alternatively, p(N)
ri (s) is given as follows,

p(N)
ri (s) =

N∑
n=1

∑
∀`m:`m(n)=ri

Φn(s, `m) (42)

To see the equivalence between (41) and (42), we note that
it follows from (42) that

p(N)
ri (s) =

∑
∀`m

N∑
n=1

1`m(n)=riΦn(s, `m)

=

N !∑
m=1

N∑
n=1

1`m(n)=riΦn(s, `m)

=

N !∑
m=1

Φ`−1
m (ri)

(s, `m) (43)

where 1c denotes an indicator function, equal to 1 if condition
c holds and 0 otherwise.

From (10) we have that

R(N) − cd

=

N !∑
m=1

N∑
i=1

C`m(i)

∫ ∞
s1=0:sN=sN−1

f(s, `m)pi(s, `m)

p
(N)
`m(i)(s, `m)

dsN :1

=

N∑
i=1

Cri
N !∑
m=1

∫ ∞
s1=0:sN=sN−1

f(s, `m)p`−1
m (ri)

(s, `m)

p
(N)
ri (sj)

dsN :1

=

N∑
i=1

Cri
N∑
j=1

∑
∀`m:

`m(j)=ri

∫ ∞
0:sN−1

f(s, `m)pj(s, `m)

p
(N)
ri (sj)

dsN :1

=

N∑
i=1

CriΓ(i) (44)

where

Γ(i) =

N∑
j=1

∑
∀`m:

`m(j)=ri

∫ ∞
s1=0:sN=sN−1

f(s, `m)pj(s, `m)

p
(N)
ri (sj)

dsN :1

(45)
Next, we are going to show that Γ(i) = 1.

Γ(i) =
∑
∀`m

N∑
j=1

1`m(j)=ri

∫ ∞
0:sN−1

f(s, `m)pj(s, `m)

p
(N)
ri (sj)

dsN :1

=
∑
∀`m

N∑
j=1

1`m(j)=ri

∫ ∞
sj=0

fri(sj)

p
(N)
ri (sj)

Φj(s, `m)dsj

=

∫ ∞
s=0

fri(s)

p
(N)
ri (s)

∑
∀`m

N∑
j=1

1`m(j)=riΦj(s, `m)ds

=

∫ ∞
s=0

fri(s)ds

= 1 (46)

Therefore, (44) together with (46) imply that

R(N) = cd +

N∑
i=1

Cri (47)
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