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Abstract: In this paper, an unmanned aerial vehicle (UAV)-aided wireless emergence communication system is studied,

where an UAV is deployed to support ground user equipments (UEs) for emergence communications. We aim to maximize

the number of the UEs served, the fairness, and the overall uplink data rate via optimizing the trajectory of UAV and the

transmission power of UEs. We propose a Deep Q-Network (DQN) based algorithm, which involves the well-known Deep

Neural Network (DNN) and Q-Learning, to solve the UAV trajectory problem. Then, based on the optimized UAV trajectory,

we further propose a successive convex approximation (SCA) based algorithm to tackle the power control problem for each UE.

Numerical simulations demonstrate that the proposed DQN based algorithm can achieve considerable performance gain over the

existing benchmark algorithms in terms of fairness, the number of UEs served and overall uplink data rate via optimizing UAV’s

trajectory and power optimization.

Keywords: Deep Reinforcement Learning, Deep Q-Network (DQN), Successive Convex Approximation (SCA), UAV, Power

Control.

1 Introduction

Unmanned aerial vehicles (UAVs), also known as drones,
have been playing an increasingly important role in emer-
gency situations such as earthquake and large fires, where
UAVs could be deployed to provide emergency communica-
tions for user equipments (UEs) and support life saving ac-
tivities. It also has the potential to provide other wireless
communication related services, such as ubiquitous cover-
age, relaying, information dissemination, mobile edge com-
puting (MEC) and data collection [1,2,3]. Considering their low
cost, high mobility, fast deployment and the direct Line-of-
Sight (LoS) connectivity, UAV-enabled wireless communica-
tions are expected to achieve higher throughput compared to
traditional terrestrial wireless communications.

In order to fully exploit the potential of UAVs, much re-
search has been conducted in the trajectory design of UAV-
enabled communications [4,5,6]. In [7], Zeng et al. maxi-
mized the throughput of UAV-enabled mobile relaying sys-

tem, whereas in [8], the authors maximized the energy effi-
ciency in a point-to-point UAV-ground communication sys-
tem. In [9], the authors optimized the altitude of UAV to maxi-
mize the radio coverage on the ground. In [5], the UAV was
utilized as a mobile base station to serve the ground UEs,
and the authors proposed a successive convex approximation
(SCA) based algorithm to maximize the minimum average
throughput of UEs. In [10], Lyu et al. proposed a new cycli-
cal multiple access scheme, where UAV flies cyclically to
serve the ground users. In [11], an UAV-enabled secure trans-
mission scheme was proposed in hyper dense networks. For
UAV-enabled wireless power transfer networks, Xu et al. op-
timized the trajectory of UAV for the purpose of maximizing
the sum of energy received by users. For multi UAV-enabled
multiuser system, Yang et al. [12] minimized the sum power
of user equipment via jointly optimizing the user association,
power control, computation capacity allocation, and location
planning in a mobile edge computing (MEC) network.
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Recently, UAV has been playing an increasingly impor-
tant role in emergency communications. For instance, dur-
ing the earthquake, if the local ground station is destroyed,
UAV could be deployed to serve as the flying base station to
serve the users. They can dynamically move towards the UEs
that are out of the communication range, and transmit/receive
the data to/from them. In [13], Mozaffari et al. addressed
some key challenges of deploying UAVs to serve the ground
users, such as the optimal deployment and energy efficiency
of UAVs. In [14], multiple UAVs were deployed to receive the
information from ground UEs, and in order to achieve the reli-
able uplink communications, the authors proposed to optimize
the UAV trajectory and the transmit power of UEs. In [15],
Huang et al. proposed a differential evolution algorithm to
minimize the energy consumption via optimizing the UAV’s
deployment, such as the number and location of stop points.

Among the recent development in the field of artificial
intelligence (AI) and machine learning (ML), reinforcement
learning (RL) [16] has become a hot topic both in academia
and industry. In [17], Watkins et al. introduced a model-free
reinforcement learning: Q-learning, which can be viewed as
a method of asynchronous dynamic programming (DP). Also,
some fundamental elements like agent, state, action, penalty,
reward and Q-value were discussed. However, Q-learning is
not practical for complicated applications since the number
of states and actions will increase exponentially. Thus, com-
bining deep neural networks (DNNs) with RL creates a feasi-
ble approach, which could provide more accurate convergence
and approximation. In [18], Mnih et al. developed a novel so-
lution, i.e., a deep Q-network (DQN), which has achieved an
outstanding performance in the challenging domain of Atari
2600 games.

Against the above background, in this paper, we propose a
joint UAV trajectory and power control optimization problem
to maximize the number of served UEs, the fairness and the
overall uplink data rate of UEs in the emergency communi-
cation scenario. To this end, we address the UAV trajectory
problem by applying DQN framework. Then, based on the
given UAV trajectory, we solve the power control problem via
using the convex optimization based algorithm.

The rest of this paper is organized as follows. Section II
introduces the system model. In Section III, we introduce the
proposed algorithm. In Section IV, numerical results are pre-
sented to verify the proposed algorithm. Finally, we conclude
the paper in Section V.

The main notations used in this paper are summarized in
Table 1.

Table 1 Main Notations.

Notation Definition
n,N,N the index, the number, and the set of UEs,

t,T,T the index, the number, and the set of TSs

lmax the side length of the square area

Zmin,Zmax minimal and maximal height of the UAV

emax the maximum energy level of UAV

et the remaining energy level of UAV in TS t

αt ,βt ,ωt the flying action of UAV in TS t

Xt ,Yt ,Zt the coordinate of UAV in TS t

xn,yn the coordinate of UE n

dn,t distance between UE n with UAV in TS t

cn,t coverage status of UE n in TS t

L(θn,t ,dn,t) path loss between UE n and UAV is TS t

γn,t SINR at UAV from UE n in TS t

rn,t uplink data rate from UE n to UAV in TS t

2 System Model

As shown in Fig. 1, we consider the emergence situation,
where the ground base station is destroyed and the UAV is
deployed to provide communication to all the UEs. Assume
the UAV flies over a square area with the side length lmax.
We assume there are N UEs randomly distributed in the target
area, and the set of UEs is denoted as N , {n = 1,2, ...,N}.
Also assume the uplink data transmission lasts for T time slots
(TSs), and the set of TSs is denoted as T , {t = 1,2, ...T}.
In each TS, the UAV has a flying action [αt ,βt ,ωt ] to conduct,
where αt is the horizontal angle of the flying direction, βt is
the vertical angle of the flying direction, and ωt is the flying
distance. For simplicity, in this paper, we assume that the
possible action At is chosen from the following set:

At ={[αt ,βt ,ωt ] =
[ 2π

Nα

i,
π

Nβ

j,
ωmax

Nω

k
]
,

∀i ∈ 0, ...Nα , j ∈ 0, ...Nβ , k ∈ 0, ...Nω}, t ∈T ,

(1)

where Nα , Nβ , and Nω are the numbers of flying angles and
distance that UAV can move in each TS. This means that
the UAV can only fly with some specific angles and dis-
tance values. ωmax is the maximal flying distance in each
TS. Note that if the UAV stays at the current location, the
action [αt ,βt ,ωt ] = [0,0,0], where one can see i = 0, j = 0,
k = 0. Otherwise, it moves with the corresponding angles
2π

Nα
i, π

Nβ
j and the distance ωmax

Nω
k. Hence, the coordinate of

UAV in TS t can be denoted as [Xt ,Yt ,Zt ], where Xt = X0 +

∑
t
t ′=1 ωt ′sin(βt ′)cos(αt ′), Yt = Y0 + ∑

t
t ′=1 ωt ′sin(βt ′)sin(αt ′),
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(Xt, Yt, Zt)

(xn, yn, 0)
lmax

lmax

Figure 1 UAV-Aid IoT Data Collection System

and Zt = Z0 +∑
t
t ′=1 ωt ′cos(βt ′), with [X0,Y0,Z0] being the ini-

tial coordinate of the UAV. Since the UAV can not fly out of
the target area, we have

0≤ Xt ≤ lmax, ∀t ∈T , (2)

and
0≤ Yt ≤ lmax, ∀t ∈T . (3)

Additionally, in this paper, we set

Zmin ≤ Zt ≤ Zmax, ∀t ∈T , (4)

where Zmin, Zmax, are the minimal and maximal flying height
of the UAV, for collision avoidance.

Thus, the distance between the UAV and UE n in TS t can
be given by

dn,t =
√
(Xt − xn)2 +(Yt − yn)2 +Z2

t , ∀n ∈N , t ∈T , (5)

where [xn,yn] is the coordinate of UE n.
Furthermore, in this paper, the UAV has a azimuth angle

value of antenna θ ′, which is based on 3-D Cartesian coordi-
nate, such as x axis, y axis, z axis. Hence, in TS t, the UAV
has a maximal horizontal coverage circle with the radius of
Rmax

t = Zt tan(θ ′) [12] and it varies with the height of the UAV.
We also assume that the UAV has the energy constraint emax.

We define the remaining energy level et of the UAV in TS t
as:

et = emax−
t

∑
t ′=0

Oet ′ . ∀t ∈T , (6)

where Oet ′ is the energy consumed by UAV in TS t ′, which is
defined as [19]

Oet ′ =

(
P0

(
1+3

v2
t

V 2
r

)
+P1

(√
1+

v4
t

4V 4
0
− v2

t

2V 2
0

) 1
2

+
1
2

d0ρsπR2
bv3

t

)
T max,

(7)

where vt is the flying velocity of UAV in TS t, T max is the max-
imal time duration of each TS, Vr is the tip speed of the rotor
blade, V0 is the mean rotor velocity when hovering, d0 is the
drag ratio, ρ means the air density, s denotes the rotor solid-
ity, Rb is the radius value of rotor disc. And P0,P1 are constant
values that can be found in the reference [19]. For simplicity,
in this paper, we set vt =

ωt
T max . Note that we do not consider

the energy consumption of data receiving/transmission since
it is negligible compared with the moving and hovering en-
ergy consumption. Also, to simply the model, we adopt the
simplified energy consumption model above, which could be
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readily extended to the more general model considering differ-
ent types of UAVs and 3-D flying. In practice, we also assume
there is some preserved battery for UAV flying back to the
ground, which is ignored here to make the model compact.

In this paper, the 3-D channel model proposed in [9] is
adopted. Thus, the mean path loss between the UAV and the
UE n in TS t is given by

L(θn,t ,dn,t) =
ηLoS−ηNLoS

1+aexp
(
−b(θn,t −a)

) +20log10(dn,t)+

20log10
(4π fc

c

)
+ηNLoS,

(8)

where ηLoS and ηNLoS (in dB) are the path loss correspond-
ing to the LoS and non-LoS links respectively. a and b are
positive constants which can be obtained in [9]. fc is the car-
rier frequency (Hz), c is the light speed (m/s), and θn,t =

arctan
( Zt√

(Xt−xn)2+(Yt−yn)2

)
.

We denote cn,t as the coverage status of UE n in TS t, and
it can be defined as

cn,t =

{
1, if

√
(Xt − xn)2 +(Yt − yn)2 ≤ Rmax

t ,

0, Otherwise.
(9)

Additionally, we assume that if the UE n is under the cov-
erage of UAV in TS t, i.e., cn,t = 1, the UE n is served by UAV
and the data collection from UE n to UAV is started. Thus, the
corresponding signal-to-interference-plus-noise ratio (SINR)
at the UAV can be expressed as

γn,t =
cn,tPn,t10−

L(θn,t ,dn,t )
10

∑
N
n′=1,n′ 6=n cn′,tPn′,t10−

L(θn′,t ,dn′,t )
10 +σ2

, (10)

where Pn,t means the transmit power of UE n in TS t; σ2 is
the additive white Gaussian noise (AWGN) at the receiver.
Therefore, the uplink data rate from UE n to the UAV in TS t
is expressed as

rn,t = log2
(
1+ γn,t

)
, ∀n ∈N , t ∈T . (11)

One can also apply the power constraint as follows, then
we have

0≤ Pn,t ≤ Pmax, ∀n ∈N , t ∈T , (12)

where Pmax is the maximum transmit power of UEs.
In this paper, we also aim to maximize the number of UEs

served by UAV via optimizing the UAV trajectory. Then we
define Ct as follows

Ct =
1
N

N

∑
n=1

cn,t ,∀t ∈T , (13)

which can represent the proportion of the number of UEs
served by UAV in TS t. However, this may lead to unfair serv-
ing process since some UEs are covered for many TSs and the

rest UEs may be never covered at all. Therefore, similar to the
references [20,21], we apply the fairness index among all UEs,
which is defined as

ft =

(
∑

N
n=1 ∑

t
t ′=1 cn,t ′

)2

N ∑
N
n=1
(

∑
t
t ′=1 cn,t ′

)2 , (14)

where ft reflects the quality of service (QoS) level that the
UEs served by UAV from the initial TS to the TS t. More
precisely, if all the UEs are served for the similar number of
TSs, the fairness value ft is closer to 1.

Additionally, we define the overall data rate of UEs served
by UAV in TS t as

Rt =
N

∑
n=1

cn,trn,t ,∀t ∈T . (15)

Thus, we formulate the optimization problem as follows

P1 :max
U ,P

T

∑
t=1

(
ft ·Ct ·Rt

)
, (16a)

subject to:

At = {[αt ,βt ,ωt ] =
[ 2π

Nα

i,
π

Nβ

j,
ωmax

Nω

k
]
,

∀i ∈ 0, ...Nα , j ∈ 0, ...Nβ , k ∈ 0, ...Nω}, t ∈T ,

(16b)

0≤ Xt ≤ lmax, ∀t ∈T , (16c)

0≤ Yt ≤ lmax, ∀t ∈T , (16d)

Zmin ≤ Zt ≤ Zmax, ∀t ∈T , (16e)

0≤ Pn,t ≤ Pmax, ∀n ∈N , t ∈T , (16f)

where U = {Xt ,Yt ,Zt ,∀t ∈ T } and P = {Pn,t ,∀n ∈N , t ∈
T }. It is readily to see that the above problem cannot be
solved by traditional optimization approach as it involves dis-
crete variables U and continuous variables P . Additionally,
all three factors cannot be achieved optimally at the same time
since each factor will have a negative effect on others. Thus,
we aim to achieve the optimal balance between them. Then, in
this paper, we first propose a DQN-based algorithm to solve
the UAV trajectory problem. Next, based on the optimized
UAV trajectory, we further propose a successive convex ap-
proximation (SCA) based algorithm to solve the power con-
trol problem.

3 Proposed Algorithm

Before presenting the proposed algorithm, we first intro-
duce some important knowledge of deep reinforcement learn-
ing.
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3.1 Background Knowledge

In the traditional reinforcement learning structure, there is
an agent interacting with the environment through a series of
states, actions and rewards. In each time step, the agent se-
lects the policy that maps the state and action with the aim of
maximizing the accumulated reward. Specifically, the process
of interacting with the environment can be expressed with an
action-value function named Q-function, which is defined as

Q(s,a) = maxπE
[
Z|st = s,at = a], (17)

where Q is known as Q-value, π denotes the policy by taking
the action a at the state s and Z is the reward.

Although DRL combines DNN with Q-learning, it may still
have instability or divergence. Since DNN may be seen as the
non-linear function approximator, small updates to Q-value
may significantly vary the policy, or even change the data dis-
tribution as well as the correlations between action-value and
target value. Therefore, to address this issue, in [18], Mnih et
al. introduced the DQN framework, which contains a pair
of mechanisms: Firstly, they applied the experience replay,
where the mini-batch randomly samples several transitions
{st ,at ,zt ,st+1} to train the DQN. This mechanism removes
the correlation of state sequences and smooths over changes
in the data distribution. Secondly, an iterative updating mech-
anism was deployed. Specifically, there is a target network
periodically updating for the purpose of adjusting the action-
value towards the target value.

3.2 The Proposed DQN Algorithm

In this section, the proposed DQN algorithm is presented,
where we assume there is an agent interacting with the en-
vironment. The agent controls the UAV and aims to select
the optimal policy that can maximize the accumulated re-
ward Zt = ∑

T
t ′=t γ t ′−tzt ′ by giving a set of states S , {st =

s1,s2, ...sT} and actions A , {at = a1,a2, ...,aT}, where γ ∈
[0,1] is the discount factor. More specifically, we describe the
state, action and reward in TS t as follows:

1. State st : the state of agent in TS t has two components.

(a) UAV ’s current coordinate: {Xt ,Yt ,Zt}.

(b) UAV’s current energy level: {et}.

2. Action at : we define action at = {αt ,βt ,ωt} as the UAV’s
horizontal angle αt , vertical angle βt and distance ωt in
TS t, where at ∈ At .

3. Reward Function zt : we define the reward function as:

zt = ft ·Ct ·Rt − p, (18)

where p is the penalty if UAV flies out of the target area
and Rt can be obtained by the proposed convex optimiza-
tion based solutions in Algorithm 2.

In the proposed DRL shown in Fig. 2, there are two
DQN networks, namely evaluation and target networks, re-
spectively [18]. Note that the evaluation and target networks
have the same structure but the latter updates periodically. The
agent selects the action according to the evaluation network
and the agent follows an ε-greedy policy.

According to the state st and action at , the agent obtains
the reward rt and then the environment transfers to the next
state st+1. The transition {st ,at ,zt ,st+1} can be stored in the
experience replay memory with size Mmax. Once the learning
process starts, the mini-batch randomly samples K transitions
from the memory. The evaluation network is trained by the
sequence of the loss function, which can be expressed as

Li(θi) = Es,a
[(

yi−Q(s,a|θi)
)2]

, (19)

where i is the index of iteration, yi = E
[
z +

γmax
a′

Q(s′,a′|θi−1)
]

and it can be obtained by the target

network.
During the interaction with the environment, the agent se-

lects the optimized action of UAV associated with the evalu-
ation network, which follows a ε-greedy policy. Specifically,
the agent can select the action that has the largest Q-value with
probability ε , or randomly select the action from the action set
At with probability 1−ε . Also, the agent obtains state st , next
state st+1 and reward zt from the environment. Note that the
data rate Rt of reward zt is calculated by the proposed convex
optimization based algorithm provided in Algorithm 2. Then,
the transition, which consists of {st ,at ,zt ,st+1}, is stored in
the experience replay memory. Once the learning procedure
starts, the mini-batch randomly samples K transitions from the
experience replay memory. Given the Q-value Q(s,a) and the
target value yi obtained by the evaluation and target network,
the loss function provided by (19) is used to update the evalu-
ation network and the target network is updated periodically.

Furthermore, we provide the pseudo code of proposed
DQN algorithm in Algorithm 1. Specifically, from Line 1 to
2, we initialize the evaluation network, target network and ex-
perience replay memory. Then, in each training episode, we
initialize the state st , and the evaluation network generates the
action by the given state st . Note that a ε-greedy policy is em-
ployed to select the optimized action. Specifically, a variable
εt ∈ [0,1] is generated. If εt ≤ ε , we select the action at that
has the largest Q-value. Otherwise, we select a random action
at . Next, the agent executes the action at , obtains the reward
zt provided by (18) and the environment transfers to the next
state st+1. Note that the UAV stays at the current location
and the agent receives a penalty if the UAV flies out of the
target area. The transition is stored in the experience replay
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Figure 2 Structure of proposed DQN

memory. From line 17, once the learning process starts, the
learning procedure starts. The mini-batch randomly samples
K transitions from the memory for calculating the loss value.
Then, we perform a gradient descent step on loss value calcu-
lated by loss function with respect to the network parameters
θ . Finally, we update evaluation network and target network
periodically.

3.3 Power Control Algorithm

In order to maximize the reward zt with the given trajectory,
we further propose a convex optimization-based algorithm for
handling the power control of all UEs. Then, in TS t, given
the UAV trajectory, the maximization problem of reward func-
tion (18) is transformed into the following problem:

max
P

ft ·Ct ·Rt − p, (20a)

subject to:

0≤ Pn,t ≤ Pmax, ∀n ∈N , (20b)

from which, both ft , Ct and p are fixed. Motivated by [22],
via introducing the auxiliary variable η , the problem is trans-

formed into

max
η ,P

η , (21a)

subject to:

ft ·Ct ·
N

∑
n=1

cn,trn,t − p≥ η , ∀n ∈N , (21b)

0≤ Pn,t ≤ Pmax, ∀n ∈N . (21c)

Problem (21) is a non-convex optimization since (21b) is a
non-convex constraint. It is noted that rn,t can be expressed as

rn,t = log2

(
1+

cn,tPn,t10−
L(θn,t ,dn,t )

10

∑
N
n′=1,n′ 6=n cn′,tPn′,t10−

L(θn′,t ,dn′,t )
10 +σ2

)

= log2

( N

∑
n=1

cn,tPn,t10−
L(θn,t ,dn,t )

10 +σ
2
)
− r̃n,t , ∀n ∈N ,

(22)
where

r̃n,t = log2
( N

∑
n′=1,n′ 6=n

cn′,tPn′,t10−
L(θn′,t ,dn′,t )

10 +σ
2), ∀n ∈N .

(23)
In order to solve the above non-convex constraint of (21b),

we apply the successive convex approximation (SCA) to
calculate the value of r̃n,t . Specifically, we define P k =

{Pk
n,t ,∀n∈N } as the given transmission power of UEs in TS t
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Algorithm 1 The proposed DQN algorithm

1: Initialize evaluation network, target network with param-
eters θ ;

2: Initialize experience replay memory with size Mmax;
3: for Episode = 1,2,...,Emax do
4: Initialize state st = [X0,Y0,Z0,emax];
5: for TS = 1,2,...T do
6: Obtain st ;
7: εt = rand(0,1);
8: if εt ≤ ε then
9: at = argmaxQ(st ,at);

10: else
11: Select a random action at from At ;
12: end if
13: Execute at ;
14: Obtain zt according to Algorithm.2;
15: Obtain st+1;
16: Store transition {st ,at ,zt ,st+1} into experience re-

play memory;
17: if the learning process starts then
18: Randomly sample K transitions from memory;
19: Obtain loss value according to (19);
20: Perform a gradient descent step on loss value with

respect to the network parameters θ ;
21: Update evaluation network;
22: Update target network periodically;
23: end if
24: end for
25: end for

in the k-th iteration. Inspired by [23], any concave function can
be globally upper-bounded by its first-order Taylor expansion
at any point. Hence, by given P k, one has

r̃n,t = log2

( N

∑
n′=1,n′ 6=n

cn′,tPn′,t10−
L(θn′,t ,dn′,t )

10 +σ
2
)

≤
N

∑
n′=1,n′ 6=n

cn′,t10−
L(θn′,t ,dn′,t )

10 log2(e)

∑
N
l=1,l 6=n cl,tPk

n′,t10−
L(θl,t ,dl,t )

10 +σ2
(Pn′,t −Pk

n′,t)

+ log2

( N

∑
n′=1,n′ 6=n

cn′,tP
k
n′,t10−

L(θn′,t ,dn′,t )
10 +σ

2
)
, r̃up

n,t .

(24)

With any given local point P k and the upper bound r̃up
n,t ,

Problem (21) can be transformed into

max
ηk,P

η
k, (25a)

subject to:

ft ·Ct ·
N

∑
n=1

cn,t

(
log2

( N

∑
n=1

cn,tPn,t10−
L(θn,t ,dn,t )

10 +σ
2)− r̃up

n,t

)
≥ η

k, ∀n ∈N , (25b)

0≤ Pn,t ≤ Pmax, ∀n ∈N . (25c)

One can see that the above problem is now been converted
to the convex optimization, which can be solved efficiently by
the standard convex optimization solver, e.g., CVX [23]. Then,
we provide the pseudo code in Algorithm 2.

Algorithm 2 The proposed convex optimization based algorithm

1: Obtain at according to the DQN network;
2: Execute at ;
3: Obtain ft , Ct according to Eq. (14) and Eq. (9);
4: Initialize P 0;
5: k = 0;
6: repeat
7: Solve Problem (25) for given P k;
8: Denote the optimal solution as P k+1;
9: k = k+1;

10: until The convergence is achieved

As shown in Algorithm 2, we first obtain the state of UAV
st , execute at and obtain ft and Ct . Then, we initialize P 0, and
solve Problem (25) for given P k. Next, we repeat the process
until the convergence is achieved.

4 Simulation Result
In this section, we evaluate the performance of proposed

DQN and convex optimization based algorithm. The simu-
lation is executed by using Python 3.7, Tensorflow 1.15 [24].
CVXPY 1.0.24 [25] is used in the convex optimization based
algorithm. We deploy two fully-connected hidden layer with
[400× 300] neurons in DQN networks. The learning rate
is 0.001 and RMSOptimizer is used to update DQN net-
works. We set the target area to be a square with side length
lmax = 400 m and 30 UEs are randomly distributed in the tar-
get area. In each training episode, the UAV always starts from
the same initial point, i.e., [X0,Y0,Z0] = [5,5,70]. In each TS,
once the UE is covered by UAV, UAV starts data collection
from the UE. More parameters can be found in Table. 2.

We first analyze the overall reward achieved by DQN al-
gorithm in each training episode (i.e., 20 TSs) in Fig. 3, from
which, we observe that the overall reward remains negative at
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Table 2 Parameter Setting.

Parameter Description Parameter Description
N 30 ωmax 30 m

lmax 400 m Nα 6

Nβ 5 Nω 4

Zmin 50 m Zmax 100 m

Pmax 0.1 W ε 0.9

emax 200 KJ T max 1 s

θ ′ π

4 P0 79.85

P1 88.63 Vr 120

V0 4.03 d0 0.6

ρ 1.225 s 0.05

Rb 0.4 m ηLoS 1.6 dB

ηNLoS 23 dB fc 2.5 GHz

c 3×108 m/s a 12.08

b 0.11 σ2 -100 dBm

γ 0.99 K 256

Mmax 105 p 2
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Figure 3 Overall reward versus training episodes.

the beginning. This is because the UAV always flies out of the
target area, which means the penalty is always incurred. When
the learning process starts, the agent learns to optimize the
UAV trajectory from the exploration process and the DQNs
start converging, which increases the overall reward. Once the
convergence is achieved, the overall reward remains about 5,
which shows the best UAV trajectory and transmission power
of each UE are obtained.

After adequate training, the model and their parameters are
saved for testing. We analyse the performance of the proposed
DQN algorithm during the testing procedure in Fig. 4. Specif-

ically, we first evaluate the accumulated fairness in different
numbers of TSs in Fig. 4(a), from which we can observe that
the accumulated fairness keeps rising from 0 and stabilizes at
7. In Fig. 4(b), one can see that the accumulated coverage
increases from 0 to 6 eventually. Then, we evaluate the accu-
mulated data rate (bps/Hz) of UEs served by UAV in Fig. 4(c),
from which we observe that the data rate keeps rising with the
increase of the number of TSs. It reaches about 4 bps/Hz fi-
nally. Overall, one can see from Fig. 4 that our proposed DQN
algorithm can learn from experience and reach the consider-
able performance.

Then, for comparison, we present the following baseline
algorithms:
• Random: In each TS, UAV randomly selects a horizontal

angle value αt , a vertical angle value βt and distance value ωt

from the action set At . Additionally, it randomly selects the
power control Pn,t for each UE. It is worth mentioning that the
UAV is restricted to the target area.
• Maximum rate: In each TS, the UAV always selects the

action at from At that can maximize the instantaneous data
rate, which is defined as

at = max
at

Rt |at∈At . (26)

Note that in this solution, the UEs served by UAV always
transmit their data with maximal power consumption as Pmax.
• Maximum reward: In each TS, the UAV selects the ac-

tion of UAV at that can maximize the reward.
Similar as before, the maximum transmission power Pmax is
applied for each UE.

Then, we evaluate the performance of the proposed DQN
algorithm and the above baseline solutions in different num-
ber of TSs in Fig. 5. It is worth mentioning that it is quite
challenging to achieve the best solution in all three factors,
i.e., fairness, coverage and data rate at the same time. On one
hand, the UAV will keep flying for serving different UEs for
maximizing the fairness, which will inevitably reduce the data
rate and consume more energy of UAV. On the other hand, the
UAV will tend to stay at the location that can maximize the
data rate, which will have a negative effect on fairness and
coverage. Besides, maximizing the number of UEs served by
the UAV will lead to severe interference between UEs, which
will also reduce the overall data rate. However, as our ob-
jective is to maximize the overall reward consisting of all the
three factors. Our proposed solution can achieve the best per-
formance in this regard and will be shown below.

First, in Fig. 5(a), we analyse the impact of the number of
TSs on fairness. One can observe that the proposed DQN al-
gorithm outperforms other baselines in all the examined cases.
It can always achieve the fairness above 0.35, where as the
other three algorithms can only achieve fairness below 0.2.

Then, in Fig. 5(b), one can see that in terms of coverage,
our proposed DQN-based solution performs the best, which
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Figure 4 The accumulated (a) fairness, (b) coverage and (c) data rate over one episode during testing.
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Figure 5 The average (a) fairness, (b) coverage, (c) data rate, and (d) overall reward versus different number of TSs which UAV possesses.

can reach close to 0.45, However, other benchmark algorithms
can reach at most around 0.2.

Furthermore, we evaluate the performance in terms of aver-
age data rate of UEs served by UAV in Fig. 5(c). One observes
that the “maximum rate” solution has the best performance,
as it aims at maximizing the data rate of the users, while “ran-
dom” and “maximum reward” perform slightly better than our

proposed DQN. The explanation is that the UAV controlled
by “maximum rate” only serves a few UEs, which will lead to
lower interference between UEs, however, it cannot guaran-
tee the coverage and fairness, as shown before. Our proposed
DQN-based solution, as it will also consider the coverage, and
it may serve several UEs at the same time, resulting in lower
data rate due to interference among different UEs.
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Then, as shown in Fig. 5(d), we depict the overall reward
achieved by the DQN-based solution and other baselines in a
single episode with respect to different number of TSs. One
can observe that with the increase of the number of TSs, the
overall reward of all algorithms increase. The proposed DQN
has the best performance, as expected. Other benchmark al-
gorithms have lower performance, as they only focus on one
factor, such as data rate.

5 Conclusion

In this paper, we have considered the UAV-aided emer-
gency communications, where the UAV is deployed in the
case that the ground base station is destroyed. We propose
a DRL based DQN algorithm to optimize the UAV trajec-
tory. Additionally, we present a convex optimization based
algorithm to optimize the power transmission of UEs served
by UAV. Simulation results show that the proposed algorithm
can achieve the considerable performance gain over the exist-
ing algorithms in terms of fairness, the total number of UEs
served and the overall data rate of UEs.
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