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Abstract—Route selection based on performance measure-
ments is an essential task in inter-domain Traffic Engineering. It
can benefit from the detection of significant changes in RTT
measurements and the understanding on potential causes of
change. Among the extensive works on change detection methods
and their applications in various domains, few focus on RTT
measurements. It is thus unclear which approach works the best
on such data.

In this paper, we present an evaluation framework for change
detection on RTT times series, consisting of: 1) a carefully labelled
34,008-hour RTT dataset as ground truth; 2) a scoring method
specifically tailored for RTT measurements. Furthermore, we
proposed a data transformation that improves the detection
performance of existing methods.

Path changes are as well attended to. We fix shortcomings of
previous works by distinguishing path changes due to routing
protocols (IGP and BGP) from those caused by load balancing.

Finally, we apply our change detection methods to a large set
of measurements from RIPE Atlas. The characteristics of both
RTT and path changes are analyzed; the correlation between the
two are also illustrated. We identify extremely frequent AS path
changes yet with few consequences on RTT, which has not been
reported before.

I. INTRODUCTION

Border Gateway Protocol (BGP) route selection is agnos-
tic of transmission performance, such as Round-Trip Time
(RTT). Supplementary Traffic Engineering (TE) scheme is thus
needed. Route selection based on latency measurements [1],
[2] sends out traffic on paths with the smallest recent RTTs for
each destination prefix. Re-routing could be overwhelmingly
frequent due to the the noisy nature of RTT measurements,
e.g. based on last RTT measurement [2]. Meanwhile, too much
smoothing could delay the reaction to sudden RTT changes. In
both cases, the most appropriate setting may vary from path
to path, and is hence ad hoc. We therefore advocate route
selection based on the detection of significant changes in RTT
measurements. To that end, we study the techniques of change
detection and how detected RTT changes correlate to network
events.

Path changes and congestion are known to be the major
reasons for RTT changes. It is generally agreed that inter-
domain routing changes impact the RTT level greatly. Pucha et
al. [3] showed that inter-domain routing changes cause larger
median RTT variation than intra-domain ones. Rimondini et
al. [4] confirmed that 72.5% BGP route changes in their study
are associated with RTT change. Similar observations were
made in a large Content Delivery Network (CDN), where inter-

domain routing changes are responsible for more than 40% of
severe user experience degradation [5].

Intra-domain events are no less important. Pucha et al. [3]
discovered that intra-domain path changes can cause RTT
changes of comparable amplitude as inter-domain ones. More-
over, they pointed out that it is intra-domain path changes, not
congestion, that are responsible for the majority (86%) of RTT
changes. A different claim was however made by Schwartz
et al. [6]. They found out that most RTT variation is rather
within paths (i.e. due to congestion) than among paths (i.e.
due to path changes).

Conflicts in previous works could be caused by the differ-
ence in locations from where measurements were launched.
For instance, Chandrasekaran et al. [7] observed that AS
path changes only have marginal impact on RTT in the core
of Internet, while previous works [3], [6] include as well
access networks. Results might as well change over time.
For instance, the “flattened” Internet topology, the increasing
amount of traffic in private CDN over the last decade [8],
[9] might have changed the characteristics of path change and
congestion, and consequently how they impact RTT.

Bearing this in mind, we emphasize the efforts on methods
and tools enabling iterative analysis on the relationship be-
tween RTT and path changes over time, rather than one shot
observation or analysis on a specific dataset.

The discussion and discovery of previous works are enlight-
ening, yet their methods of processing RTT measurements can
hardly fuel RTT change triggered intra-domain TE. In [3], [6],
[7], RTT measurements are first grouped by underlying paths;
impact of path changes are then estimated through comparison
of associated RTT statistics, e.g. percentiles. In our TE scheme,
RTT rather than path are more intensively measured [10]. This
is because path measurements do not necessarily reflect all the
changes in RTT, meanwhile being more resource-consuming.
For example, congestion in upstream network can only be
learnt through change detection on RTT measurements.

Among the extensive studies on change detection methods
and their applications in various domains [11], [12], Rimondini
et al. [4] are among the first to employ change detection
in network measurements analysis. However, they tuned the
detection sensitivity in a way that detected changes correlate
best to the BGP changes of the destination prefix, which poten-
tially ignores the RTT change due to intra-domain changes and
congestion. Plus, such tuning is potentially required for each
individual RTT time series, thus hard to scale. To achieve more
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general approach decoupled from path measurements, we pro-
pose an evaluation framework for the selection and calibration
of change detection methods for RTT measurements.

IP-level load balancing (LB) is few discussed in previous
investigations on the relationship between RTT and path
changes. Schwartz et al. [6] regarded all paths between a
source-destination pair as “parallel paths” and found out that
RTTs over these paths were mostly overlapping. However,
there are two kinds of transitions among “parallel paths” that
need to be distinguished. They are 1) IP path changes caused
by protocol level route recalculation and 2) those caused by
LB mechanisms. Intra-domain path changes before the era of
LB haven been shown to be responsible for important RTT
changes [3]. On the other hand, LB paths are of equal/close
administrative cost, hence similar characteristics [13].

This work proposes a set of methods detecting and corre-
lating individual RTT and path changes, preparatory to RTT
change triggered inter-domian route selection. The pursuit is
thus not to answer again which network event has most signif-
icant impact on RTT. The contribution brought forth are: 1) a
customized scoring scheme together with a carefully labelled
dataset are presented as evaluation framework; 2) a simple data
transformation is proposed and shown to improve the detection
performance of existing methods; 3) a heuristic is developed to
distinguish path changes caused by routing change from those
by LB. We further uncovered the characteristics, e.g. change
detection sensitivity, and remaining issues with the proposed
methods.

The remainder of the paper is organized as follows. Sec. II
points to the code repository of this work and provides details
on the data collection. Sec. III first offers a primer on change
detection methods; then presents our propositions on change
detection method evaluation. Sec IV reveals and addresses
the challenge of distinguishing routing changes from LB
path changes for RIPE Atlas built-in measurements. Sec. V
correlates the detected RTT and path changes.

II. CODE SPACE AND DATA

The main code space of this work is made public on Github
with documentation: https://github.com/WenqinSHAO/rtt. The
implementations of proposed methods are decoupled from
the context of this project, and thus can easily be employed
elsewhere.

We applied our methods on RIPE Atlas built-in measure-
ments [14] and performed data analysis. These measurements
are openly available so that the results of this work can be
reproduced by other researchers or compared to alternative
approaches. We collected RIPE Atlas built-in ping and tracer-
oute measurement toward DNS b-root (measurement ID 1010,
5010) from 6029 v3 probes located in 2050 different ASes,
153 countries from 2016-10-01 to 2017-01-01 1. 184,358,516
ping and 23,507,910 traceroute measurements are collected

1Measurements to other destinations might as well do. The fact whether
the destination is anycast or not is of few importance in this work. The focus
is on method rather than on a specific dataset.

and analyzed. The traceroute measurements flowed through
3036 ASes, 120 IXPs, containing 10720 different AS paths.

III. RTT CHANGE DETECTION

RTT traces, like many other time series, may undergo
sudden changes in level or volatility, generally caused by path
change or congestion.

The moments that cut a time series into segments of
different characteristics are called changepoints. The problem
of detecting the most appropriated changepoints is known as
changepoint detection. Which method (among the wide variety
of existing ones) is the most appropriate for Internet RTT
time series is still not stated. Moreover, many changepoint
detection methods are parametric. Identifying the best settings
for these methods remains challenging. One fundamental issue
in addressing the above problems is the lack of an evaluation
framework.

In this section, we first introduce changepoint detection
method. We explain the parameters to be set and their impacts
on the detection results. Then, we dissect the challenges in
building an evaluation framework and describe our attempt in
solving them. Finally, we choose several state-of-art change-
point detection methods and evaluate their performance with
the proposed evaluation framework.

A. Changepoint detection

One common approach translates the quest of finding the
best changepoints into the following optimization problem 2.
Assume we are given a sequence of data, y1:n = (y1, y2, ...yn).
We expect changepoint detection method to produce m or-
dered changepoints, τ1:m = (τ1, τ2, ...τm). τi is the position
of ith changepoints and takes value from in 1, .., n− 1. We
define τ0 = 0 and τm+1 = n. Together with the detected m
changepoints, they cut y1:n into m + 1 segments, with the
ith segment containing yτi−1+1:τi . For each segment, a cost is
calculated. The detection method seeks to minimize the cost
sum of all the segments:

∑m+1
i=1 [C(yτi−1:τi−1)]+βf(m). Here

C is a cost function while βf(m) is a penalty to prevent over-
fitting — the two major parameters to be set.

One commonly used cost function is minus of the maximum
log-likelihood of the segment following a certain distribu-
tion [11], [17], [18]: C(ys:t) = −maxθ

∑t
i=s log f(yi|θ).

Here f(y|θ) is a density function with distribution parameter
θ. In such case, the choice of cost function is restrained to the
choice of distribution types. Currently supported distributions
in [16] are: Normal, Exponential, Gamma and Poisson. A
recent progress proposes a cost function based on empirical
distribution likelihood, where the specification on distribution
type is not necessary. It is thus a non-parametric method [12].

When it comes to penalty, f(m) is generally a function
linear to the number of parameters introduced by m change-
points: m + (m + 1)dim(θ) 3. Common choices of β are

2Other formulations exist. A wider literature can be found in [12], [15].
We focus on this approach in this work since it has well maintained libraries
that prevent potential issues regarding the implementation [12], [16].

3dim(θ) is the dimension of θ. In the case of Normal distribution,
dim(θ) = 2.

https://github.com/WenqinSHAO/rtt


information criteria, such as Akaike’s Information Criterion
(AIC) with β = 2, Schwarz Information Criterion (SIC, also
known as BIC) with β = log n, Hannan-Quinn Information
Criterion with β = 2 log log n, and Modified BIC (MBIC) with
βf(m) = − 1

2 [3f(m) log n +
∑m+1
i=1 log(ri − ri−1)], where

ri = τi/n. We have MBIC > BIC > Hannan Quinn. Note
that larger penalty value leads to less sensitive detection.

B. Evaluation framework

An evaluation framework should be composed of two parts:
1) datasets of “ground truth”, 2) a scoring method. We are not
aware of any RTT time series labelled with moments of change
that are publicly available as of this writing. We manually
labelled 50 real RTT time series from RIPE Atlas containing
408,087 RTT measurements. Details are given in Sec. III-D.

As for the scoring method, classic true/false positive clas-
sification is too rigid for both manual labelling and change
point detection, see Sec. III-C. We argue that a slight shift
in time could be tolerated. We propose weighting each actual
RTT changes according to their operational importance.

C. Scoring method

We assume ground truth T1:k containing k positions in y1:n

indicating moments of actual change, while τ1:m is the output
of changepoint detection. A classic True Positive (TP ) is a
τj ,∃Ti ∈ T1:k, Ti = τj , a False Positive (FP ) otherwise.
False Negative (FN ) composes of {Ti | @τj ∈ τ1:m, τj = Ti}.
However, there are many times during labelling that finding
a clear cut position for certain RTT changes is difficult for
human beings, and the labelled moment of change might
reasonably vary within a range. It is therefore too harsh to
require exact match from change detection.

Introducing a window of tolerance w, we are confronted
with an issue where Ti can be detected by multiple detection
outputs {τj | |τj−Ti| ≤ w}. Symmetrically, τj can be associ-
ated with several Ti within the tolerance window. If many-to-
many mapping between T1:k and τ1:m is allowed, the number
of TP could be overestimated. while FN underestimated.

One straightforward solution adopted by Numenta is that a
Ti can only be detected by the closest detection in the window
τ̂i [19]. All the rest detected changes will be ignored. The
problem with this approach is that the actual change that is
closest to the above τ̂i, denoted as T̂i, doesn’t necessary satisfy
T̂i = Ti. Such discrepancy indicates that the mapping between
ground fact and detection is potentially not optimal in two
aspects 1) T̂i could end up undetected even though there are
detection points within the window; 2) the overall time shift
between truth and detection is not necessary the minimum.

We henceforth define an optimal mapping between Ti:k and
τi:m with shift tolerance w , MP = {(Tx, τy)} | |Tx − τy| ≤
w}, as one that first maximizes |MP |, the size of MP , and
then minimizes the total shift

∑
(Tx,τy)∈MP |Tx−τy|. We first

construct a bipartite graph with cost G = (V ∪W,E). V ∪W
are the vertices, where V = Ti:k and W = τ1:m. Edge E
is composed of all ground truth and detected change point
pairs that are within the window, E = {(p, q) | |p − q| ≤

w, p ∈ V, q ∈ W}. The cost of each edge is defined as the
distance/shift in time between ground truth and the detected
change point C(e) = |p − q|, e ∈ E. The problem of
finding the optimal mapping MP is translated into finding
the minimum cost maximum-cardinality matching of G, for
which the Hungarian algorithm is known as the best option.

For each detection τj , if ∃m ∈MP, τj ∈ m, it is regarded
as a TP , otherwise as a FP . All the ground truth without
matched detection {Ti | @m ∈ MP,Tj ∈ m} contributes to
FN . Precision of the changepoint detection method, defined
as TP

TP+FP , can be interpreted as the fraction of detection
that is relevant or useful. Recall, defined as TP

TP+FN , can be
regarded as the fraction of all ground truth change points that
the method can successfully detect.

As mentioned early, not all RTT changes are equally
important. We propose to weight a ground truth change Ti
according to the following three elements: 1) the length of
RTT segment following Ti, i.e. Ti+1 − Ti; 2) the RTT level
difference across Ti, denoted as Mi; 3) the RTT volatil-
ity difference across Ti, denoted as ∆i. More formally for
each Ti ∈ Ti:k, with T0 = 1, Tk+1 = n, we define
Mi = |Median(yTi−1+1:Ti)−Median(yTi+1:Ti+1)|. We use
median instead of mean in the purpose of reducing the
impact of abnormally large RTT measurements. We define
∆i = |Std(yTi−1+1:Ti

) − Std(yTi+1:Ti+1
)|. We define em-

pirically the weight associated to each Ti ∈ T1:k as: Ωi =
MAX(log2

Ti+1−Ti

ρ , 0)×(Mi+∆i). Here ρ is a threshold for
RTT segment length. If Ti leading to an RTT segment shorter
than ρ, we ignore it in calculating Recall. The intuition behind
this weighting is that RTT changes of large level or volatility
are in practice regarded as more important. ρ and w tolerance
window are set to 8min in this work, corresponding to two
ping measurement intervals.

We can henceforth formulate a ‘weighted’ version of the
Recall metric to better reflect the operational importance of
detected RTT changes: RecallW =

∑
i,Ti∈TP Ωi∑k

j=1 Ωj
.

We use the F2 score to consolidate precision and recall,
where recall is weighted twice as important as precision: F2 =
(1 + 22) × Precision×RecallW

22Precsion+RecallW
. The practical implication of

this choice is that handling some FPs is less unwanted than
missing out some important RTT changes.

D. Labelling changes in RTT time series
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Fig. 1: First 2500 Datapoints of an artificial RTT time series
(one datapoint every 4min). Red vertical lines correspond to
generated changes.



In order to determine which detection method works the best
on RTT time series, a dataset with a priori labelled moments
of RTT change is required, serving as ground truth, in the
above presented scoring method. It’s quality is essential to the
relevance of evaluation results.

There are two approaches to a labelled ground truth: 1)
artificially generated data; 2) real data with labels. Real data
is naturally the preferred choice and can only be labelled
by humans with domain knowledge in absence of systematic
automation, which is however tedious and error-prone. There-
fore, it is of importance to first design tools facilitating the
labelling and second to evaluate the quality of so produced
‘ground truth’. More specifically, 1) a set of tools for inter-
active visual inspection (for RTT time series and labels) are
developed to minimize human errors 4; 2) we fabricated a
synthetic RTT dataset with known moments of actual change,
and compared the human detection results to generated change
moments 5. The labellers are the authors of this work, who are
researchers/graduate students in networking.

The synthetic dataset contains 20 RTT timeseries represent-
ing 8646 hours of RTT measurements with 935 generated
changepoints. An example of these synthetic RTT trace is
shown in Fig. 1. Each trace contains several stages of random
RTT level representing different underlying paths. Each path
has its own Markov process deciding the chance of getting
into/out of a congestion phase.
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0.00 0.25 0.50 0.75 1.00
Value

C
D
F

Precision Recall_w F2

Fig. 2: Presicion, RecallW and weighted F2 of human
labellers on synthetic dataset.

The detection performance of human labellers on the syn-
thetic dataset is shown in Fig. 2 6. Human labellers have 100%
for both Precision and Recall on 14 traces. For the rest, the
Precision remains high. A few changes are miss out, but their
total weight remain limited.

Real RTT traces of various characters are selected from
RIPE Atlas to construct the ground truth dataset. Some are full
of fluctuations; some contain periodic congestion, some have
many stage changes, etc. The entire dataset represents more
than 34,008 hours, i.e. 1417 days, of RTT measurements. 1047
changepoints were identified by the labellers. The labelled
RTT traces along with the synthetic traces are all available
in the main project repository given in Sec. II.

4https://github.com/WenqinSHAO/rtt_visual.git
5https://github.com/WenqinSHAO/rtt_gen.git
6Note that the labellers had no idea these series were synthetic, since they

are mixed up with real traces during labelling.

E. Candidate changepoint methods
According to the primer on changepoint detection in

Sec. III-A, there are two major parameters for a change-
point method formulated in that way: penalty and cost func-
tion/distribution.

We consider all the information criterion introduced (AIC,
BIC, MBIC and Hannan-Quinn), and all the supported distri-
bution types, including the non-parametric approach based on
empirical distribution.

With some preliminary tests, we quickly realized that de-
tection with Normal distribution tend to be over-sensitive,
while Poisson, Exponential distribution are too numb. It is
because the mean and variance of Normal distribution are
independently controlled by two parameters, which increases
the chance of fitting subtle changes either in level or volatility.
Meanwhile, the mean and variance of Poisson and Exponential
distribution are coupled by one parameter, which restrains their
freedom of adjustment 7 8. For instance, for a path including
trans-Pacific links, we shall expect a minimum RTT above
80ms, in which case the corresponding Poisson distribution
could easily tolerate several RTT deviations of 20ms, which
is already non-negligible.

To boost the detection sensitivity with Poisson and Expo-
nential distribution, we propose a data transformation: sub-
tracting the RTT time series by its minimum value (baseline) to
lower down its overall RTT level 9. Changes are then detected
for the baseline-removed RTT time series when assuming
Poisson and Exponential distribution. Such setting is denoted
as cpt_poisson and cpt_exp respectively. For the sake of
comparison, we also consider Poisson distribution without data
transformation and denote it as cpt_poisson_naive.
Normal distribution and non-parametric approach are applied
directly on initial RTT measurements. They are denoted as
cpt_normal and cpt_np accordingly.

F. Evaluation of changepoint methods
Before evaluating with the scores defined in Sec. III-C,

one might wonder whether the RTT segments labelled by
human beings already (Sec. III-D) follow principally a specific
distribution, and whether that distribution leads to the best
detection performance. We performed distribution test for
813 RTT segments longer than 20 datapoints against each
of the discussed distribution types under corresponding data
transformation (Sec. III-E). 71 follow Normal distribution, 13
follow Poisson distribution, 11 follow Exponential distribu-
tion 10. None of these distributions seems to to have dominant
popularity among the labelled RTT segments.

7Poisson, mean=variance=λ; Exponential, mean/variance=λ, mean=1/λ.
8Gamma, mean/variance=β, mean=α/β. [16] requires a priori input for

α, which decides overall sensitivity. Therefore, only β is tuned in finding
changepoints. We tried α from 1 to 100 on the labelled dataset. None of
them outperforms the best setting shown later on. Due to space limit, we no
longer consider Gamma distributions.

9Note that timeout measurements are set to 1000ms. For Poisson distribu-
tions, RTT values are rounded to the closest integer.

10Significance level 0.05. Shapiro-Wilk Normality test; Chi-squared test for
Poisson; Kolmogorov-Smirnov test for Exponential. Distribution parameters
are estimated through Maximum Likelihood Estimation.

https://github.com/WenqinSHAO/rtt_visual.git
https://github.com/WenqinSHAO/rtt_gen.git
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Fig. 3: Precision, Recall, RecallW , F2 and F2W with weighted recall on real RTT traces.

Changes are detected for selected real RTT traces with
all distribution types. The detection performance in terms
of Precision, Recall, RecallW , F2 and weighted F2 under
optimal penalty are given in Fig. 3. More than 75% of changes
in terms of weight can be detected for more than half of
the traces with any distribution. All distribution types have
better score in terms of recall and F2 with their weighted
variation, indicating some changepoints missed out are indeed
of little operational importance. Normal distribution has more
fitting RTT segments than others, however its overall F2 score
(weighted or not) is not outstanding. This suggests that the
goodness of fit is not a guarantee for detection performance.

Fig. 3 confirms that the detection with Normal distribu-
tion is over-sensitive even with MBIC, the largest adap-
tive penalty setting. For the other methods, their perfor-
mances are rather close. cpt_poisson seems to have
a slight advantage according to weighted F2. Compared
to cpt_poisson_naive, cpt_poisson achieves higher
RecallW without obviously sacrificing Precision. As a mat-
ter of fact, without data transformation, assuming Exponential
distribution detects no changepoint for a big part traces in the
real RTT dataset. These imply that the proposed data trans-
formation has the potential to improve detection performance
for these distributions.

G. Detecting changes for collected ping measurements

cpt_poisson and cpt_np with MBIC are used to
detected RTT changes for all the 6029 collected ping mea-
surements. We consider cpt_poisson as it is the best per-
forming one, though by a small margin. cpt_np is included
as it performs well and its cost function follows a different
principle.
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Fig. 4: RTT changepoints number distribution with different
detection methods under MBIC.

Fig. 4 shows the distribution of RTT change numbers per
probe. 4844 probe traces each containing more than 30,000
ping measurements are considered. 854,626 RTT change are
detected by cpt_np. cpt_poisson almost doubled this
number with 1,638,858 RTT changes. However, the median
change numbers for both methods is however the same (122).
Fig. 4b shows that the change number by cpt_poisson
spreads over a much wider range. With cpt_poisson, 711
probes (11.86%) have more than 500 changes, while only 35
probes (0.58%) with cpt_np experienced that many changes.
This is probably because the cost function of cpt_np bases
on the estimation of quantiles (by default 10 quantiles used,
more can be set) of empirical distribution. The dimension of
θ is much larger than Poisson and Normal distribution. The
penalty value increases hence much faster for cpt_np when
new changepoint is added, which prevents extremely large
number of changepoints per probe trace.
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Fig. 5: Density estimation of RTT changepoints characteristics.

Fig. 5 compares the characters of all the RTT changes
detected by the two methods. Each RTT change is described
by the associated level and volatility difference, i.e. M and
∆ defined in Sec. III-C. Overall, RTT changes detected by
cpt_poisson are of larger M and ∆. 331,062 (38.71%)
changes with M and ∆ both smaller than 5ms are detected
by cpt_np. With cpt_poisson, there are only 87,021
(5.31%) such changes of few importance in networking. Mean-
while, a relatively bigger fraction of RTT changes detected by
cpt_poisson have large ∆ but small M , more precisely
319,541 (19.49%) with M < 5ms,∆ > 50ms. They are
mostly associated with short RTT segments caused by frequent
timeouts in certain probe traces. For example, probe 20854
had 2308 timeout measurements dispersed in the entire trace.
cpt_poisson appears to be more sensitive to such sporadic



but short living deviations.
Wrap-up In this part, we described an evaluation frame-

work adapted to change detection on RTT time series. A data
transformation to improve the detection sensitivity is proposed,
with which, Poisson distribution + MBIC achieves the most
appropriate balance between sensitivity and relevance. The
nuance between cpt_np and cpt_poisson will be further
discussed in Sec V.

IV. PATH CHANGE DETECTION

Trivial as it may sound, detecting IP path changes is chal-
lenging for RIPE Atlas built-in traceroute measurements. The
difficulties come from two aspects: 1) the wide deployment
of IP-level Load Balancing (LB); 2) RIPE Atlas uses Paris
traceroute with different Paris IDs every other measurement
(incremented by 1, recycling between 0 and 15) [20], [21].

IP paths taken by two neighbouring measurements can
naturally differ – load-balanced on different available paths.
From this angle, plain IP path changes doesn’t mean that there
were topological or configuration changes that lead to any real
routing change. On the other hand, having different Paris IDs
every time can also be helpful in this context. If traceroute
were locked on a single Paris ID, it would then be impossible
to detect routing changes that only affect paths corresponding
to other Paris IDs.

A. IP Forwarding Pattern change

When a different IP path is measured with a same Paris
ID, there is potentially a routing change. We call this kind
of IP path change an IP Forwarding Pattern (IFP) change.
In the example below, the IFP change happens when Paris
ID 2 begins to take IP path E instead of B. We refer to two
measurements with same Paris ID but different IP paths as
conflicting measurements.

| IFP change
Paris ID: 0 1 2 3 4 .. 15 0 1|2 3 ..
IP Path: A B B A A .. C A B|E E ..

A measurement series | boundary -> forward

IFP changes can thus be identified by constructing a set of
measurement series, each containing no conflicting measure-
ments. Yet, across two series next to each other, there shall be
as least one pair of conflicting measurements, otherwise they
can be merged. This can be done by moving the boundary
of measurement series forward to include non-conflicting
measurements, till a conflict is encountered, as shown in the
above example. We call this approach forward inclusion.

The drawback of forward inclusion is that it potentially
delays the detection of actual IFP changes. This is because,
when including non-conflicting measurements forwardly, a
measurement series always has the chance to absorb mea-
surements till it experiences all possible Paris IDs. However
an actual IFP change could happen before that moment. An
example of possibly delayed IFP change is given right below:

!Possible position of actual IFP change
.. 1|2 3!4 5 .. 15 0 1|2 3 4 5 ... 15 0 1 2 3 4 5 ..
.. B|B A!A C .. C A B|E E A C ... C A B E E A C ..

| IFP change forward inclusion
| backward <- boundary

With forward inclusion, an IFP change will be detected at
the 2nd appearance of Paris ID 2. While the actual change
probably happens at the 1st appearance of Paris ID 4, since
starting from it, all the measurements are non-conflicting with
the later measurement series. The 1st appearance of Paris 2
and 3 are in fact a short deviation from a popular IFP.

Cases like this are highly possible, because networks tend to
have some stable configurations that lead to a few dominant
paths over time [3], [7]. Deviations from dominant/popular
IFPs are thus likely to be short living. With RIPE Altas built-
in measurements, they probably won’t last long enough to
experience all the Paris IDs 11. To maximize the presence of
popular IFPs, we only push backwardly the boundary obtained
by forward inclusion if 1) the latter measurement series is
longer than the previous one; 2) the latter measurement series
experiences all the Paris IDs at least twice. We refer to this
approach as backward extension. We show later on that IFP
changes detected by backward extension have a much larger
chance matching with RTT changes.

B. Detecting path changes

AS-level path changes are as well detected after translating
IP hops to ASN hops [22]. We didn’t consider third-party
address [23], [24] and IP alias techniques [25], [26] in this
operation. It is because the focus is to detect changes in-
stead of constructing an accurate Internet topology. We did
detect the presence of IXPs using the heuristics proposed by
traIXroute [27], since individual studies have shown that IXP
could be involved in large RTT changes [28].
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Fig. 6: Path change times per probe trace distribution. One
probe with most complete traceroute measurement is chosen
for each AS. 2050 probes/ASes are inlcuded in the graph.

We consider only AS path changes where the difference
starts from a hop position involving public ASNs in both AS
paths. Difference due to temporal presence of non-responding
hops are ignored. IXP change happens when the difference
starts from a position involving at least one IXP hop in the two
AS paths. IFP changes, detected with backward extension, not
overlapped with AS path/IXP changes are considered. They
are potentially caused by intra-domain routing changes.

The distribution of number of path changes per probe trace
is illustrated in Fig. 6. One probe with the most complete
traceroute measurements is selected for each of the 2050
source ASes. 1170 (57.07%) of them experienced no AS path

11It takes at least 450min (30min * 15) to go through all the 16 Paris IDs
used in RIPE Atlas built-in traceroute.



changes over the period of three months, indicating that the
AS paths are in general very stable over time. Still, 51 (2.49%)
probes underwent more than 100 AS path changes. 717 probes
(34.98%) didn’t have any IXP change. 140 probes experienced
frequent (> 100) IXP changes. IFP changes are much more
frequent than the other two path changes. Half of the selected
probes experienced more than 90 IFP changes. We investigate
the nature of these path changes, together with their potential
impact on RTT, in Sec. V.

V. CORRELATION STUDY

If a pair of RTT and path change are close in time, chances
are that the RTT changes is caused by the path change. We
say that these two changes are correlated.

However, there is no straightforward matching between
the two changes, as the measurement intervals are different:
30min for traceroute while 4min for ping. Again, minimum
cost maximum-cardinality matching appears to be a reasonable
formulation of the correlation between RTT and path changes.
We therefore borrow the concept of optimal matching in
changepoint evaluation (Sec. III-C). The shift tolerance win-
dow is set to the interval of traceroute measurement, as causal
relationship between the RTT and path change is possible
within that range. A pair of RTT and path changes are cor-
related/matched if they are within in the so produced optimal
matching. The notion Precision, introduced in section III-C,
is now interpreted as the fraction of path changes that are
matched to an RTT change.
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Fig. 7: Precision ration between IFP changes detected by
backward extension and forward inclusion.

Fig. 7 shows that with same number of changes, IFP
changes detected with backward extension are much more
likely to have a match with RTT changes for 75% probes.
The significant increase in precision implies the occurrences of
short IFP deviations, as well confirms the success of backward
extension in capturing them.
TABLE I: Number of RTT changes matched with a path
change for the selected 2050 probes.

cpt_poisson cpt_np # path changes

AS path change 11,794 6,380 51,282
IXP change 9,126 8,341 73,544
IFP change 38,700 36,400 244,713

# RTT changes 481,877 307,312

Tab. I details the number of matched RTT and path change
pairs. A large fraction of path changes doesn’t match with
any RTT changes. Especially, the fraction of AS path changes
matched to RTT changes with either detection method is
much lower than the reported 72.5% in [4]. An important

part of RTT changes detected by both method doesn’t match
with any change in the forwarding path either. Moreover, the
number of RTT changes correlates with AS path changes
differs greatly across the two changepoint methods, while the
number matched to IXP or IFP change are relatively close.
We explore the underlying reasons behind above phenomena.

A. cpt_poisson matches better with AS path change?

Among 880 probes ever experienced AS path changes,
293 probes have more AS path changes matched to
cpt_poisson RTT changes, 224 have more AS path
changes matched to cpt_np changes, Among these 517
probes, 463 are with a difference smaller than 10 changes. The
rest 363 probes have no difference across the two methods.
Contrary to what we see in Tab. I, the numbers of AS path
matched are in fact highly consistent across the two methods
for the majority of probes. The difference is caused by a small
fraction of probes identified in Fig. 8 More the color (of a
probe) is on the red side, more important the difference is
between cpt_poisson and cpt_np. We can tell that those
probes plainly in red all experienced a large number of AS
path changes (y-axis). Moreover, if more path changes are
matched to RTT changes detected by one method, very likely
more RTT changes are as well detected by this method than
the other. All together, the difference in matched RTT changes
with AS path changes fundamentally lies in the difference of
detection sensitivity (number of detected RTT changes) across
different probe traces. This difference is manifested through
extremely frequent AS Path changes of several specific probes.
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2

10
20
50

100
200
500

1000

4000

−5
00

−1
00
−5

0
−1

0 0 10 5010
0

50
0
10

00
−5

00
−1

00
−5

0
−1

0 0 10 5010
0

50
0
10

00

RTT change number difference (Poisson − NP)

A
S

 p
at

h 
ch

an
ge

Difference of mathced change (0,2] (2,50] (50,100] (100,500] (500,2e+03]
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and cpt_np. Probes are characterized by its AS path change
numbers and RTT change number difference between the
two methods. The color of each probe indicates the level of
difference in matched change. Left panel shows the probes
with more AS path changes matched to cpt_np RTT changes.

Fig. 4b and Tab. I already tell that cpt_poisson detects
in total more RTT changes than cpt_np, appearing to be
more sensitive. However, for most probes with small overall
RTT variation, cpt_np is in fact more sensitive and detects
more RTT changes, according to Fig. 9. This matches with
Fig. 4b in the sense that cpt_np detects much more changes
of small amplitude. For probes with relatively large overall
RTT variation, cpt_poisson tends to be more sensitive
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Fig. 9: Relation between RTT change number difference by
the two changepoint method and the RTT trace std.

and the difference in change number increases with the level
of RTT variance. With comprehensive manual inspection,
we found that those RTT traces with high variance mostly
underwent large amplitude RTT oscillations, many of which
caused by ping timeouts. As human change detector, we also
found very difficult to mark moments of change for these
traces.

B. How AS path changes match to RTT changes?
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Fig. 10: The relation between precision and AS path change
times per probe trace.
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Fig. 11: RTT from Probe 12849. Red lines for RTT change
detected by cpt_poisson; green dotted lines for RTT
change by cpt_np. Orange strips for AS path changes.

A nature question following the above analysis is whether
those frequent AS path changes can in fact cause RTT changes.
Fig. 10 reveals that probes with extremely frequent AS path
changes have in fact very low correlation, in terms of pre-
cision, with RTT changes. After extensive manual inspection,
those frequent AS path changes appear to be AS-level LB, i.e.
upstream ASes in reaching the destination are switched very
frequently among a few providers. Such AS changes generally
don’t have a clear impact on the RTT level.

Yet, not all such AS-level load balancing is without con-
sequence. For example, probe 12849 in Fig. 11 experienced
170 AS path changes, among which 169 are matched to

RTT changes detected by cpt_poisson and only 102 are
matched to cpt_np. These AS path changes are highly
periodic and coincide with clear cut RTT changes. cpt_np
failed to detect some of the changes with smaller amplitude.

C. Pitfalls of IXP and IFP change detection

Similar to AS path changes, the correlation with RTT
changes is weak for frequent IXP and IFP changes. In Fig. 6b,
a group of probes are in the area of 100 to 200 IXP changes.
Their correlation with RTT changes is fairly low, precision
around 0.1. We investigate all the 58 probes in the area. These
probe passed by AMS-IX to reach b-root most of the time.
There were about 147 times, shared by these probes, where
AMS-IX hop was replaced by a timeout hop before arriving
AS6939. In such case, no IXP related address appears in the
measured path. The presence of IXP is thus uncertain 12.

TABLE II: Quantiles of IP path numbers per probe trace.

5% 10% 25% 50% 75% 95% 100%

20 32 56 91 145 419 4302

The correlation of IFP changes with RTT changes are much
weaker than that of AS and IXP path changes. It turned out
that most probes experienced much more than 16 end-to-end
IP paths, Tab. II. In such case, one Paris ID might have been
mapped to more than one IP path in reality, which leads to IFP
changes without actual routing change in the forward path.
Within in each single AS, the number of different IP paths
rarely exceeds 16 toward a destination. However a chain of
ASes can produce way much richer combinations of end-to-
end IP paths.

Moreover, there is a group of probes having around 250
IFP changes according to Fig. 6b. An IFP change takes
place roughly every 16 measurements on these probes. These
changes are as well poorly correlated to RTT changes. We
investigated some probes in the area and found out the frequent
changes aren’t necessary related to the large amount of end-to-
end paths. For some probes, two neighbouring IFPs only differ
at one or two Paris IDs. IP paths taken by these Paris IDs
oscillates between a few alternatives frequently. For example,
the Paris ID 6, 7, 8, 9 of probe 23998 switches a lot among
only 2 paths. Such change in general doesn’t have obvious
consequence on RTT level.

D. Unmatched RTT changes

Several reasons contribute to the large amount and fraction
of RTT changes unmatched to any path changes. First, some
path changes experienced by RTT measurements are not
observed. We were not able to measure the reverse path
with RIPE Atlas built-in measurement, let alone detecting the
changes on the reverse path. However, these changes could
have contributed to RTT changes, especially in the context of
inter-domain routing where paths are likely to be asymmetric.

12The newly released traIXroute v2.1 can detect IXP without the presence
of IXP related IP address, if the neighbouring ASes are known to be member
of a same IXP. However, it is still possible that two ASes peer at multiple
IXPs, where the exact IXP traversed would remain uncertain.



Second, congestion. Fig. 12b gives an typical example of
RTT changes probably caused by congestion. Congestion like
this doesn’t repeat periodically, and thus can not be detected
with existing methods [29]. Changepoint methods studied
in this work can be potentially employed to pinpoint such
transient congestion and estimate their impact on the tranmis-
sion performance. We envision it as future work. Third, RTT
change detection can be over-sensitive. We revealed from a
macroscopic view in Sec. III-G and V-A that cpt_poisson
tend to overestimate the number of changepoints when the
RTT trace is noisy, while cpt_np is capable of detecting
delicate RTT changes. Individual traces are given in Fig. 12
to illustrate the sensitivity difference from a microscopic view.
In Fig. 12a, cpt_np detected all the periodic small amplitude
congestion. In Fig. 12b, both methods identified the two large
‘plumbs’ near the end of the trace. The difference is that
cpt_poisson marked intermediate level changes as well.
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(a) Probe 28002.
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(b) Probe 26328.

Fig. 12: RTT trace and change detection example. Red lines for
RTT change detected by cpt_poisson; green dotted lines
for RTT change by cpt_np. Violet strips are IFP changes.

VI. CONCLUSION

In this paper, we proposed an evaluation framework for
change detection on RTT time series. The framework is robust
with human-labelled dataset and weights RTT changes ac-
cording to their importance in network operation. In detecting
path changes, we distinguish those caused by routing changes
from those due to load balancing. Finally, we correlate the
detected RTT and path changes by establishing an one-to-
one matching between them. We investigated the sensitivity
distinction across different change detection methods. Hidden
issues with path changes are as well revealed.

This work is mere a facilitator for measurement-based TE.
Further efforts are required in building a working system. To
name a few: online detection of RTT changes, route selection
logic triggered by change detection etc.
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