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Abstract—In the 1940s, Claude Shannon developed the
information theory focusing on quantifying the maximum
data rate that can be supported by a communication
channel. Guided by this fundamental work, the main
theme of wireless system design up until the fifth genera-
tion (5G) was the data rate maximization. In Shannon’s
theory, the semantic aspect and meaning of messages
were treated as largely irrelevant to communication.
The classic theory started to reveal its limitations in the
modern era of machine intelligence, consisting of the
synergy between Internet-of-things (IoT) and artificial
intelligence (AI). By broadening the scope of the classic
communication-theoretic framework, in this article, we
present a view of semantic communication (SemCom)
and conveying meaning through the communication
systems. We address three communication modalities:
human-to-human (H2H), human-to-machine (H2M), and
machine-to-machine (M2M) communications. The latter
two represent the paradigm shift in communication and
computing, and define the main theme of this article.
H2M SemCom refers to semantic techniques for convey-
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ing meanings understandable not only by humans but
also by machines so that they can have interaction and
“dialogue”. On the other hand, M2M SemCom refers
to effective techniques for efficiently connecting multiple
machines such that they can effectively execute a specific
computation task in a wireless network. The first part of
this article focuses on introducing the SemCom principles
including encoding, layered system architecture, and
two design approaches: 1) layer-coupling design; and 2)
end-to-end design using a neural network. The second
part focuses on the discussion of specific techniques for
different application areas of H2M SemCom [including
human and AI symbiosis, recommendation, human sens-
ing and care, and virtual reality (VR)/augmented reality
(AR)] and M2M SemCom (including distributed learning,
split inference, distributed consensus, and machine-vision
cameras). Finally, we discuss the approach for designing
SemCom systems based on knowledge graphs. We believe
that this comprehensive introduction will provide a useful
guide into the emerging area of SemCom that is expected
to play an important role in sixth generation (6G) fea-
turing connected intelligence and integrated sensing,
computing, communication, and control.

Keywords—semantic communication, artificial intelli-
gence, Internet-of-things

I. INTRODUCTION

Modern wireless communication systems have reshaped
the operations of society and people’s lifestyles, be-

coming an engine for propelling the data economy. Many
advances in wireless systems are based on the ideas rooted
in Claude Shannon’s locus classicus on information theory[1].
In his work, Shannon defined a communication problem as
one concerning “reproducing at one point either exactly or ap-
proximately a message selected at another point”. He argued
therein that “semantic aspects of communication should be
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considered as irrelevant to the engineering problem”. Guided
by Shannon’s approach and philosophy, most existing com-
munication systems have been designed based on rate-centric
metrics such as throughput, spectrum/energy efficiency, and,
with the advent of 5G, latency. Nevertheless, there is an in-
creasing belief in the community that the classic Shannon’s
framework needs to be upgraded for the next evolution step
in communications. Its narrow focus on the reliability level
of communication starts to show its limitations in meeting the
ambitious goals set for the sixth generation (6G). In particular,
the ignored meaning behind the transmitted data is expected
to play an important role in 6G communications, which places
an unprecedented emphasis on machine intelligence and its in-
terface with human intelligence. In existing systems there is
a limited coupling of the high-level meaning or relevance of
the data content with the transmission strategies; an example
is packet prioritization based on data content, implemented
in the upper networking and application layers[2-4]. However,
the separation of transmission and data’s meanings and effec-
tiveness for achieving specific goals inevitably result in re-
dundancy, e.g., transmitting information lacking relevance or
freshness. This causes the existing techniques for information
filtering, transmitting, and processing to struggle with keep-
ing pace with the exponential growth rate of data traffic[5-7].
The need for highly efficient communication for supporting
machine-intelligence services has triggered a paradigm shift
from “semantic neutrality” towards semantic communication
(SemCom)[5,8-10]. This is the main theme of this article.

The concept of SemCom was introduced by Warren
Weaver, a collaborator of Shannon, who defined a commu-
nication framework featuring three levels[11]. The first-level,
which is targeted by Shannon’s information theory, aims at
answering the technical problem that “How accurately can
the symbols of communication be transmitted?”. SemCom be-
longs to the second level concerning an answer to the semantic
problem that “How precisely do the transmitted symbols con-
vey the desired meaning?”, beyond which the third level is de-
fined as the effectiveness problem that “How effectively does
the received meaning affect conduct in the desired way?”. In
Weaver’s time, communication activities dominantly served
the purpose of information exchange among humans. Thus
the Weaver’s SemCom definition should be interpreted as a
concept of human-to-human (H2H) communication. In the
modern era of machine intelligence, the connotation and scope
of SemCom, however, have been substantially enriched and
broadened to cover all three levels. This necessitates the pres-
ence of a modern view of SemCom.

A. The Rise of Machine Intelligence
The recent rapid advancements in artificial intelligence (AI)

and Internet-of-things (IoT) are two main factors contributing
to the rise of machine intelligence.

Research on AI dates back to the 1950’s. The term AI first
appeared in a research proposal aimed at creating “the em-
bryo of an electronic computer that will be able to walk, talk,
see, write, reproduce itself and become conscious of its own
existence”[12]. To materialize the vision, researchers invented
neural networks to mimic the mechanism of brain neurons for
processing information and realizing intelligence. Early at-
tempts attained some success in demonstrating the effective-
ness of such models, e.g. Frank Rosenblatt’s famous concept
of Perceptron. The single-layer linear classifier he used is
widely regarded as the distant ancestor of modern machine
learning (ML) algorithms. The ensuing evolution of AI had
experienced periodic bouts of enthusiasm interspersed with
“AI winters”. In a “winter”, the research could stay stag-
nant for a decade due to limited computing power, insuffi-
cient training data, and crudity of AI algorithms. These ob-
stacles were finally eliminated in the past few years after the
preceding decades of fast development of chips with remark-
able number-crunching power and a growing abundance of
datasets. Nowadays, we witness the wide spread use of pow-
erful large-scale neural-network models featuring billions to
tens of billions of parameters organized in hundreds of hierar-
chical layers, termed the deep learning (DL) architecture. Ad-
vanced ML algorithms have been designed for various tasks,
including supervised learning, unsupervised learning, and re-
inforcement learning. Via heavy-duty statistical analysis of
big data, the ML algorithms can enable deep neural networks
to understand the inherent patterns of physical objects and at-
tain a wide range of human-like capabilities, from recognition
to translation.

Another paradigm shift in computing is to embed comput-
ers into tens of billions of edge devices (e.g., sensors and
wearables) and connect them to the mobile networks[13,14].
Thereby, the resultant IoT can serve as a large-scale sensor
network as well as a massive platform for edge-computing.
Complex tasks can be executed on the platform to improve the
efficiency of businesses and the convenience of consumers.
For example, sensors and cameras connected to IoT can act
as a surveillance network, or save energy by smart lighting;
IoT connected cows can enable the cloud to track their health
conditions and eating habits, which provides useful data for
smart agriculture. Individual gains may not be walloping but
they are compounded as the scale of IoT grows.

The developments of AI and IoT are intertwined and their
full potential can be unleashed by integration. On one hand,
AI endows on edge devices the human-like capabilities of de-
cision making, reasoning, and vision as well as boosting their
communication efficiencies and reliability. On the other hand,
massive data are being continuously generated by the enor-
mous number of edge devices in IoT (e.g., more than a hun-
dred trillion gigabytes of data in the next 5 years[15]). Such
data are fuel for AI and can be distilled into intelligence to
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support a wide range of emerging applications and improve
the efficiencies of data-driven businesses[7].

B. Three Types of Semantic Communication
The breathtaking advancements in machine intelligence

and the exponential growth of machine population usher in the
new era of machine intelligence. The extensive involvement
of machines in modern communication gives rise to two new
types of communication context: human-to-machine (H2M)
communications and machine-to-machine (M2M) communi-
cations. The classic H2H SemCom as considered by Weaver
is therefore insufficient for describing future diverse commu-
nication tasks. This motivates us to broaden the scope of Sem-
Com by defining three sub-areas matching the mentioned con-
texts as follows.

• H2H SemCom: The definition of H2H SemCom is
consistent with the second level of the Weaver’s framework
and addresses the semantic problem described earlier. To be
precise, the communication purpose is to accurately deliver
meanings over a channel for message exchange between two
human beings. To this end, the system performance is mea-
sured by how well the intended meaning of the sender can be
interpreted by the receiver.
• H2M SemCom: This area concerns communication be-

tween a human being and a machine. The distinction of H2M
SemCom lies in the interface between human and machine in-
telligence, which is different in nature and involves both the
second and third levels of the Weaver’s framework. For H2M
SemCom to be effective, the transmitted messages have to be
understood not only by humans but also by machines. To be
more specific, the success in H2M SemCom hinges on two as-
pects: 1) a message sent by a human being should be correctly
interpreted by a machine so as to trigger the desired actions or
responses (the effectiveness problem); and 2) a message sent
in the reverse direction should be meaningful for the human at
the receiving end (the semantic problem). The typical appli-
cations include human and AI symbiosis system, recommen-
dation system, human sensing and care system, and virtual
reality (VR)/augmented reality (AR) system.
• M2M SemCom: In the absence of human involvement,

M2M SemCom concerns the connection and coordination of
multiple machines to carry out a computing task. Therefore,
this area relates less to the level-two communication (i.e., se-
mantic problem) but more to the level-three communication
(i.e., effectiveness problem). The latest research on M2M
SemCom advocates the approach of integrated communica-
tion and computing (IC2) that promises more efficient system
design under constraints on radio and computing resources.
The resultant cross-disciplinary research has led to the emer-
gence of a new class of M2M SemCom techniques to be in-
troduced in the sequel. The typical applications include M2M

SemCom are mainly related to those in the areas of distributed
sensing, distributed learning, and distributed consensus (e.g.,
vehicle platooning).

C. Motivation and Outline
SemCom has been regarded as a key enabling technol-

ogy for future networks. Research on SemCom concerns
the representation of semantic information, SemCom mod-
eling, enabling techniques, and network design. A number
of surveys of the area have appeared where different Sem-
Com frameworks are proposed. First, system-level issues
of SemCom such as network architectures and modeling are
discussed[10,16]. Specifically, a semantic-effectiveness (SE)
plane whose functionalities address both the semantic and ef-
fectiveness problems is proposed to realize information filter-
ing and direct control of all layers[16]. The new layered ar-
chitecture is showcased with particular applications including
immersive and tactile scenarios, integrated communication
and sensing (ISAC), and physical-layer computing. Ref. [10]
focuses on SemCom modeling and semantic-aware network
architecture. Two SemCom models are introduced based on
shared knowledge graph (KG) and semantic entropy, respec-
tively, each of which comprises semantic encoder/decoder and
semantic noise. Building on these models, semantic network-
ing for federated edge intelligence is then proposed to sup-
port semantic information detection and processing, knowl-
edge modeling, and knowledge coordination. On the other
hand, efforts have been made to explore SemCom enabling
techniques including information representation, data trans-
mission, and reconstruction[5,17,18]. In particular, Ref. [5] fea-
tures the integration of semantic and goal-oriented aspects for
6G networks and KG based techniques for information rep-
resentation, semantic information exchange measurement, se-
mantic noise, and feedback. This survey also presents the in-
terplay between machine learning and SemCom, identifying
their mutual enhancement and cooperation in communication
networks. In a recent work[17], a semantic-aware communica-
tion system is discussed from the perspective of data genera-
tion/active sampling, information transmission, and signal re-
construction. To redesign communication networks for Sem-
Com, conventional approaches should be revamped to support
new metrics and operations such as semantic metrics, goal-
oriented sampling, semantic-aware data generation, compres-
sion, and transmission as suggested in Ref. [18]. In view
of prior work, existing SemCom frameworks are basically
extended from the Weaver’s classical definitions and do not
comprehensively incorporate current advancements of rele-
vant technologies. There is still a lack of a systematic survey
article that provides a unified framework of SemCom in the
era of machine intelligence; this is precisely the motivation
for the current work.

The contributions of this paper can be summarized as fol-
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Tab. 1 Summary of advancements in SemCom techniques and applications

SemCom areas Advancements

H2M SemCom

• Human-machine symbiosis: AI-assisted systems[19-25], interactive ML[26-30], worker-AI collaboration[31-35]

• Recommendation: emotional health monitoring[36], tourist[37], entertainment[38-41], remote healthcare[42,43]

• Human sensing and care: home monitoring[44-46], super soldier[47,48], human activity recognition[47,48], remote healthcare[49-51]

• VR/AR: Techniques[52-56] and applications[57,58]

• Latent semantic analysis (LSA)[59]

• Computation offloading for edge computing[60,61]

• Decentralization for privacy preservation[62,63]

M2M SemCom

• Distributed learning: local gradient computation[64-69], over-the-air computing[70-73], importance-aware RRM[74-77], differential
privacy[78,79]

• Split inference: feature extraction[80-84], importance-aware RRM[81,85-89], SplitNet approach[90-93]

• Distributed consensus: local-sate estimation and prediction[94-96], SDT[97], PBFT consensus[98], vehicle platooning[99-101],
Blockchain[97,102]

• Machine-vision cameras: ROI-based effectiveness encoding[103,104], camera-side feature extraction[105], production-line
inspection[106], surveillance[103,107], aerial and space sensing[108]

KG-based SemCom

• Enhancement for AI applications: FAQs[109,110], virtual assistants[111,112], dialogue[113], recommendation[114-116]

• KG-based H2H SemCom: semantic coding[117-122]

• KG-based H2M SemCom: reasoning and human-like reaction[113,116,123-126]

• KG-based M2M SemCom: KG construction and update[127-132], KG based network management[133-135], interpretation for
cross-domain applications[136-138]

lows. First, this paper defines three different areas of Sem-
Com, i.e. H2H SemCom, H2M SemCom, and M2M Sem-
Com, by identifying the involved subjects and objects. The
proposed framework can accordingly describe existing tech-
nologies, models, and frameworks, providing a comprehen-
sive reference for both researchers and practitioners. Next,
with the proposed framework, we conclude current advance-
ments of technologies that are relevant to or beneficial for
SemCom, which can help readers in interpreting easier their
research in the context of SemCom. Furthermore, we incor-
porate the KG-based SemCom technologies and extend their
applications into H2M SemCom, H2M SemCom, and M2M
SemCom scenarios. In addition, according to the existing 6G
visions, potential technologies and use cases that are helpful
for SemCom are introduced.

While H2H SemCom is a classic, well-studied area, our
discussion focuses on H2M and M2M SemCom for their be-
ing new paradigms in the modern era of machine intelligence.
Furthermore, we propose a new direction of KG-based Sem-
Com that helps accomplish H2H SemCom, H2M SemCom,
and M2M SemCom by exploiting the semantic representa-
tions of information. An overview of SemCom techniques
and applications covered in this article is provided in Tab. 1.

The remainder of the paper is organized as follows. In sec-
tion II, we introduce the SemCom principles including seman-
tic and effectiveness encoding, a new network layered archi-
tecture, and design approaches. Next, semantic/effectiveness
encoding and transmission techniques targetting specific ap-
plication areas of H2M SemCom and M2M SemCom are pre-
sented in the following two sections. Specifically, in sec-

tion III, semantic encoding and H2M SemCom techniques are
discussed for the areas of human-machine symbiosis, recom-
mendation, human sensing and care, and VR/AR. Section IV
focuses on M2M SemCom including effectiveness encoding
and SemCom techniques for the areas of distributed learning,
split inference, distributed consensus, and machine version
cameras. Subsequently, we introduce the KG-based SemCom
approach in section V. Finally, in section VI, a vision of Sem-
Com in the 6G era is proposed.

For ease of reference, we summarize areas and methods in
Fig. 1 and the definitions of the acronyms that are used in this
paper in Tab. 2.

II. SEMCOM PRINCIPLES: ENCODING,
ARCHITECTURE, AND DESIGN APPROACHES

A. Encoding for SemCom
In the classic work[1], the fundamental problem of com-

munication was described as that of reproducing at one point
either exactly or approximately a message selected at another
point. The communication-theoretic model of Shannon con-
sists of five parts as illustrated in Fig. 2(a) and explained as
follows.

1. An information source produces messages to be trans-
mitted to the receiver.

2. A transmitter encodes and modulates the messages into
a signal for robust transmission over an unreliable channel.

3. A channel is a medium used to propagate the encoded
signal from the transmitter to the receiver. In the propaga-
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Architecture and               
design approaches

Layer-coupling approach

Splitnet approach

Areas

H2M SemCom

M2M SemCom

KG-based SemCom

6G vision of SemCom

1. Immersive XR

3. All-sense communication

2. High-fidelity holographic communication

1. Almost limitless connectivity

3. Integrated communication, sensing, control, and computing

2. Comprehensive AI

1. Human-machine symbiosis: LSA, BERT

3. Human sensing and care: biomedical semantic encoding

2. Recommendation: collaborative filtering

4. VR/AR: VR/AR semantic encoding

1. KG theory

3. KG-based H2M SemCom

2. KG-based H2H SemCom

4. KG-based M2M SemCom

Innovative applications:

Technological revolutions:

1. Distributed learning: local gradients computing

3. Distributed consensus: effectiveness encoding for consensus

2. Split inference: feature extraction

4. Machine-vision cameras: ROI encoding

Fig. 1 A tree diagram to summary SemCom areas and methods

tion process, the external, random disturbance to the signal is
called channel noise.

4. A receiver performs decoding and demodulation to re-
construct the transmitted message from the received signal
such that errors due to channel distortion are corrected.

5. A destination is a human being or a machine for whom
the message is intended.

Information-theoretic encoding focuses on the statistical
properties of messages instead of the content of messages.
The transmitted message is one selected from a set of possible
messages with a given distribution. Mathematically, informa-
tion theory simplifies H2H communication to the transmis-
sion of a finite set of symbols. Nevertheless, in practice, the
messages have meaning, relevance, and/or usefulness. To be
specific, they refer to or are correlated with certain physical
or conceptual entities or are contributing towards the achieve-
ment of some goals. This semantic aspect of communication
was originally treated in Shannon’s theory as being irrelevant
to the engineering problem of information transmission. For
example, a tacit assumption in Shannon’s model is that the
sender always knows what is relevant for the receiver and the
receiver is always interested and ready to receive the data sent
by the transmitter.

As mentioned earlier, Weaver proposed a more general
communication framework characterized by three levels of
problems, namely the technical problem (solved by Shannon’s
theory), semantic problem, and effectiveness problem[11].
While Weaver’s framework targets H2H communication, we

consider the modern SemCom in the era of machine intelli-
gence as addressing both the semantic and effectiveness prob-
lems. A diagram of the SemCom system is presented in
Fig. 2(b). Accordingly, there are two classes of techniques:

• Semantic encoding and transmission: This class of tech-
niques target scenarios where the destination is a human being
(e.g., H2H and M2H SemCom). The purpose is to convey the
meaning of a transmitted message as accurately as possible so
that it can be correctly interpreted by a human. Therefore, the
design of such techniques is to solve the semantic problem in
Weaver’s framework.
• Effectiveness encoding and transmission: This class of

techniques target scenarios where the destination is a machine
(e.g., H2M and M2M). The techniques aim at delivering a
message as an instruction or query to the machine such that
it can perform what the sender requires it to do or respond
appropriately. In this sense, their design focuses on the effec-
tiveness aspect of communication, thereby the name.

In the remainder of this sub-section, the principles of se-
mantic and effectiveness encoding are introduced while appli-
cation specific techniques are discussed in the following sec-
tions.

1) Semantic Encoding: Even though Shannon’s theory
does not explicitly target SemCom, information-theoretic en-
coding can be adopted for the latter by extending two key
notions, entropy and mutual information, to define seman-
tic entropy and semantic mutual information. The entropy
of a discrete source measures the amount of information in



What Is Semantic Communication? A View on Conveying Meaning in the Era of Machine Intelligence 341

Tab. 2 Summary of acronyms

Acronym Definition Acronym Definition

6G Sixth generation LSTM Long-short-term memory

AE Auto-encoder M2M Machine-to-machine

AI Artificial intelligence MIMO Multiple input-multiple output

AirComp Over-the-air computing ML Machine learning

AR Augmented reality MLP Multi-layer perceptron

BERT Bidirectional encoder representations from transform-
ers

mMTC massive machine type communication

CDD Channel decoded data MR Mixed reality

CNN Convolutional neural network MSE Mean squared error

CRI Channel rate information NLP Natural language processing

CSI Channel state information PAI Partial algorithm information

DII Data importance information PBFT Practical Byzantine fault tolerance

DL Deep learning PCA Principal component analysis

DNN Deep neural network QoS Quality-of-service

DTI Data type information RNN Recurrent neural network

ECG Electrocardiogram ROIs Regions of interests

eMBB enhanced mobile broadband RRM Radio-resource management

EMG Electrocardiogram SE Semantic-effectiveness

FEEL Federated edge learning SEED Semantic/effectiveness encoded data

FL Federated learning SemCom Semantic communication

FoV Field-of-view SGD Stochastic gradient descent

H2H Human-to-human SMCV Squared multi-variate coefficients of variation

H2M Human-to-machine SplitNet Split neural network

IB Information bottleneck SVD Singular value decomposition

IC2 Integrated communication and computing UAV Unmanned aerial vehicle

IoE Internet-of-everything URLLC Ultra-reliable low-latency communication

IoT Internet-of-things VR Virtual reality

ISAC Integrated communication and sensing XR Extended reality

KG Knowledge graph SDT Semantic difference transaction

LNA Linear analog modulation MLM Masked language model

LSA Latent semantic analysis

Information

source
Destination

Channel noise

Message Received signal
+Transmitter

Signal
Receiver

Message

(a) Communication system in Shannon’s theory

Knowledge

Transmitter

Semantic/
effectiveness

encoder

Channel
encoder

Physical
channel

Channel
decoder

Semantic/
effectiveness

decoder

Knowledge

Receiver

+

Semantic noise

(b) Semantic communication system

Fig. 2 Models for a point-to-point communication: (a) Shannon’s model; (b) model of a SemCom system
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each sample and depends on the source’s statistics. Mathe-
matically, the entropy of a message X is defined as H(X) =

−∑
n
i=1 p(xi) log p(xi), where x1,x2, · · · ,xn are possible out-

comes of X with probabilities p(x1), p(x2), · · · , p(xn). Ac-
cordingly, the mutual information is given by I(X ;Y ) =

H(X)−H(X |Y ), which indicates how much the amount of
information about the transmitted message X is obtained af-
ter receiving the message Y . On the other hand, the mu-
tual information between the source and destination quanti-
fies the amount of information obtained about the former by
observing the latter. The combined use of the two measures
allows the study of the maximum data rate under a constraint
of “physical distortion” [e.g., mean squared error (MSE)]. The
unsuitability of these information-theoretic measures for Sem-
Com due to their lack of semantic elements is obvious by con-
sidering the following example. A single-letter error results in
a transmitted word of “big” to be received as “pig”; the re-
ception of the word “cattle” due to the transmission of “cow”
corresponds to errors in multiple letters. The former repre-
sents much more reliable information transmission than the
latter but the reverse is true from the perspective of semantic
transmission.

An attempt at defining the semantic entropy was made in
Ref. [8]. Therein, a semantic source is modeled as a tuple
(W,K, I,M) with W modeling the observable world that in-
cludes a set of interpretations, K representing source’s back-
ground knowledge, I indicating source inference that is rel-
evant to background knowledge, and M denoting message
generator or encoder. Then given the probability µ(w) for
each element in W , let Wx indicate the subset of W in which
the message x is justified as “true” by the inference I, i.e.,
Wx = {w ∈W |w I

= x}, and the logical probability of x is de-
fined as p(x) = ∑w∈Wx µ(w)

∑w∈W µ(w) and the corresponding semantic en-
tropy is Hs(X) = −∑x p(x) log p(x). Those definitions lay
a foundation for semantic encoding/decoding and semantic
transmission. For instance, the recent work in Ref. [10] ar-
gues that the key issue of SemCom is to find a proper seman-
tic interpretation W (also termed as semantic representation)
and the coding scheme P(X |W ) such that the semantic ambi-
guity of transmitted message H(W |X) and coding redundancy
H(X |W ) are close to zero. Consequentially, the model (se-
mantic) entropy H(W ) and the message (syntactic) entropy
follows from H(X) = H(W )+P(X |W )−H(W |X), meaning
that the semantic encoder can achieve intentional source com-
pression with an information loss H(W )−H(X).

Departing from the above theoretic abstraction, there are di-
versified approaches for designing practical semantic encod-
ing. The first approach is KG-based semantic-encoding that
is decomposed into two stages: 1) finding a proper represen-
tation of common knowledge background of the communica-
tion parties in the form of a KG; 2) encoding data using the

KG. Detailed discussions are presented in section V. Second,
the power of ML gives rise to the learning-based approach of
integrated semantic and channel (i.e., information theoretic)
encoding. As an example, for text transmission, a joint se-
mantic and channel coding scheme based on deep learning is
proposed[139], where encoding a sentence s is represented by
x=Cα(Cβ(s)) with Cα(·) denoting the channel encoder with
parameters α and Cβ(s) denoting the semantic encoder with
parameters β. It follows that the decoding process is mod-
eled by ŝ = C−1

χ (C−1
δ (y)) with the received signal y, where

C−1
χ (·) and C−1

δ (·) are the semantic and channel decoders with
parameters χ and δ, respectively. The encoders and decoders
are trained as a single neural network by treating the chan-
nel as one layer in the model (similar to SplitNet discussed in
the sequel). The training process features the consideration of
both semantic similarity and transmission data rate. Specifi-
cally, the sentence similarity between the original sentence s
and the recovered sentence ŝ is given by

match(s, ŝ) =
B(s) ·B(ŝ)T

‖B(s)‖‖B(ŝ)‖
, (1)

where B(·) represents bidirectional encoder representations
from transformers (BERT), a well-known model used for se-
mantic information extraction[139,140] (more details are pre-
sented in section III.A.2). Another approach is based on latent
semantic analysis (LSA) which compresses text documents by
finding their low dimensional semantic representations. This
is achieved by finding a low-dimensional semantic subspace
using singular value decomposition (SVD) of document-term
matrices that indicates appearances of specific words in the
documents and then projecting these matrices onto the sub-
space (see more details in section III.A.1).

2) Effectiveness Encoding: Effectiveness encoding is to
compress messages while retaining their effectiveness as in-
structions and commands for machines. Techniques are sys-
tem and application specific and thus there exists a wide range
of designs (see, e.g., Refs. [65,141]). As examples, we dis-
cuss effectiveness source encoding targeting two represen-
tative tasks: classification and distributed machine learning.
More application specific effectiveness encoding techniques
are discussed in section IV.

• Information Bottleneck (IB) for Classification: Consider
source encoding of an information source represented by a
random variable X . Classic coding schemes based on Shan-
non’s rate-distortion theory aim at finding a representation
close to x in terms of MSE. On the contrary, IB is aware of
the computing task (e.g., classification), denoted as Y , mak-
ing it an effective coding scheme. The main feature of IB
is to extract information X̃ from the signal source X that can
contribute to the effective execution of Y as much as possi-
ble. Taking classification for instance, X̃ shall represent the
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most discriminative feature of X . Mathematically, the IB de-
sign aims at finding the optimal tradeoff between maximiz-
ing the compression ratio and the preserved effectiveness in-
formation, corresponding to simultaneously minimizing the
mutual information I(X̃ ;X) and maximizing I(X̃ ;Y ). This is
equivalent to solving the following multi-objective optimiza-
tion problem[142]:

min
p(x̃|x)

I(X̃ ;X)−β I(X̃ ;Y ), (2)

where the conditional distribution p(x̃|x) denotes the source
encoder and β is a combining weight. Its optimal solution is
task-specific. For classification, Y is the label predicted by the
classifier. A general algorithm constructs the optimal source
encoder in (2) via alternating iterations. In each iteration, the
probability density functions p(x̃), p(y|x̃) and p(x̃|x) are de-
termined step-by-step. The IB has attracted attention in the
area of machine learning as it contributes the much needed
theory for studying deep learning[143]. In particular, training
a feature-extraction encoder in a deep neural network (DNN)
can be interpreted as solving an IB-like problem where the en-
coder’s function is to encode an input sample x into a compact
feature map x̃. The encoding operations, e.g., feature com-
pression and filter pruning, regulate the discussed tradeoff in
IB.
• Stochastic Gradient Quantization: One common

method of implementing federated learning (FL), a popular
distributed-learning framework based on SGD, requires a de-
vice to compute and transmit to a server a stochastic gradient,
computed by taking derivative of a loss function with respect
to the parameters of an AI model under training. A detailed
discussion of FL is provided in section IV.A. A gradient is
high dimensional as its length is equal to the number of model
parameters. For instance, the well-known Resnet18 model
has around 11 million trainable parameters (see popular im-
plementations on e.g., PyTorch or TensorFlow webs). As its
transmission incurs excessive communication overhead, a gra-
dient should be compressed by quantization at the device. A
generic vector quantizer is unsuitable for two reasons. First,
its design is based on using the MSE as the distortion metric.

This metric is undesirable for the current task since a gradi-
ent conveys a gradient-descending direction on a (learning)
loss function and this metric fails to directly reflect the di-
rection deviation. Second, the conventional vector quantizer
can handle only low-dimensional vectors because its complex-
ity grows exponentially fast with the vector dimensions. To
tackle the two challenges calls for the design of new effective
techniques for source encoding of stochastic gradients. One
such design is presented in Ref. [144] with two key features.
The first is to divide a high-dimensional gradient into many
low-dimensional blocks, each of which is quantized using a
low-dimensional component quantizer. The results are com-
bined to give the high-dimensional quantized gradient with
combining weights optimized to minimize descent-direction
distortion. The second feature is to design a component quan-
tization using the method of a Grassmannian manifold. In the
current design, the manifold refers to a space of lines where
each line (plus the sign of an associated combining weight)
suitably represents a particular descent direction. Essentially,
the codebook of a Grassmannian quantizer comprises a set of
unitary vectors that are optimized to minimize the expected
directional distortion. The effectiveness source encoder for
stochastic gradient, designed to target the task of FL, is shown
to achieve close-to-optimal learning performance while sub-
stantially reducing the communication overhead with respect
to the state-of-art approaches, such as a binary gradient quan-
tization scheme called signSGD[144].

B. SemCom Architecture and Design Approaches
The protocol stack of a radio access network is modified

in Ref. [16] to support SemCom. Its key feature is the addi-
tion of a semantic-effectiveness plane that interacts with and
controls all layers to provide efficient solutions for both se-
mantic and effectiveness problems in Weaver’s framework. In
this subsection, we propose a new, simpler SemCom architec-
ture as shown in Fig. 3. It builds on the conventional protocol
stack but adds a semantic layer that resides in the application
layer as a sub-layer, on the contrary to the existing architec-
ture relying on the semantic-effectiveness plane for filtering
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and control[16]. This way, it avoids large increase of protocol
stack complexity. The rationale of the proposed architecture
comes from the fact that numerous target applications operate
in the application layer. The inserted semantic layer processes
information from applications and generates messages for se-
mantic/effectiveness functionalities. This allows the seman-
tic layer to interface with sensors and actuators, have access
to algorithms and content of data in the specific application.
The main function of the semantic layer is to perform seman-
tic/effectiveness encoding/decoding discussed in the preced-
ing subsections. On the other hand, the techniques for ra-
dio access layers (i.e., physical layer, medium access layer,
and logical link control layer) are largely derivatives of Shan-
non’s information theory; their design is focused on improv-
ing semantic-agnostic performance such as data rate, reliabil-
ity, and latency. Then semantic layer transmits to lower lay-
ers semantic/effectiveness encoded data (SEED) and receives
from them channel decoded data (CDD). Based on the pro-
posed architecture, we describe two approaches to the Sem-
Com system design, layer-coupling approach and split neural
network (SplitNet), respectively.

1) Layer-Coupling Approach: The first approach, called
layer-coupling approach, is to jointly design the semantic
layer and radio access layers. To this end, we propose the
possibility of exchanging control signals between them (see
Fig. 3). Among others, a set of basic signals are defined and
their functions in layer-coupling design are described as fol-
lows.

• Channel Rate Information (CRI): The information fed
back from lower layers enables the semantic/effectiveness
(SE) encoders to adapt their coding rates to the wireless chan-
nel state.
• Data Importance Information (DII): It measures the het-

erogeneous importance levels of elements of the SE encoded
data. For a human receiver, it is the interpretation, while for
a machine that acts as a receiver, it is effective execution of a
task. Examples include identifying keywords in a sentence in
terms of representation of its semantic meaning or discrimi-
nate gains of different features of an image for the purpose of
classification. Such information facilitates adaptive transmis-
sion, multi-access, and resource allocation in the lower layers.
For instance, for data uploading to a server for model training,
the uncertainty levels of local samples can be used as DII to
schedule devices[77].
• Partial Algorithm Information (PAI): It includes essential

characteristics of current algorithms, such as information re-
lated to the AI-architecture or the target function in distributed
computing (e.g., average or maximum). PAI enables the phys-
ical layer to deploy effective transmission techniques, such as
AirComp discussed in the preceding sub-section.
• Data Type Information (DTI): It indicates which cate-

Tab. 3 Examples of encoded data and control signals in the SemCom archi-
tecture

Signal/Data Examples

SEED

• Compressed documents by projection onto a semantic
space (section III.A)
• Local stochastic gradients (section IV.A)
• Features of data samples (section IV.B)
• Preference similarity scores (section II.A, III.A)
• Characteristics of biomedical signals (section III.C)
• Field-of-view for VR/AR (section III.D)
• Temporal ROIs of multimedia sensing data (sec-
tion IV.D)

PAI

• Aggregation and SGD in federated learning (sec-
tion III.D)
• Feature extraction method and inference model (sec-
tion III.A, IV.B)
• Distributed consensus algorithm (e.g., vehicle platoon-
ing and blockchain) (section IV.C)

DTI

• Sensing data type (section III.C, III.D, IV.D)
• Type of biomedical signals (section III.C)
• Type of local model update (section IV.A)

DII

• Raw data importance (section III.C, III.D)
• Feature importance (section III.C, III.D, IV.B)
• Gradient importance (section IV.A)
• Spatial ROIs (section IV.D)

gory the data belongs to. This includes, for example, image
for machine recognition, image for humans, and stochastic
gradient for machine learning, etc. DTI enables the radio
access layers to choose transmission techniques based on a
suitable performance metric (e.g., Grassmannian quantization
for gradient source encoding discussed in the last sub-section)
and understand the corresponding performance requirements
(e.g., an image is more sensitive to noise for human vision
than for pattern recognition).

The above control signals can be transmitted over a con-
trol channel to the receiver and used by its semantic layer to
remove semantic noise from CDD for semantic symbol error
correction or control computing at the application layer. The
relevance of the above controls signals to techniques discussed
in the sequel is summarized in Tab. 3.

2) SplitNet Approach: An extreme form of layer-coupling
design is to integrate semantic layer and physical layer into a
single end-to-end global DNN[139]. The global DNN is split
into two parts, namely encoder and decoder, and the commu-
nication channel is sandwiched between them. This is termed
SplitNet, and its architecture is shown in Fig. 4(b). The en-
coder model (decoder model) is further divided into two sub-
modules, the semantic encoder (decoder) and channel encoder
(decoder), each of which by itself is a neural network[145,146].
This facilitates training in practice (see more details in sec-
tion B. about split inference). Note that the new channel en-
coder (decoder) in the SplitNet replaces the source and chan-
nel encoders (decoders) in the conventional digital architec-
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Fig. 4 Comparison between (a) SemCom system based on traditional source-channel separation coding, and (b) SemCom system using the SplitNet approach

ture in Fig. 4(a). The new encoder directly transmits analog
modulated symbols instead of quantizing them into bits and
mapping them to predefined modulation symbols.

SplitNet is closely related to the area of joint source-
channel coding. The optimality of source-channel separa-
tion was proved by Shannon in the case of a point-to-point
link with asymptotically large code blocklength[1]. This sim-
plifies the design of communication system as source en-
coder/decoder and channel encoder/decoder can be optimized
as separate modules. This has become a feature of clas-
sic design approaches and led to the establishment of source
and channel coding as separate sub-disciplines[147]. However,
source-channel separation is sub-optimal in the regime of fi-
nite code length[148]. It is worth mentioning that the sub-
optimality is also shown in the context of SemCom[8]. In
practice, given a finite bit-length budget (e.g., short packet
transmission), the end-to-end signal distortion, or the recon-
struction quality of transmitted information, sees a complex
tradeoff between source and channel decoding errors. This
has motivated researchers to explore the approach of joint
source-channel coding with finite code lengths[149-151]. The
joint design has been shown to be simpler and potentially
more effective than its separation counterpart in practical
SemCom applications, such as the transmission of multime-
dia content[90,152-156], speech[146], and text[139,157]. In partic-
ular, the notion of deep joint source-channel coding has ap-
peared in Refs. [90,146,153-155], where both the source en-
coder (decoder) and channel encoder (decoder) are imple-
mented by DNNs. For example, the image retrieval problem
in the context of wireless transmission for remote inference is
considered[90]. In their joint source-channel coding approach,
the feature vectors are mapped to the channel symbols and de-
coded at the receiver, where the source and channel encoders
are integrated by a DNN after the feature encoder while the
source and channel decoders are consolidated by a DNN, fol-
lowed by a fully-connected classifier.

Most recently, SplitNet was also adopted in an end-to-end

design of a SemCom system. For example, the SplitNet de-
sign presented in a recent work[139] for SemCom system is
built on the deep-learning-based natural language processing
(NLP). The key component of the design uses a Transformer,
which is a well-known language model for NLP and has the
advantages of both recurrent neural networks (RNNs) and
convolutional neural networks (CNNs), to construct the en-
coder and decoder. The loss function for training the DNN
model is characterized by two terms: one is the cross-entropy
which measures the semantic difference between raw and
decoded signals, while the other is the mutual information
to maximize the system capacity. The SplitNet design was
demonstrated to outperform a traditional communication sys-
tem in terms of sentence similarity, which is specified in (1),
and robustness against channel variation. In addition, there
are other relevant works on SemCom using the SplitNet ap-
proach, e.g., the distributed SemCom system for IoT[145] and
SemCom system for speech transmission[146] (see more de-
tails in section IV).

3) Comparison between Two Approaches: The advan-
tages of layer-coupling designs include backward compatibil-
ity, simplicity, and flexibility. Since the approach is based on a
modified version of the conventional protocol stack, SemCom
system designed using the approach allows the use of exist-
ing coding and communication techniques if they are suitably
modified to allow some control by the semantic layer. Further-
more, by modularizing a SemCom system, individual mod-
ules are simpler to design compared to the fully integrated
SplitNet. Furthermore, given standardized interfaces between
modules, their design can be distributed to different parties.
Inevitably, the advantages of the layer-coupling approach are
at the expense of optimized performance and end-to-end effi-
ciency. Hence, in terms of performance, SplitNet is a better
choice.

A SplitNet design of SemCom system is dedicated to a
particular application, somewhat losing the universality of
the layered approach. Given a specific task and a radio-
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propagation environment, the encoder and decoder parts of
the neural network are jointly trained to efficiently compress
raw data into transmitted symbols while ensuring their robust-
ness against channel fading and noise. This makes it possi-
ble to achieve a higher communication efficiency and better
task performance than a layer-coupling design. Nevertheless,
SplitNet faces its own limitation in three aspects. First, chan-
nel fading and noise result in stochastic perturbation to both
forward-propagation and back-propagation of the DNN. This
may result in slow model convergence during training. The is-
sue can be alleviated by the feedback of channel state informa-
tion (CSI) to mitigate fading at the cost of additional latency
and overhead[145]. Second, the radio-propagation environment
varies over time and sites, especially for high-mobility appli-
cations. A pre-trained end-to-end SplitNet model tends to be
ineffective in a new environment and re-training is needed,
which is time-consuming and may incur excessive commu-
nication overhead. Third, analog channel symbols generated
by a neural network can be harder for circuit implementation
than conventional modulation constellations due to, for exam-
ple, a larger dynamic range. Nevertheless, research on the

SplitNet approach is still in its nascent stage and continuous
research advancements are expected to yield effective solu-
tions for overcoming the above limitations.

III. HUMAN-TO-MACHINE SEMANTIC
COMMUNICATIONS

Recall that H2M SemCom features the transmission of
messages that can be understood not only by humans but also
by machines, such that they can have dialogue or the latter
can assist or care for the former. The potential applications of
H2M SemCom are illustrated in Fig. 5. In this section, we dis-
cuss semantic encoding and other H2M SemCom techniques
in four representative areas: human-machine symbiosis, rec-
ommendation, human sensing and care, and VR/AR.

A. SemCom for Human-Machine Symbiosis
Human-machine symbiosis (also known as man-computer

symbiosis) refers to scenarios in which humans and machines
establish a complementary and cooperative relationship. On
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one hand, using their complementary strengths, they can co-
operate to carry out a task that is originally difficult or even
infeasible. Humans can benefit from machines’ assistance to
improve their life quality or productivity. On the other hand,
humans and machines can teach each other to improve indi-
viduals’ capabilities e.g., AI-powered education or imitation
learning. In this sub-section, we discuss SemCom in the sce-
narios of human-machine symbiosis. A typical system is il-
lustrated in Fig. 6 and its main operations are described as
follows. First, human activities are sensed and the sending
results are semantically encoded at edge devices. Then the
encoded data are transmitted to an edge server for decoding
and subsequent use to train an AI model. Finally, the trained
AI model acquires some domain-specific, human-like abili-
ties, which are further used to assist humans. The distinction
of the human-machine symbiosis lies in the semantic encod-
ing techniques that map human sensing data or knowledge
into low-dimensional vectors while capturing their semantic
meanings or latent features[158]. For example, the encoded
semantic data refers to the embedded knowledge in the case
of text or boundaries between objects and the background in
the case of image[117-119,159]. In the remainder of the sub-
section, we introduce two representative semantic encoding
techniques widely used in human-machine symbiosis, linear
LSA models[59,160,161] and BERT[139,146,162], and discuss their
deployment in SemCom systems. Additional techniques are
also briefly described, followed by an overview of state-of-
the-art applications.

1) Semantic Encoding by LSA: As a technique in natural
language processing, LSA is used to model and extract se-
mantic information from text documents. LSA has diverse
applications, ranging from search engine to translation to the
study of human memory. A basic LSA technique follows
the following procedure. Consider a set of documents. To
begin with, each document is expressed as a column vector
where each element is binary indicating whether it includes
a specific word or term associated with the element’s loca-
tion. Then putting the column vectors together makes the
document set a so-called document-term matrix denoted as

X . From the matrix, semantic information can be extracted
via the following steps. First, the principle column subspace
of the document-term matrix, called semantic space, is com-
puted by SVD:X =UQV T, whereU is the column space of
X , Q is the singular value matrix, and V T is the row space.
Given desired dimensions k, the semantic space is defined as
Uk, which is the k-dimensional principle column subspace of
X . The corresponding k-dimensional principle singular-value
matrix is denoted as Qk. Second, all document vectors are
projected onto the low-dimensional semantic space. Specifi-
cally, let d j represents the jth column of X and is thus the
jth document. Then the extracted semantic vector, denoted as
d̂ j, is obtained as d̂ j =Q

−1
k UT

k d j. Last, using the reduced-
dimension semantic vectors, the similarity level between any
two high-dimensional documents, say jth and j′th documents,
is measured by efficiently computing the following function:

S( j, j′) =
d̂ jd̂ j′

‖d̂ jd̂ j′‖
, ∀ j 6= j′. (3)

In the context of SemCom between a human and a machine,
the function of LSA is to extract semantic information from
human speech or messages and in that way aid the machine’s
interpretation. Its deployment in a SemCom system essen-
tially involves the design of an LSA-based semantic encoder
and substituting the result into either the layer-coupling archi-
tecture (see Fig. 3) or the SplitNet architecture (see Fig. 4(b)).
As an example, the design proposed in a recent work[163] is
based on SplitNet and features integrated semantic/channel
coding/decoding implemented by training a split DNN model
with the transmitter half performing LSA. On the other hand,
for a design based on the layer-coupling architecture, LSA re-
sides in the semantic layer to map each human message into
the semantic space. The distilled semantic information in the
dimension associated with a larger singular value is more im-
portant. This suggests the use of the singular values as DII
indicators. Then the LSA-encoded information, together with
the DII indicators, are passed to the lower layers for trans-
mission. On the other hand, the CRI feedback in the upward
direction enables the semantic layer to adapt the dimensional-
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ity of the semantic space to the channel state. Consequently,
when the channel supports a high rate, the semantic space can
be expanded to yield a better representation of the human mes-
sage and thus a more accurate understanding by the machine
at the receiving end.

2) Semantic Encoding by BERT: BERT is a well-known
language processing approach based on a popular model
called transformer, which is the first transduction model rely-
ing entirely on self-attention to compute representations of its
input instead of using sequence-aligned RNNs or convolution
to generate its output[164]. A transformer comprises an encod-
ing component and a decoding component. Each includes sev-
eral sequentially connected encoders or decoders. An encoder
cascades one self-attention layer with a feed-forward neural
network. The former performs feature extraction to find the
relation of words in the input sentence; the latter is trained
with a suitable objective, such as language translation. A de-
coder has a similar structure as the encoder except for having
an extra encoder-decoder attention layer inserted between the
self-attention layer and the feed-forward neural network. The
additional layer helps the decoder focus on a specific position
in the input sequence to handle issues, such as the case of one
word having multiple meanings.

Building on the transformer architecture, the key feature
of BERT is a new training strategy, termed masked language
model (MLM), that randomly masks some words in a sentence
to generate training samples. The training objective is to learn
the masked words in the sentence. This training strategy and
objective make it possible to generate an enormous number of
unlabelled text data samples for training. Another key feature
of BERT is that a text sentence is an input into the transformer
as a whole rather word-by-word following the natural left-to-
right uni-direction. The features endow on the trained trans-
former the ability of predicting the missing words based on
their context, giving the technique the name of bidirectional
representations. With this ability, BERT outperforms the uni-
directional approaches to become the state-of-the-art strategy
for natural language processing. The combination with other
techniques (e.g., classification) broadens the applications of
BERT, e.g., Q&A and information retrieval.

The procedure of deploying BERT in a SemCom system to
support human-machine symbiosis is similar to that for LSA.
In other words, BERT can be simply used as the semantic en-
coder. For the SplitNet design, BERT is used as a part of the
split DNN. For the layer-coupling approach, BERT is used for
extracting the important information from the sensed human
activities with DII indicators showing their importance levels.
The exchange of data and control signals between the seman-
tic and lower layers are similar to those for LSA.

3) Additional Semantic Encoding Techniques: Other tech-
niques that can play an important role in semantic encoding

for human-machine symbiosis are the CNN-based approaches
of object recognition[165-167]. Relevant techniques can effi-
ciently compress human sensing data (e.g., facial expressions
and behaviours) for efficient transmission to machines for sub-
sequent recognition. A typical object recognition technique
detects the boundary between the targeted objects and the
background based on contextual features. A representative
design of CNN-based auto-encoder (AE) for segmentation is
proposed[159], termed SegNet, which comprises an encoding
component, a decoding component, and a classifier. The en-
coding component contains several encoders, each of which
is paired with a decoder in the decoding component. Each
encoder is a CNN, modified from the well-known VGG-16
network[168]. Each decoder up-samples its input using the
transferred pool indices from its corresponding encoder to
produce sparse feature maps. Finally, the output feature maps
of the last decoder are fed to a softmax classifier for pixel-wise
classification. This generates the segmentation results.

4) Choice of the Connectivity Type: In 5G systems, there
exist three generic connectivity types: enhanced mobile
broadband (eMBB), ultra-reliable low-latency communica-
tion (URLLC), and massive machine type communication
(mMTC). They are defined to support a wide range of ser-
vices with heterogeneous quality-of-service (QoS) require-
ments. The choice of connectivity type for human-machine
symbiosis is application-dependent. Many relevant applica-
tions do not require high transmission rates, ultra-reliability,
or massive connections. Examples include AI-assisted learn-
ing, coding, and debugging. For such applications, normal
radio access suffices. On the other hand, there exists a class of
symbiosis applications that involve tactile interaction, thereby
requiring low latency and reliable transmission. For instance,
AI-assisted driving and remote surgery require the response
latency between robots and humans (i.e., drivers or surgeons)
to be less than 10 ms and 1 ms, respectively[169]. For this class
of applications, the provisioning of URLLC connectivity is
crucial.

5) State-of-the-Art Applications: Applications related to
human-machine symbiosis can be separated into three main
classes. The first class of applications is AI-assisted sys-
tems. AI technologies provide ways for machines to acquire
human-like skills and abilities by learning from the experi-
ences of human experts (e.g., doctors and drivers), which, in
turn, makes the machines useful assistants for humans. Using
LSA, AI-powered chatbots have started to replace humans in
FAQs/customer services in places such as universities[19] and
over social media[20]. Machines can also play an important
role in AI-assisted healthcare via utilizing machine learning
algorithms to extract key information from patients’ records
to help doctors with diagnosis and prediction of the risks of
diseases[21]. Machine assistance has also been applied to other
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professional areas, such as video game debugging[22], auto-
matic programming[23], driving assistance[24], and second lan-
guage learning and teaching[25].

The second class of applications is interactive machine
learning that includes humans in the loop to leverage the gen-
eralized problem-solving abilities of human minds[26-30]. This
is particularly useful in cases lacking training samples for
rare events that are needed for automatic machine learning to
work. Moreover, the joint force of machines and humans can
combine their complementary strengths to tackle grand chal-
lenges such as protein folding and k-anonymization of health
data[27]. In such collaborations, human experts use their expe-
riences to guide machines to reduce the search space.

The third class of applications is a worker-AI collabora-
tion where both human and machine workers cooperate as
peers to finish real-time tasks, e.g., moderating content, data
deduplication[31,32]. In particular, relying on tactile commu-
nication, robots can imitate the actions of remote surgeons in
minimally invasive surgery[33,34]. Such cooperative surgeries
can benefit from the machine involvement to improve the ac-
curacy and dexterity of a surgeon and minimize traumas in-
duced on patients. One important design issue for worker-AI
collaboration is to prevent machines from telling lies or mak-
ing mistakes[35].

B. SemCom for Recommendation
A recommendation system predicts user preferences in

terms of ratings of a set of items such as songs, movies, and
products. The recommendation has become a popular tool for
making machines intelligent assistants and improve user expe-
rience. Examples include playlist generation for multimedia
streaming services, product recommendation for online shop-
ping, marketing on social media, Internet search, and online
dating[36,38,39,61]. A SemCom system aims at supporting rec-
ommendation in a wireless network, as shown in Fig. 7. In

the system, an edge device semantically encodes and trans-
mits the user’s personal data to an edge server for generating
recommendations for the user. The purpose of semantic en-
coding is to infer user ratings from the user data. Given a
rating database of a large number of users, the server gener-
ates recommendations for a target user using a filtering tech-
nique. Among the most popular method is collaborative fil-
tering discussed in the sequel. We will also introduce other
techniques including content-based, collaborative, and hybrid
filtering. The choice of connectivity type for SemCom sys-
tems to support recommendation will be also discussed, fol-
lowed by an overview of the state-of-the-art applications of
recommendation systems.

1) Collaborative Filtering: Collaborative filtering
finds users with similar preferences using their historical
ratings[170]. Then the purpose of semantic encoding is to
distill the rating information from the historical data record-
ing user’s daily activities such as shopping, entertainment,
reading, and multimedia streaming. This removes redundant
information to compress the data for efficient transmission.
The design of the semantic encoder can be based on the LSA
described in section III-A by modifying the document-item
matrix to count the user’s access/purchase frequencies of
different items. In the case where such explicit information
is unavailable, an AI model can be trained to infer the users’
preferences from sensing data recording his/her behaviours
and emotions in either the physical world or on social-media
platforms[171].

Next, after receiving rating data from multiple users, the
server compiles them into a user-item matrix. Each column
storing the ratings by one specific user is called an item vector.
Let r j denotes the jth item vector and r j,i its ith element rep-
resenting the rating of ith item in a set of interest. Moreover,
r̄ j denotes the average rating of all items of user j. Using the
Pearson correlation as a metric, the similarity in preference
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between users j and j′ can be computed as

S( j, j′) =
∑i∈I j, j′

(r j,i− r̄ j)(r j′,i− r̄ j′)√
∑i∈I j, j′

(r j,i− r̄ j)2
√

∑i∈I j, j′
(r j′,i− r̄ j′)2

, (4)

where I j, j′ represents the set of items rated by both users j
and j′, The pairwise similarity measures allow the server to
recommend items preferred by some users to others sharing
similar interests.

However, as social-media applications are fast-growing in
number and type, the user-item matrices become increasingly
sparse. The insufficient rating data causes difficulty in clus-
tering similar users. Researchers have developed solutions
for this problem by applying techniques from data mining
and machine learning including SVD[172], non-negative ma-
trix factorization[173], clustering[174], and probability matrix
factorization[175].

As in the scenario of human-machine symbiosis, SemCom
systems for recommendation can be based on either the layer-
coupling or SplitNet architectures. When explicit rating in-
formation is available at a device, its uploading is infrequent
and may even require only a single upload, as user preferences
usually do not change rapidly over time. On the other hand,
when such explicit information is unavailable, a large amount
of user sensing data may need to be transmitted from the de-
vice to the server for preference inference. One way to address
this issue is by designing semantic encoders that can locate
a low-dimensional item-rating subspace without compromis-
ing the recommendation accuracy. The other way is utilizing
high-rate access (eMBB) whenever it is available or by de-
ploying a targeted large-rate technology, such as mmWave.

2) Other Filtering Techniques: Other available filtering
techniques for recommendation include content-based filter-
ing, demographic filtering, and hybrid filtering[176]. The
content-based approach utilizes the users’ historical data for
the recommendation. Specifically, the recordings of, e.g.,
habits or interests, are useful for creating a user profile char-
acterized by a set of features. Then, an item aligned with the
features of a profile is likely to interest the associated user
and thus can be recommended. Next, the demographic filter-
ing approach classifies users according to their demographic
information such as nationality, age, and gender. Items pre-
ferred by one user are recommended to the users in the same
demographic class. Last, the hybrid filtering approach com-
bines several aforementioned approaches and has been show-
cased to boost the recommendation accuracy.

3) State-of-the-Art Applications: Recommendation sys-
tems are deployed in many areas. The most popular venue
is social networks where the recommendation is applied to
emotional health monitoring by detecting abnormality[36],
partner recommendation in online dating[38], and emoji us-
age suggestions[39]. Other applications include travel recom-

mendation systems for mobile tourist[37], remote healthcare
(e.g., cloud-assisted drug prescription[42] and cloud-based mo-
bile health information[43]), TV channel recommendation[40],
video recommendation[41], and music recommendation[177].
Traditionally, to offload the high computation load, recom-
mendation systems are hosted in the cloud server with unlim-
ited computation resources[42,43,178]. Nevertheless, the tradi-
tional approach can lead to excessive communication latency
and overhead as the personal data to upload are known to
grow at an exponential rate. Recent years see the increas-
ing popularity of the split-computing approach that spreads
a recommendation system across the cloud and the network
edge leveraging the edge computing platform[60]. In addition,
researchers have proposed unmanned aerial vehicle (UAV)
assisted recommendation systems for location-based social
networks[61] as well as distributed recommendation systems
featuring data privacy[62,63].

C. SemCom for Human Sensing and Care
Human sensing-and-care refers to real-time tracking and

monitoring of humans’ health conditions and movements by
machines, such as the machines can offer proper care to hu-
mans. Human monitoring relies on sensors (e.g., temperature
and positioning) on or around humans. The sensing data are
then transmitted to a server for analysis and decision making.
To facilitate the discussion, let us consider the concrete exam-
ple of biomedical sensors, which are wearable or implantable
and perform transduction of biomedical signals [e.g., electro-
cardiogram (ECG) signals] into electric signals. In this con-
text, the purpose of designing a SemCom system is to ex-
tract useful features from biomedical sensing data and trans-
mit them to a server for diagnostics or medical image analysis.
An example of a feature is the “main-spike” interval of ECG
signals, termed QRS interval. In the sequel, we discuss the
techniques for biomedical semantic encoding and the associ-
ated SemCom system design.

1) Biomedical Semantic Encoding: Typical biomedical
signals include ECG signals for detecting heart activity and
electromyography (EMG) signals for detecting e.g. skeletal
activity. Such signals are characterized by a certain level of
periodicity and predictability, making it possible to estimate
the signal statistics within a short time frame. In the cur-
rent context, semantic coding is particularized to techniques
for estimating the statistics that contains useful information
of the biological activities of a human. Relevant techniques
are based on either the time-domain or frequency-domain ap-
proaches. As an example, consider the R-peak detection of
an ECG signal, where R refers to a point corresponding to a
peak of the ECG wave. The detection of R-peak helps the
heart-rate characterization[179]. A more elaborate analysis of
an ECG wave decomposes the main spike into three succes-
sive upward/downward deflections, termed Q wave, R wave,
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and S wave. A time-domain method for their detection mainly
uses the shape characteristics, such as finding the largest first-
order and second-order derivatives. On the other hand, a fre-
quency domain method first transforms the signal into the fre-
quency domain using, e.g., wavelet transformation, and then
applies filtering with a suitable passband to extract the desired
information.

In the SemCom system for human sensing-and-care, the
biomedical signals are semantically encoded and transmitted
by an small-size edge device. Upon detecting abnormality, the
transmissions from this device should be real-time and very
reliable, to call for urgent medical care[180]. In view of these
requirements, it is preferable to design the SemCom system
on the layer-coupling architecture rather than a DNN model.
This is because no complex data should be processed and the
complex DNN model may be overkill, while its long computa-
tion time unacceptable. The semantic encoding and transmis-
sion can be controlled using DTI generated as follows. The
duration, amplitude, morphology, and frequencies of Q/R/S
waves are all useful for heart-related diagnostics ranging from
detecting conduction abnormalities to diagnosing ventricular
hypertrophy. But they are of different importance levels that
are also disease-dependent. In other words, the features of
biomedical signals can be assigned different importance lev-
els, resulting in the DII. At the lower layers, the adopted radio-
access technologies depend on applications. For indoor ap-
plications, sensors are usually linked to a local hub (e.g., a
smartphone) using short-range and low-latency technologies
such as zigbee, bluetooth, and Wi-Fi. For the hubs to access
the cloud or for outdoor applications, cellular communication
is the preferred choice. In regions with no or poor cellular
coverage, satellite communications can be used instead while
GPS helps human positioning and tracking. A large-scale net-
work that connects a massive number of sensors can rely on
the mMTC service supported within the 5G architecture.

2) State-of-the-Art Applications: The common applica-
tion of human sensing-and-care is elderly monitoring[44,45]. In
Ref. [44], a wireless sensor network is deployed to monitor
the well-being conditions of the elderly. Specifically, multi-
ple types of sensors are used to monitor their activities such
as cooking, dining, and sleeping. A similar system target-
ing the elderly with dementia is reported[45]. Another type
of application is a super-soldier system[181], which monitors
and analyzes the health status and fatigue levels of soldiers
by sensing their temperatures, gestures, blood glucose levels,
and ECG. The third type of application is the set of general hu-
man activity recognition systems[47,48]. Head-mounted smart-
phones are designed to have situation awareness, e.g., aware-
ness of user behaviors and environmental conditions[47]. To
this end, the data collected from smartphone sensors (e.g., ac-
celerometers, gyroscopes, and cameras) are transmitted to a

server for feature extraction and situation inference. In an-
other design[48], a wearable magnetic induction device is used
for sensing and wirelessly transmitting the magnetic induc-
tion signals to a server for activity detection using an RNN
based algorithm. Other applications of human sensing-and-
care include remote healthcare systems[49-51] and smart-home
monitoring systems[46].

D. SemCom for VR/AR
VR and AR are two H2M technologies. VR essentially in-

volves the use of mobile devices (e.g., smartphones, glasses,
or headsets) to create new human experiences by replacing
the physical world with a virtual one. On the other hand,
AR devices alter human experiences by augmenting real ob-
jects with computer-generated perceptual information across
different senses (e.g., vision, hearing, haptics, hearing, pres-
sure, and smell). VR/AR provides a way of seamlessly merg-
ing the physical and virtual world. The resulting immersive
human experience can give a rise to a plethora of future ser-
vices, such as entertainment, virtual meetings, or remote ed-
ucation. Offloading computation and caching to edge servers
makes it possible to implement latency-sensitive VR/AR ap-
plications on resource-limited devices. VR/AR data process-
ing and SemCom between devices and servers are discussed
in the following sub-section followed by a summary of state-
of-the-art SemCom for AR/VR.

1) VR/AR Semantic Encoding and Transmission: The pro-
cedures of semantic encoding and transmission in AR and
VR systems are illustrated in Fig. 8. Consider AR semantic
encoding whose purpose is to recognize and track physical
objects of interest to the user and then project icons, charac-
ters, and information onto them. Its implementation requires
cooperation between a device and a mobile edge computing
(MEC) server. First, raw video data recorded locally using
on-device cameras are uploaded to the server for processing.
In the MEC server, three algorithms, namely mapper, tracker,
and object recognizer, are executed[52]. The function of the
tracker is to detect the object’s position based on input raw
data and to proactively adjust a rendering focal area. Based
on the tracking results, the mapper is to distill features (e.g.,
virtual coordinates) of objects embedded in the raw data us-
ing image processing techniques. In parallel, the object rec-
ognizer leverages both the object features and video stream-
ing to produce desired rendering data (e.g., cartoon icons and
explanatory text) according to the application requirements.
Such data are downloaded onto the device where they are su-
perimposed onto the actual scenes by a local renderer and the
edited VR videos are displayed to the human user. Next, the
function of VR semantic coding is to select only part of the
video depicting the virtual world to download and display to
the user such that the heavy burden of downlink transmission
is alleviated[53]. To this end, the user’s kinesthetic information
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(e.g. location, angle of view, and head movements) is col-
lected over multiple on-device sensors and efficiently trans-
mitted to the server. The information is processed by a tracker
and a mapper operating at the server to detect the field-of-
view (FoV) and select the corresponding video output by ex-
traction from cached 360◦ video streaming such that it best
fits the user’s movements. Then video output is downloaded
onto a pair of VR glasses or a VR headset for constructing
the virtual world. Such semantic encoding dramatically re-
duces the required downlink data rate as opposed to the full
360◦ video streaming. It also makes it possible to meet the
stringent latency requirement for immersive user experience.
The communication efficiency can be further improved by de-
ploying advanced semantic encoding techniques such as video
segmentation and compression by head-movement prediction
and eye-gaze tracking.

The connectivity requirements for VR/AR SemCom are
discussed as follows. In general, VR/AR systems need to col-
lect and process real-time multimedia data from the physical
world and generate/transmit high-resolution visual and audi-
tory data. Therefore, the required connectivity is character-
ized by a high rate and low latency[53-55]. As an example,
a human FoV covers horizontal and vertical ranges of 150◦

and 120◦, respectively. The simulation of a realistic FoV gen-
erally requires 120 frames per second with each frame con-
sisting of 64 million pixels (60 pixel/degree). Given standard
video quantization (36 bit/pixel) and H.265 encoding (with
1 : 600 compression rate), the required transmission rate is at
least 1 Gbit/s[6,53]. On the other hand, real-time interaction
needed for immersive human experiences requires motion-to-
photon latency to be lower than 15 ms[56]. Such requirements
place VR/AR connectivity at the intersection between eMBB
and URLLC. A solution that addresses these issues is the

MEC platform in 5G that offloads computation-intensive tasks
(e.g. tracking, mapping, and recognition) and cache storage-
demanding multimedia content at edge servers in the proxim-
ity of users as shown in Fig. 8. This reduces the burden of
devices to be merely responsible for data collection and dis-
playing videos.

Building the MEC platform, a VR/AR system can be de-
signed based on either the layer-coupling or the SplitNet ar-
chitecture. To consider the former, different types of human
kinesthetic information are of heterogeneous importance for
a specific application and can be thus assigned different DIIs
to facilitate importance aware adaptive transmission. On the
other hand, for collaborative VR/AR involving multiple de-
vices and servers, the SemCom system design can benefit
from exploiting the PAI of AI models (e.g. classification) and
other data processing algorithms (e.g. compression and filter-
ing), the DTI and DII of raw data (e.g. voice and images) to
optimize the operations of data aggregation and rendering data
feedback for boosting the communication efficiency. Further-
more, the scene-data collection, local rendering, and global
data processing at servers can be integrated into an end-to-end
design using the SplitNet approach. Then the trained neu-
ral network is split for partial implementation at a device and
server according to the application requirements and device’s
resource constraints.

2) State-of-the-Art SemCom for VR/AR: There exists a
wide range of VR/AR applications with vast literature (see
e.g., Refs. [57,58] and references therein). However, the area
of SemCom for VR/RA is relatively new and still largely un-
charted. Some recent advancements are highlighted as fol-
lows. The challenges and enablers for URLLC communica-
tions to implement VR/AR are discussed[53]. Furthermore,
a case study of deploying VR in wireless networks is also
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presented, which integrates millimeter-wave communication,
edge computing, and proactive caching. Another design of
wireless VR network is also proposed[54]. It is proposed that
small base stations are used to first collect and track informa-
tion on a VR user and then send to the user device to generate
3-D images. The resource management issue targeting such a
system is also investigated that accounts for VR metrics such
as tracking accuracy, processing delay, and transmission de-
lay. In addition, a new type of VR/AR system enhanced by
skin-integrated haptic sensing is proposed[55]. Such a spe-
cial wireless sensor can be softly laminated onto the curved
skin surfaces to wirelessly transmit haptic information con-
veying the spatio-temporal patterns of localized mechanical
vibration.

IV. MACHINE-TO-MACHINE SEMANTIC
COMMUNICATION

Recall that the objective of M2M SemCom is to efficiently
connect multiple machines and enable them to effectively ex-
ecute a specific task in a wireless network. It usually targets
IoT applications as illustrated in Fig. 9. The typical tasks
in M2M SemCom span the areas of sensing, data analytics,
learning, reasoning, decision making, and actuation[16]. In this
section, we discuss the effectiveness of encoding and trans-
mission techniques in four representative types of application,
namely distributed learning, split inference, distributed con-
sensus, and machine-vision cameras.

A. Distributed Learning
The main theme of distributed machine learning is to train

an AI model using distributed data at many mobile devices as
well as their computation resources.

FL mentioned in section II.A.2) stands out as arguably the
most popular distributed-learning framework[182,183]. Its pop-
ularity is mainly due to its feature of protecting the owner-
ship of mobile data by avoiding their direct uploading to a

server. Instead, based on the classic stochastic gradient de-
scent (SGD) algorithm, FL requires each device to compute
a local model updated using local data or a stochastic gradi-
ent representing the update, as illustrated in Fig. 10. Then the
local model updates are transmitted to the server for aggrega-
tion before updating the global model. The aggregation op-
eration suppresses the noise in local updates arising from the
limited size of local data. As a result, the noise diminishes
as the number of devices grows. Subsequently, the server
broadcasts the updated global model to all devices to repeat
the above process and the iteration continues until the global
model converges. While SplitNet targets inference using a
trained model, the layer-coupling approach is a more suitable
approach for designing an FL system. In an FL system, the
uploading of high-dimensional model updates by many de-
vices poses a communication bottleneck. For instance, the
popular ResNet-50 model comprises 25.6 million parameters
or equivalently 1638.4 million bits in the “float64” format.
Relevant SemCom techniques for tackling this bottleneck in-
cluding effectiveness encoding, modulation, multi-access, and
radio-resource management (RRM) are discussed separately
in the following sub-sections.

1) Effective Encoding: Consider an FL system with one
server and M devices, called workers, and an arbitrary com-
munication round (i.e., iteration) in the FL algorithm, say the
tth round, that comprises several sequential phases: model
broadcast, local effective encoding, model-update uploading,
and global-model updating. The focus of this subsection is
the effective of encoding at a device. Its goal is to convert lo-
cal training data into a local model by updating the broadcast
global model, or a local (stochastic) gradient representing the
update. At the beginning of the tth round, the server broad-
casts the global-model parameters W t to all workers. Its lo-
cal gradient as computed at worker-m and the worker’s local
dataset are denoted asGt

m and Dk = {(xm,i,ym,i)}Nm
i=1, respec-

tively, where Nm is the local-dataset size, xm,i the ith sample,
and ym,i its associated label. The effective encoding involves
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multi-step (say B-step) local gradient descent. To this end, let
Dm be partitioned into B mini-batches with the bth mini-batch
denoted as Dm,b. The local gradient in step b is computed as

Gt,b
m =

1
|Dm,b| ∑

(xm,i,ym,i)∈Dm,b

∇L
(
xm,i,ym,i;W

t,b−1
k

)
, (5)

where L (·) denotes the loss function pre-defined for the
learning task. The above computation can be implemented
using the well-known back-propagation algorithm. Essen-
tially, implementing the differential operator ∇ in (5) involves
computing the gradient w.r.t. the model parameters W t,b−1

from the last layer to the first layer backwardly (see details
in Ref. [184]). Using the local gradient, the step-b gradient
descent refers to updating the local-model parameters as

W t,b
m =W t,b−1−λGt,b, b = 1,2, · · · ,B, (6)

where λ is the step size and W t,0
k =W t . After the last mini-

batch is processed, worker-m obtains the local modelW t+1
m =

W t,B
m or the corresponding local gradientGt+1

m =W t,B
m −W t .

This completes the effectiveness-encoding process. The up-
loading of the local model or local gradient ends the current
communication round.

The effective encoding can include the additional opera-
tion of local model/gradient compression described as fol-
lows. Consider the case of gradient uploading. A gradient
tends to be sparse in the sense that a large number of its ele-
ments are much smaller in magnitude than others. A simple
method of gradient compression is to keep a fixed number of
elements with the largest magnitudes and set the remaining
ones to zeros, thereby substantially reducing the communica-
tion overhead[64,65]. Consider the case of gradient uploading.
Local models also exhibit sparsity. Parameter (or neurons)
pruning can be performed progressively during the process

of training using a suitable metric, for example, variance or
magnitude[66]. A much simpler method is called dropout that
randomly samples parameters for deletion[67,68]. Besides re-
ducing communication overhead, the above model pruning is
also effective in avoiding model over-fitting.

2) Effectiveness Modulation and Multi-Access: This sec-
tion aims at overcoming the communication bottleneck in a
FL system forming the perspective of effectiveness modula-
tion and multi-access.

Linear analog modulation (LNA) supports fast transmis-
sion by avoiding the computation-intensive processes of digi-
tal modulation, channel encoding, and decoding[185]. Though
the lack of protection by coding limits its application to reli-
able communication, recently, LNA is gaining popularity in
SemCom especially in fast multimedia transmission[186] and
machine learning[70,145,187] as human quality-of-experience,
and machine inference and learning are robust against noise
if it is properly controlled by, for example, power control and
scheduling. In the context of learning, it is even possible to
exploit channel noise to accelerate the learning process by es-
caping from saddle and local-optimal points[69].

LNA is known to be optimal for the task of distributed sens-
ing in a sensor network as illustrated in Fig. 11. The task is
to compute an aggregation function (e.g., averaging) of dis-
tributed sensor observations so as to suppress the observation
noise. To efficiently carry out the task, a technique called
over-the-air computing (AirComp) based on LNA exploits the
waveform superposition property of a wireless channel to per-
form over-the-air aggregation of simultaneously transmitted
sensing data using LNA[71]. Let Um denote a noisy observa-
tion at sensor m of a common source X : Um = X +Wm where
Wm represents the sensing noise (see Fig. 11). All observa-
tions are transmitted at the same time over Gaussian channels
to a server (fusion center) using uncoded LNA. This results in
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the following received signal:

Y =
M

∑
m=1

Sm +Z, (7)

where Sm results from modulating Um, and Z is the Gaussian
channel noise. The modulated symbol Sm is the scaled version
of Um under the power constraint E[(Sm)

2] 6 Pm. The server
produces an estimate of the source X , denoted as X̂ , that mini-
mizes the distortion D = limNarrow∞

1
N ∑

N
n=1 E[(X [n]− X̂ [n])2],

where n represents the symbol index. In the presence of chan-
nel noise, the server receives the desired average of distributed
observations. It is proved that in the case of Gaussian sources
and noise, AirComp achieves the optimal rate-distortion trade-
off for a large number of sensors[188], making AirComp an ef-
fective multi-access technique for the task. On the other hand,
it is sub-optimal for the current task to rely on classic infor-
mation theoretic encoding that first quantizes the observations
into bits and channel encoding the bits. The main reason is the
mismatch of the task with the objective of the classic scheme
aiming at reliable decoding of data symbols transmitted by
sensors. A more vivid interpretation is that AirComp treats
interference as a friend rather than a foe.

Most recently, AirComp discussed above is applied to re-
alize “over-the-air aggregation” for fast FL, termed over-the-
air FL[64,65,70]. Given its awareness of the FL algorithm
(especially the aggregation operation), AirComp enabled by
LNA represents a joint effectiveness design of modulation
and multi-access targeting FL. Consider the uploading phase
of a communication round and the FL implementation based
on local-gradient uploading. The discussion can be extended
to the other case of local-model uploading straightforwardly.
Each worker modulates its local gradient using LNA and
transmits the result over the same frequency band simulta-
neously as other workers. By supporting such simultaneous
access, the communication latency is reined in to avoid lin-
ear scaling with the number of devices, as in conventional
orthogonal-access schemes. For over-the-air aggregation it is
required to align the magnitudes of the received signals. To
this end, each worker performs channel-inversion power con-
trol. By synchronizing workers’ transmission (by, for exam-
ple, timing advance) and exploiting the wave-form superpo-
sition property of a multi-access channel, the server receives

the desired average of local gradients. Mathematically, each
received symbol is denoted as y and given as

y =
1
M

(
M

∑
m=1

hm pmsm + z

)
=

1
M

M

∑
m=1

sm +
z
M
, (8)

where M is the number of devices and for worker m, sm rep-
resents a transmitted symbol modulating a single gradient co-
efficient, hm the channel gain, and pm = P

hm
channel-inversion

power control with P being a given constant, and at last z the
channel noise. Over-the-air FL is designed for a broadband
system[70] and a multi-antenna system[72,73].

Last, designing over-the-air FL can be based on the
proposed SemCom architecture with the layer-coupling ap-
proach. In this case, the PAI passed from the semantic layer to
the physical layer is the specifics of the aggregation operation
(e.g., aggregation weights, selected devices, and their upload-
ing frequencies) in the FL algorithm.

3) Effectiveness Radio Resource Management: In this
subsection, we answer the effective problem for FL from the
perspective of RRM. To overcome the communication bottle-
neck, RRM should be guided by the principle of allocating
more resources to the transmission of data that has higher im-
portance for the model training, while preventing the unim-
portant data from occupying channels. This leads to a new
class of effectiveness techniques called (data) importance-
aware RRM[74-77].

In an FL system, there exist multiple types of data includ-
ing training samples, local gradients, or local models. Regard-
ing training samples for a classifier model, their importance is
measured by data uncertainty, a popular concept in the area of
active learning. It is defined as the level that how confident
an AI model holds for its prediction to a data sample[74,189].
Consider a neural-network-based classifier model. A com-
mon metric for measuring the uncertainty of sample x is the
entropy of posteriors of L labels as computed using the model,

u(x|W ) =
L

∑
`=1

Pr(`|x,W ) logPr(`|x,W ), (9)

where Pr(`|x,W ) is the posterior of label-` given input x
and model parameters W . On the other hand, the impor-
tance of gradients can be measured by gradient divergence[75]

or squared multivariate coefficients of variation (SMCV)[76].
For a local gradient Gt

m, its gradient divergence is measured
by the variance to the global gradient, given by∥∥∥∥ Nm

pt
m ∑

M
m=1 Nm

vec
(
Gt

m
)
−vec

(
Em[G

t
m]
)∥∥∥∥2

,

where pt
m is the probability that this local gradient is selected

and vec(·) is the vectorizing operator. The SMCV of an aggre-
gated global gradient vector is given by the sum of means of
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each entry divided by the sum of variances of each entry with
randomness due to channel noise. In addition, the importance
of a local model can be measured by its variance to the current
global model ‖vec

(
W t+1

m
)
−vec(W t)‖ (see, e.g., Ref. [190]

for an overview).
These schemes feature both channel and importance aware-

ness and aim at striking a balance between scheduling devices
with a strong channel for the objective of rate maximization
and those with important data for the objective of accelerat-
ing model convergence. As a result, the schemes favour de-
vices with either very important data, very strong channel,
or satisfactory levels in both aspects. It should be empha-
sized that in the context of FL, the two objectives mentioned
earlier are not entirely in conflict from the perspective of la-
tency minimization. The former reduces latency per round but
the latter reduces the required number of rounds for model
convergence. To minimize the total latency (in second), the
above tradeoff should be optimized. A common design ap-
proach is to derive a DII for implementation using the layer-
coupling approach, which accounts for both the data impor-
tance and channel state. Then the criterion for importance-
aware scheduling is simply to maximize the DII. Consider an
edge learning system (e.g., a closed system without the data-
privacy issue) directly uploading data from devices to a server
for model training. The DII is a linear combination of a chan-
nel quality indicator and maximum sample uncertainty of a
local dataset[74]. Next, consider scheduling for an FL sys-
tem. Probabilistic scheduling is adopted to avoid a bias of
the trained model towards a particular local dataset. To be
specific, in each round, each device is scheduled with a given
probability. The optimal probability of a device is shown to
be proportional to the local-gradient variance and a monotone
decreasing function of the communication latency[75].

Besides scheduling, effective power control schemes have
been also designed for FL to address the issue of differential
privacy[78,79]. By power control, such schemes regulate a suffi-
ciently high channel-noise level to meet the privacy constraint
at the cost of reduced training accuracy.

B. Split Inference
While the preceding sub-section focuses on model train-

ing, the theme of this sub-section is the other facet of ma-
chine learning, namely inference using a trained model. In this
area, the split inference is an emerging paradigm for 5G-and-
beyond to offload a large part of the inference task from a mo-
bile device to an edge server hosting a large-scale model[80].
The remaining task executed on-device is to extract useful fea-
tures from raw data for transmission to the server. The task
splitting gives the name of split inference. This mitigates the
impact of the resource limitation on the device and enriches
its capacity via access to a server model, much more powerful
and complex than the one that can be afforded as an on-device

counterpart. For instance, classifiers in the Google Cloud
can recognize thousands of object classes and that in Alibaba
Cloud hundreds of waste classes for litter classification. In
the remainder of the subsection, we discuss effectiveness cod-
ing and communication separately for the layer-coupling and
SplitNet architectures.

1) Effectiveness Encoding and Transmission for Layer-
Coupling Approach: In the context of split inference, effec-
tiveness encoding refers to feature extraction, referring to the
process in which a device encodes high-dimensional raw data
into reduced-dimension features or features maps[184]. Fea-
tures represent information essentially for inference while raw
data contains a large amount of redundant information (e.g.,
background objects and noise known as spatial redundancy
in raw images[191]). Stripping away the redundancy substan-
tially reduces communication overhead without compromis-
ing inference performance. Our discussion focuses on feature
extraction (i.e., effectiveness encoding) while details on infer-
ence using features (i.e., effectiveness decoding) can be found
in a typical standard machine-learning book of Ref. [184].
A classic, simple technique is principal component analysis
(PCA)[192]. PCA uses SVD to identify the most informative
low-dimensional linear subspace (feature space) embedded
in a large high-dimensional dataset, called principle compo-
nents. Then the projection of a data sample onto the feature
space yields its features. Modern feature extraction exploits
the powerful representation capability of neural networks and
rich training data. Such a feature-extraction model can be im-
plemented using multi-layer perceptrons (MLPs) for a gen-
eral purpose, CNNs for visual data[81,82], and RNNs for time-
series data[83] or leverage the emerging graph neural networks
to improve inference performance with point cloud and non-
Euclidean data[84].

A SemCom system designed for efficient feature transmis-
sion is characterized by its feature-importance awareness. As
widely reported in the deep learning literature, features do not
contribute evenly to inference performance and thus have het-
erogeneous importance levels[193]. Available importance mea-
sures include divergence for data statistical models (e.g., dis-
criminant gains of specific feature dimensions)[194] and other
classification-loss-related metrics for DNN models[193]. Con-
sider an importance-aware SemCom system designed using
the layer-coupling approach. The CRI passed to the discussed
effectiveness encoder controls the number of features to ex-
tract. Given the number, features are selected based on their
importance levels (DII) to be transmitted in the radio-access
layers[85]. There exist numerous algorithms for feature prun-
ing for neural networks (see e.g., Ref. [86]). Some design
supports channel adaptation of encoding under given require-
ments on latency and inference performance[87]. The DII is
also passed to the layers for importance aware quantization
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(e.g., more important features have higher resolutions) and
RRM (e.g., more bandwidth/time-slots for more important
features)[81,88,89]. Moreover, the DII also determines the trans-
mission sequence (i.e., more important features are transmit-
ted first) so that transmission can be stopped earlier under an
inference-uncertainty requirement[85]. On the other hand, PAI
providing some information on the effective encoder (e.g., its
type or architecture) can be useful for the choice of a matched
classifier model at the server and thus passed to the latter.

2) Effective Encoding and Transmission for SplitNet:
Consider the implementation of split inference on the Split-
Net architecture in Fig. 4(b) with semantic encoder/decoder
replaced by their effective counterparts targeting the task of
inference. The function of the effective encoder is to ex-
tract features based on designs discussed in the preceding
sub-section. On the other hand, the effective decoder is a
neural network performing inference. The popular approach
of designing the pair of channel encoder/decoder is to use
AE[184]. An AE comprises an encoder and a decoder. Gen-
erally, the AE’s encoder compresses high-dimensional inputs
to reduced-dimension outputs; using them as inputs, the de-
coder attempts to reconstruct the encoder’s inputs. In a split-
inference system, the two AE components interface with a
wireless channel (see Fig. 4(b)). Then the AE-based chan-
nel encoder directly maps features to analog modulated chan-
nel symbols and the channel decoder decodes received sym-
bols into features as input to the subsequent effective decoder
to generate inference results[90]. The design of semantic and
channel encoders is under two constraints. First, given B com-
plex channel symbols, the number of extracted features (real
scalars) should be 2B. Second, a normalization layer is re-
quired in the channel encoder such that channel symbols can
satisfy transmit power constraints. The end-to-end training of
the encoders/decoders in SplitNet is difficult to a large number
of layers in the combined global model and also channel hos-
tility (i.e., fading and noise) embedded in it. This difficulty is
overcome by training the two AE components separately from
the semantic encoder/decoder. Specifically, the effectiveness
encoder and decoder are pre-trained in advance since they
are independent of the channel and remain unchanged even
if the channel statistics vary[90]. On the other hand, the AE-
based channel encoder and decoder can be quickly retrained
using transfer learning as the radio-propagation environment
changes[91]. This provides the components’ capability to cope
with channel noise. As a final step, an end-to-end training of
all neural networks is conducted so that they can be further
adjusted to achieve optimal end-to-end inference performance
in the presence of channel hostility.

Split inference involves a computation-communication
tradeoff, described as follows. The effective encoder and de-
coder in the SplitNet architecture [see Fig. 4(b)] can be gen-

erated by splitting a single AI model (i.e., a neural network)
into two parts with unequal numbers of layers. Shifting the
split point to the left results in simpler on-device effective en-
coding and higher complexity for effective decoding at the
server, and vice versa. Intuitively, as the device is resource-
constrained, it is desirable to push the split point as close to the
input layer of the AI model as possible. The intuition is cor-
rect from the perspective of computational load but overlooks
the other perspective of communication overhead. Specifi-
cally, in a large class of popular AI models in practice, the
size of features output by “shallow” feature-extraction layers
is large and can be even much larger than that of raw data at
the input, which is known as “data amplification effect”[195].
Consequently, a shallow split point may result in unacceptably
large communication overhead and energy consumption, de-
feating the original purpose of split inference. This motivates
researchers to adjust the split point with the aim of optimiz-
ing the communication-and-computation tradeoff[92,93]. Rele-
vant algorithms rely on profiling the operational statistics of
individual model layers including feature size, latency, energy
consumption, and required memory size. Then the profiles are
applied to design algorithms for adapting the split point to the
time-varying communication rate under latency requirements
and devices’ resource constraints.

Last, the required connectivity type for split inference de-
pends on the specific application. For the family of mission-
critical applications (e.g., finance, auto-driving, and auto-
mated factories), URLLC connectivity is required[196]. For
instance, remote inference for autonomous driving is ex-
pected to have 1 ms latency and near 100% reliability in
communication[197,198]. Other applications are not latency-
sensitive but require close-to-human machine vision (i.e.,
recognition of hundreds of object classes for a high-end
surveillance camera), and eMBB will be needed to transmit
high-dimensional features extracted from high-definition im-
ages.

C. Distributed Consensus
Distributed consensus refers to the process that agents in

a distributed network act together to reach an agreement by
message exchange. A typical algorithm involving each agent
interactively updates its own state based on received informa-
tion on peers’ states[199]. When there are many agents, the
convergence could be slow and as a result, the iterative pro-
cess could incur excessive communication overhead, for ex-
ample, in the specific scenarios of vehicle platooning[99] and
blockchains[102]. To address this issue, the criterion for de-
signing SemCom for efficient distributed consensus is to re-
duce the overhead without significantly decreasing the con-
vergence speed. The key component is the design of effec-
tive encoding that is aware of the algorithm and its objective
and based on the knowledge, extracts, and transmits seman-
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tic information from an agent’s state to others. In the re-
mainder of this subsection, we introduce two representative
scenarios of distributed consensus, namely vehicle platooning
and blockchains, and discuss matching effective coding tech-
niques.

1) Vehicle Platooning: Vehicle platooning is a high-way
automatic transportation method for driving a cluster of con-
nected vehicles in a formation (e.g., a line) to achieve higher
road capacity and greater fuel economy[94]. This requires the
member vehicles to brake and accelerate together based on the
system state, which represents the consensus. Maintaining the
system state requires vehicles to continuously share and up-
date their local states e.g., vehicle parameters (e.g., positions,
accelerations, and velocities), sensing data (e.g., traffic lights,
pedestrians, obstacles, road conditions, and LIDAR imaged
point cloud), and even individual auto-pilot models. Trans-
mitting all the raw state data is impractical. For instance,
a typical autonomous vehicle collects from its sensors up to
several gigabytes of data per second. Thus, it is essential to
design effective encoding to extract from the raw state data
the information essential for convergence to a consensus. To
better understand the principle of a vehicle-platooning algo-
rithm, consider a simple scenario of driving a platoon along
a straight highway in a line formation. In this case, the ef-
fectiveness encoder of each vehicle, say vehicle m, outputs its
distance to its predecessor, sm, and its own speed, vm, which
defines the local state, while its control variable is its accelera-
tion, am. The local states are assumed to be exchanged contin-
uously between vehicles over wireless links. Let rm(τ) denote
the cost at time τ for the front situation (i.e., the relationship
between vehicle-m and its predecessor, vehicle-(m−1)). Typ-
ically, rm(τ) accounts for all or some of the following aspects,
namely safety cost, efficiency cost, and comfort cost, each of
which can be defined as a function of the states of vehicle m
and those of its neighbours (see examples in Refs. [94,95]).
Hence rm+1(τ) represents the behind situation of vehicle m.
Then the local control problem at the vehicle over a duration
T and with the objective of behind-and-front cost minimiza-
tion can be formulated as[94]

min
am

∫ T

0
rm(τ)+ rm+1(τ) dτ, (10)

where τ = 0 denotes the current time instance. Iteratively
solving the problem, applying the computed acceleration, and
broadcasting the local state by all vehicles will eventually
reach their consensus on the platoon’s optimal speed and inter-
vehicle separations gaps. There exists a tradeoff between: 1)
the complexity of effective encoding and the amount of its out-
put information (that determines communication overhead),
and 2) the sophistication of the platooning algorithm. For ex-
ample, a vehicle’s predicted trajectories can be shared with
others in the platoon, requiring effective encoders to compress

the trajectories. Most recently, deep learning has been adopted
to empower platooning. Essentially, CNN-based effective en-
coders are designed to intelligently extract information from
real-time videos captured by on board cameras, such as traffic
lights, lanes, and obstacles[96]. Exchanging such sensing data
and using them for consensus on complex manoeuvres give
the platoon collective intelligence for auto-driving.

Other SemCom techniques have been extensively studied
in the literature. First, URLLC connectivity is required in this
mission-critical application to avoid collisions[100]. In terms
of latency for vehicle platooning, it should be measured and
minimized in terms of information latency rather than the con-
ventional over-the-air latency as the former directly relates to
coordinated control performance[101]. To overcome the limit
of radio resources, its effectiveness allocation for vehicular
platooning should be important aware by identifying critical
and less critical information in vehicles’ state data, allow-
ing them to be compressed accordingly to the specific driv-
ing algorithm[99]. On the other hand, it is proposed that ef-
fectiveness RRM and multi-access should also have situation
awareness and be optimized for a specific vehicular network
topology represented using a graph[100] . Based on the princi-
ples, SemCom techniques are designed based on multi-agent
RL to integrate the operations in the semantic layer and phys-
ical layer (e.g., transmission stopping), thereby reducing the
intensity of communication.

2) Blockchains: A blockchain is a growing chain of
blocks, each of which contains a timestamp (when the block
was published), transaction data of the blockchain, and cryp-
tographic information of the previous block. In this way,
the chain is robust against any alteration of the transaction
data by an individual block as it requires changes on subse-
quent blocks too. As they can implement public distributed
ledgers, blockchains find a broad range of applications rang-
ing from cryptocurrencies to gaming to financial services[98].
In a distributed network containing a blockchain, the devices
are nodes within that blockchain. Nodes can propose changes
to the blockchain by submitting transactions via broadcasting
to all other nodes. One distinctive feature of the blockchain
protocols is that a transaction should be broadcast to all mem-
ber nodes in order to reach consensus. For this reason, trans-
action approval relies on frequent communication to exchange
information and reach a consensus across a large number of
nodes. This motivates the design of effective encoding for
blockchains.

Let us take the example of the application of blockchains
to building construction[97]. A large-scale project involves
a large team and many contractors/sub-contractors that per-
form distributed field works. A blockchain can be used as
a secure distributed ledger to facilitate cooperation and en-
sure construction quality. Based on this platform, the physical
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and functional features of building components are stored in
blocks and validated by all parties. During the construction, a
change made on a particular component (e.g., a new design or
construction progress) by a stakeholder will trigger updating
of all nodes in the blockchain. For this to happen, the change
in question has to be submitted as an updating proposal (i.e., a
transaction) and approved by other nodes upon validation be-
fore it is made on the blockchain. The detailed digital format
of a transaction depends on the choice of data model structure
for that blockchain, such as the Industry Foundation Classes
schema for civil engineering, and the transaction algorithm.
One design of effective encoding for communicating transac-
tions is based on transmitting differential states, called seman-
tic difference transaction (SDT)[97]. Specifically, the SDT-
based encoder compares the objects in the new schema with
the validated ones recorded in the blockchain, aiming to iden-
tify the objects that require updating. Then the encoder gener-
ates the required changes of only the identified objects, which
are broadcast to all other nodes for validation. Compared to
the case in which the whole schema is broadcast, SDT can
substantially reduce the communication overhead, especially
given that the changes are usually minor.

Moreover, there exist fault-tolerant consensus protocols
for further reduction of the communication overhead via
effectiveness-based resource allocation. In the notion of
practical Byzantine fault tolerance (PBFT) consensus, an
effectiveness-based resource allocation mechanism groups
nodes into layers and only executes inner-layer communica-
tion of transactions for convergence of consensus with a given
security threshold[98].

D. Machine-Vision Cameras
Machine vision cameras, which are connected by IoT and

rely on servers for sensing data analysis, are capable of iden-
tifying interested labels in recorded images and videos such
as time, location, and objects[104]. They are commonly used
as standalone cameras or as a surveillance network deployed
in homes, factories, and cities to detect human gestures and
activities[107], for security management[103], or identify de-
fective products on a production line[106]. At a larger scale,
machine-vision cameras are merged into aerial and space
sensing networks to form a universal network[108]. The com-
munication bottleneck of a machine-vision camera network
arises from large-size raw data generated by each camera and
the enormous camera population (e.g., millions of connected
surveillance cameras in a metropolitan city)[200]. A single
frame in 1080P videos consists of two million pixels while
there can be up to 60 frames per second, generating data at a
rate of 100 Mbit/s[201]. In the sequel, we discuss effectiveness
encoding and RRM for efficient SemCom in such a network.

One key feature of effective encoding is to detect regions
of interests (ROIs) in a set of visual data that contain inter-

esting labels and thereby facilitating trimming of videos or
images for efficient streaming to edge or cloud servers for
analysis[104]. A CNN model is commonly deployed as an ef-
fective encoder to detect ROIs. Specifically, consider a set
of K frames (or images), denoted as {Ik}K

k=1, each of which,
say frame k, comprises R regions, denoted as {Ik,r}R

r=1. A
lightweight on-camera CNN detector scans each region of ev-
ery frame to search for interesting objects. For frame k, the in-
dices of spatial ROI will be grouped into the index set FsR(k)
defined as FsR(k) = {r | objects captured in Ik,r}. Then the
number of spatial ROI is |FsR(k)|. In the temporal dimen-
sion, frames comprising interesting objects are then included
into the index set FtR defined as FtR = {Ik | |FsR(k)| > 0}.
Consider security management as an example[103]. A region of
a frame containing dangerous objects such as knives and guns
will be tagged as a spatial ROI. The temporal ROIs sets FtR

are then encoded and transmitted to servers for further analy-
sis while those frames not in FtR can be coarsely compressed
or even discarded.

While conventional RRM schemes deliver video bits in-
discriminately, effectiveness designs targeting machine-vision
cameras differentiate the importance level of sensing data
given their relevance to ROIs, which can be used as DII in
the layer-coupling approach. In terms of quantization, more
bits can be allocated to high-resolution quntization of the pixel
regions in FsR(k) and fewer bits to quantizing background
pixels[104]. In the presence of multiple cameras, the quality
of contents from each camera should be assessed in terms
of how critical they are for executing a given task. Cameras
capturing critical ROIs should be given a higher priority in
RRM[107]. Besides ROI detection, it is possible for cameras
with increasing computation capacity to perform part of data
analysis and extract features from multimedia sensing data us-
ing a DNN model and a knowledge base[105]. Last, it should
be mentioned that given the above operations, IoT-connected
computer-vision cameras can be implemented using either the
layer-coupling or the SplitNet approaches, discussed earlier.

V. KG BASED SEMANTIC COMMUNICATIONS

A KG is composed of the representations of many en-
tities in semantic space and the relations among them.
KGs have become a powerful tool for interpretation and
inference over facts[202,203]. Many massive KGs have
been constructed including Wikidata[204], Google KG[205],
WorldNet[206], Cyc[207], YAGO[208]. They have formed the
foundation for the Internet and a knowledge base for under-
standing how the world works. In particular, large-scale KGs
are used by search engines such as Google, chatbot services
such as Apple’s Siri, and social networks such as Facebook.
In this section, we introduce a paradigm of SemCom featur-
ing the use of KGs as a tool to improve communication effi-
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Fig. 12 An example of KG in Ref. [120]

ciency and effectiveness. In this context, the key function of
a KG is to provide a semantic representation of information
such that semantic encoding is not only efficient but also ro-
bust against communication errors. For H2H communication
in the presence of errors, a KG-based decoder can correct the
errors by decoding the received erroneous message as a cor-
rect one with the highest similarity on the graph[117,118]. For
H2M symbiosis, a KG can function as a set of human behav-
ior rules to exclude unreasonable results due to faulty sensing
results[209-211]. Furthermore, for M2M SemCom, KGs are use-
ful in knowledge sharing between different types of machines
and thereby serve as machine interfaces in heterogeneous net-
works. In the remainder of the section, we will provide a pre-
liminary on KG theory and then discuss KG based SemCom
techniques, applications, and architectures.

A. Preliminary on KG Theory
KG refers to the broad area of a graph representation

of knowledge without a unified definition[120,212]. For con-
crete discussion, we consider the definition introduced in
Ref. [120] where nodes are nouns related to real-world ob-
jects/names/concepts and edges specify their relations. One
example is illustrated in Fig. 12. A fact, a basic element
of knowledge, can be represented by a so-called factual
triple (head node, relation, and tail node) or mathematically
(h,r,t), e.g., (Albert Einstein, Graduated From, University
of Zurich). A node (e.g., h or t) is a vector, say an L-
dimensional vector, storing relevant information, creating an
L-dimensional semantic space. For instance, if Einstein is the
head node h, the tail node t can be “Theory of Relativity”,
“The Nobel Prize”, “University of Zurich”, “Hans Einstein”
(his son), and so on. The relation r is either a vector if the
mapping is distance-based, i.e., h+ r = t, or a matrix (re-
denote r as Mr) if the mapping is semantic-similarity based,
i.e., hTMr = t

T. The knowledge relevant to an object, such

as a human, is potentially infinite. A KG reduces the infinite
knowledge to a finite-dimensional semantic space to enable
practical knowledge processing and transmission.

One potential issue that can arise from the finite dimen-
sionality of a KG is that a fact involving two nodes, h and t,
is still plausible even if it is not captured by the graph due to a
missing edge/relation connecting the nodes. The issue can be
addressed by introducing a scoring function measuring plausi-
bility. Two typical forms of the function, namely the distance-
based and the semantic-similarity based function, are given as
follows[212,213]

fr(h,t) = ‖Mr,1h−Mr,2t‖ , fr(h,t) = ‖h+r− t‖,
(11)

where Mr,1 and Mr,2 are two relation matrices (edges) of the
KG.

Provisioned with sets of valid and invalid facts, a KG can
be constructed using either the rule-based or the data-driven
approach. Either approach requires the definition of a suitable
loss function. One typical choice is the margin-based function
given as[214]

∑
(h,r,t)∈F

∑
(h′,r,t′)∈F ′

max
(
0, fr(h,t)+ γ− fr

(
h′,t′

))
, (12)

where F and F ′ represent the set of valid and invalid triples,
respectively, and γ in (12) is a given margin. Other avail-
able designs include logistic based and cross-entropy based
functions[139,215,216].

KGs are useful for training AI models especially those with
semantic requirements such as linguistic applications and in-
volving human-machine interaction. The structured knowl-
edge in a KG reduces the search complexity in training and
helps improve the accuracy of a trained model. Success has
been demonstrated in the areas of question answering[109,110],



What Is Semantic Communication? A View on Conveying Meaning in the Era of Machine Intelligence 361

Semantic 

representation
Encoder Decoder

Error correction 

and reasoning

Semantic decoder

Knowledge 

graph

Message

Semantic encoder

Knowledge 

graph

Message

Fig. 13 KG-based H2H semantic communications

Output 

message

Historic 

messages

Encoder

Input 

signal

Knowledge 

graph

Reasonable 

reaction

Output 

signal

Fig. 14 KG-based H2M semantic communications

virtual assistants[111,112], dialogue[113], and recommendation
systems[114-116]. Some KG-based techniques and their use in
SemCom are discussed in the sequel.

B. KG-Based H2H SemCom
For H2H SemCom illustrated in Fig. 13, a KG representing

knowledge on the background of the parties or the domain
of their conversation can be injected into a semantic encoder
to boost SemCom efficiency and robustness[117-119]. As
a concrete example, we discuss the use of the design in
ERNIE[118] to encode a simple sentence “Albert Einstein won
the Nobel Prize for physics in 1921”. The most important
component of the KG-assisted encoder is a knowledge
encoder. Consider input tokens representing individual words
in the input sentence/message. Define an entity embedding as
a node of the KG to which some tokens of the input sentence
can be mapped. For instance, the words/tokens “Albert” and
“Einstein” can be mapped to the node “Albert Einstein” of the
KG in Fig. 12 and hence share the same entity embedding.
Similarly, the words namely “Nobel”, “Prize”, and “physics”
are mapped to corresponding nodes of the KG. The distinctive

feature of a knowledge encoder is to fuse the tokens of the
original message with their entity embeddings to generate
output tokens as well as their embeddings targeting a specific
task. The output tokens carry not only the information of
the input tokens but also that of others mapping to the same
entities. For example, an input token “Albert” would generate
the output “Albert” and “Einstein”. The encoder is made of
stacked aggregators, each further consisting of two multi-
head self-attention modules. Note that each such module
is designed to concatenate multiple self-attention modules,
each of which relates different positions of the input single
sequence to compute a representation of the sequence[117].
The use of a knowledge decoder at a semantic receiver can
exploit a KG to correct inaccuracy in the semantic meaning
and fill some missing tokens of a received message as caused
by channel errors during the transmission.

C. KG-Based H2M SemCom
For H2M SemCom, a KG helps a machine to understand

the current context and the semantic information embed-
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ded in the received message from human beings and react
intelligently[123,124], as shown in Fig. 14. To be more specific,
training a model underpinning the machine using structured
knowledge gives it the ability to recognize the entities embed-
ded in the received messages and their relations to other en-
tities, which helps the generation of logical reactions. Such
an approach has found applications in question answering,
dialogue, and recommendation systems[113,116]. In the area
of robotics, imitation learning has been designed based on a
knowledge-driven approach where the robotic assistants im-
itate human by inferring semantic meanings in the observed
human actions[125,126]. Furthermore, in human sensing appli-
cations, KGs can be used to define a set of human behavior
rules.

For concrete discussion, the remainder of the sub-section
focuses on the use of KG in utterance generation, a basic
topic in conversational AI assistants. The task is to generate
relevant utterances (sentences or phrases) from a knowledge
base. In this area, a long-short-term memory (LSTM) network
is widely used. It refers to a specific RNN with long-term
memory for the important and consistent information while
short-term memory for the unimportant information. The ef-
fectiveness of LSTM networks has been proven in enabling a
machine to generate utterances based on the received message,
the knowledge base as well as its dialogue history with the hu-
man partner[109,113]. On the other hand, feeding the DBpedia
KG corresponding to the Wikipedia database into an LSTM
network makes it capable of interpreting questions and pro-
ducing reasonable answers. There also exist other designs.
A KG is provided to a CNN to extract semantic features of
an input question for subsequent answer searching[110]. On
the other hand, a knowledge-driven multi-model dialogue sys-
tem is capable of gesture recognition, image/video recogni-
tion, and speech recognition, providing multi-model human-
like abilities for virtual assistants[111]. Furthermore, KGs can
also render the operations of recommendation systems more
explainable[114-116].

D. KG and M2M SemCom
KGs are related to M2M SemCom in several ways. First,

KGs can provide a platform for implementing large-scale IoT
networks such as smart cities, logistics networks, and vehicu-
lar networks. Consider a vehicular network as an example.
A large-scale dynamic KG can be constructed and period-
ically updated to represent the states of connected vehicles
(e.g., locations, velocities, acceleration, routes, and destina-
tions) and their relationships (e.g., chances of collision and
whether they form platoons)[217]. Such a KG paves a foun-
dation for facilitating vehicle-to-vehicle communication (e.g.,
exchange of state information) to avoid accidents or facili-
tate platooning as well as a platform for traffic management
and operating ride-sharing or car-hailing services. Second,

KGs provide a tool for managing SemCom or other types of
networks to facilitate resource allocation, workflow recom-
mendation, and service selection[133-135]. The machine intelli-
gence needed for efficient network management can be pow-
ered by structured knowledge embedded in a network KG.
Such a KG can be constructed to contain the network topol-
ogy, requirements of different applications, expert knowledge
from community data, product documents, engineer experi-
ence reports, user feedback, etc. Third, an M2M SemCom
system can be deployed to support the extension and updat-
ing of a KG. In particular, SemCom between a large num-
ber of edge devices enables distributed knowledge extraction,
storage, and fusion[127,128]. To this end, each device obtains
up-to-date local knowledge via interaction with its environ-
ment and uploads the real-time knowledge to servers for fu-
sion and updating the global KG[129-132]. The efficient knowl-
edge transmission can rely on some efficient SemCom tech-
nique discussed in the preceding sections (e.g., importance-
aware transmission). Last, KGs can provide a tool for en-
abling inter-operability which is necessary for M2M SemCom
in cross-domain applications, where the knowledge and infor-
mation of devices of heterogeneous types have to be shared
or aggregated[136-138]. One particular architecture for such a
purpose is proposed[137]. It uses a server as a semantic core
to exchange the messages sent by heterogeneous devices by
serving as both a relay and a semantic encoder that translates
a message from one machine language into another.

E. KG-Based SemCom Architectures
First, consider the SplitNet architecture discussed in sec-

tion II.B.2). The use of KGs in training AE and auto-decoders
has been demonstrated to improve their capabilities to decode
the correct semantic meanings from the received messages de-
spite their distortion by communication channels[118]. A re-
lated but different approach is proposed in ERNIE[117], where
combining source information and its corresponding represen-
tation in a KG as inputs to the AE is shown to enhance the
SemCom performance. Next, an architecture featuring KG
server-assisted SemCom is presented[10]. The server located
at the network edge relies on a KG to interpret the semantic
meaning of the messages sent by a source device, efficiently
encode/translate the messages, and then relay the results to
the destination device. As a comprehensive KG can have an
enormous size, its storage and inference complexity far ex-
ceeds the capacities of devices. Offloading the KG to a server
overcomes the limitations of devices to exploit the KG for re-
ducing the SemCom overhead.

VI. TOWARDS 6G SEMANTIC COMMUNICATION

While the 5th generation of mobile networks is being rolled
out around the world, the global research on 6G has started
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with an accelerating pace so that the technologies can be
ready for commercialization in 2030[218-220]. Compared with
preceding generations, 6G will achieve limitless connectiv-
ity that will scale up IoT to become Internet-of-everything
(IoE) and revolutionize networks by connecting human be-
ings to intelligent machines in such a synergistic way as to
create a cyber-physical world[221]. Realizing the vision will re-
quire ubiquitous space-air-ground-sea coverage, very low la-
tency, extremely broad terahertz bands, and AI-native network
architecture[222]. Furthermore, it calls for seamless integration
of communications, sensing, control, and computing. As a re-
sult, SemCom has the potential to play a pivotal role in 6G.
The realization of SemCom will power several new types of
6G services, aiming at creating truly immersive experiences
for humans, such as extended reality (XR), high-fidelity holo-
graphic communications, and all-sense communications[223].
In the sequel, we will discuss the 6G services, their require-
ments for SemCom, and how they can be met by the develop-
ment of 6G core technologies.

6G will feature a broad set of exciting new services and
applications that extend human senses in a fusion of the vir-
tual and physical worlds. They include ubiquitous wireless
intelligence, data teleportation, immersive XR, digital repli-
cation, holographic communications, telepresence, wearable
networks, and sustainable cities. Several of them that are
closely related to SemCom are described as follows, along
with the new challenges they pose to SemCom.

1. Immersive XR: XR is an umbrella term encompassing
VR, AR, mixed reality (MR), and the intersections between
them[6]. Boundless XR technologies will be integrated with
networking, cloud/edge computing, and AI to offer truly im-
mersive experiences for humans, applicable in a wide range
of areas such as industrial production, entertainment, educa-
tion, and healthcare. Its implementation requires the collec-
tion and processing of data reflects or describes human move-
ments and surroundings to generate key features that guide
system operations, e.g., shifting rendered targets and display-
ing particular videos. Smooth human experience relies on in-
tentions and preferences that are being interpreted properly by
devices and machines, so that they can produce and display
desired contents. The continuous human-machine interaction
places XR in the domain of H2M SemCom discussed in sec-
tion III. Relevant designs are similar to SemCom for VR/AR
discussed therein but their requirements are more stringent in
terms of accuracy and diversity of sensing human character-
istics (e.g. head movement, arm swing, gestures, speeches),
data rates (e.g., 1 Gbit/s for 16K VR[6,53]) and latency (e.g.,
motion-to-photon delay below 15-30 ms[56]). Moreover, the
increased reliance on immersive XR on AI calls for SemCom
design that is capable of more efficient support of training
and inference using large-scale AI models (i.e., scaling up
SplitNet).

2. High-fidelity Holographic Communication: Holographic
communication involves the transmission of 3D holograms
of human beings or physical objects. Based on the high-
resolution rendering, wearable displays, and AI, mobile de-
vices will be able to render 3D holograms to display the lo-
cal presence of remote users or machines, creating a more
realistic local presence of a remote human being or physical
object[223]. Scenarios such as remote repair, remote surgery,
and remote education can all benefit from this new form of
communication[218]. This new form of SemCom aims to en-
hance visual perception of users to improve the effectiveness
of virtual interaction. This requires high-resolution encod-
ing of haptic information, colors, positions, and tilts of a hu-
man/object. Displaying interactive high-fidelity holograms re-
quires an extremely high data rate (up to 4.3 Tbit/s) and strin-
gent latency constraints (possibly sub-milliseconds)[218]. Such
requirements make it crucial to boost the efficiency and speed
of semantic/effective encoding and transmission techniques to
unprecedented levels. Moreover, since holographic communi-
cation can potentially involve both human users and machines,
their real-time holographic interaction will require seamless
integration of H2M and M2M SemCom techniques.

3. All-Sense Communication: All five senses, including
sight, hearing, touch, smell, and taste will be included in
6G communications using an ensemble of sensors that are
wearable or mounted on each device. Combined with holo-
graphic communication, the all-sense information will be ef-
ficiently integrated to realize close-to-real feelings of remote
environments[218,221]. Such technologies will facilitate tactile
communications and haptic control. In all-sense communica-
tion, the diversified types of sensing signals create different
new dimensions of information, resulting in the exponential
growth of the complexity of semantic information representa-
tion.

The aforementioned future services present formidable
tasks for developing next-generation SemCom technologies.
On the other hand, breakthroughs in the area are made pos-
sible by leveraging the revolution of 6G technologies. Some
key aspects are described as follows.

1. Almost Limitless Connectivity: While 5G realizes ubiq-
uitous connectivity, 6G will strive to achieve almost limit-
less connectivity. Specifically, in the 6G era, we expect to
experience enormously high bit rates of up to 1 Tbit/s, low
end-to-end latency of less than 100 microseconds or high re-
liability with properly relaxed latency (e.g., 99.999% with
3 ms in new radio vehicle), the high spectral efficiency of
about 100 bit/(s·Hz), massive connections reaching at least
107 devices/km2, and ultra-wide and multi-frequency fre-
quency bands of up to 3 THz with air, space, earth, and sea
coverage[222,224]. As a result, all machines and human be-
ings will not only be connected but do so in a profound, in-
stantaneous way to enable in-depth knowledge sharing and
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interaction, large-scale collaboration, and extensive mutual
care. Naturally, the advanced forms of SemCom techniques
discussed in this article (e.g., human-machine symbiosis and
dialogues, human sensing and care, learning, inference, etc.)
will benefit from almost-limitless connectivity and at the same
time bring to it unprecedented end-to-end performance.

2. Comprehensive AI: AI has been established as a tool
for solving problems originally intractable due to either pro-
hibitive complexity or the lack of models and algorithms. 6G
are being designed to be comprehensive AI systems where AI
will be extensively used for optimizing the overall system per-
formance and network operations[6,225]. At the physical layer,
AI provides a data-driven approach for optimizing modulation
and channel coding. At the system level, AI models can au-
tomate the collaboration between devices and base stations. It
is even possible to apply large-scale AI to optimize the end-
to-end performance of a network by enabling, for example,
network self-recovering and self-organization. An AI com-
prehensive system, which comprises a large number of wire-
lessly connected nodes/entities, intertwines machine learning,
inference, and SemCom. For efficient implementation of such
systems, it is essential to have the availability of a rich library
of advanced SemCom techniques from which highly efficient
effective coding and transmission techniques can be retrieved
and used to support any of a wide range of specific optimiza-
tion tasks and network/system configurations with heteroge-
neous models and complexity. On the other hand, leverag-
ing the omnipresence of AI, more complex and intelligent
SemCom operations can be realized to improve semantic and
effective encoding, thereby deepening the level of H2H and
H2M conversations, and narrowing the quality gap between
machine and human assistance and care.

3. Integrated Communication, Sensing, Control, and Com-
puting: The realization of the 6G applications (such as immer-
sive XR and mobile holograms mentioned earlier) requires re-
solving the conflict between the required extensive computa-
tion capabilities and their reliance on many specialized low-
cost, low-power edge devices. One mainstream approach is
to jointly design communication, sensing, control, and com-
puting so as to improve the overall system performance un-
der the devices’ constraints. Another relevant approach is to
split computing-intensive tasks and offload parts from devices
to edge servers, which provide an edge computing platform,
for execution (which is aligned with the SplitNet approach
discussed in this article). These approaches reflect the main
theme of the 6G innovation, namely the tight integration of
different aspects of data processing and transportation. The
required deep application and semantic awareness by future
wireless techniques will likely place SemCom at the central
stage of 6G development.

There is no doubt that SemCom will continue its growth,
potentially becoming a primary area for technology innova-

tion and breakthroughs in the 6G era. Coupling advanced
SemCom and 6G technologies pave the way towards the dis-
appearance of the boundary between the physical and virtual
worlds.
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[81] ALVAR S R, BAJIĆ I V. Pareto-optimal bit allocation for collabora-
tive intelligence[J]. IEEE Transactions on Image Processing, 2021,
30: 3348-3361.

[82] KO J H, NA T, AMIR M F, et al. Edge-host partitioning of deep
neural networks with feature space encoding for resource-constrained
Internet-of-things platforms[C]//Proceedings of 2018 15th IEEE In-
ternational Conference on Advanced Video and Signal Based Surveil-
lance Piscataway: IEEE Press, 2018.

[83] JAHIER PAGLIARI D, CHIARO R, MACII E, et al. CRIME: input-
dependent collaborative inference for recurrent neural networks[J].
IEEE Transactions on Computers, 2020.

[84] SHAO J, ZHANG H, MAO Y, et al. Branchy-GNN: a device-
edge co-inference framework for efficient point cloud processing[C]//
Proceedings of 2021 IEEE International Conference on Acoustics,
Speech and Signal Processing. Piscataway: IEEE Press, 2021.

[85] LAN Q, ZENG Q, POPOVSKI P, et al. Progressive feature transmis-
sion for edge inference[R]. The University of Hong Kong, 2021.

[86] ZHUANG Z, TAN M, ZHUANG B, et al. Discrimination-aware
channel pruning for deep neural networks[C]//Proceedings of Ad-
vances in Neural Information Processing Systems 31. La Jolla: Neu-
ral Information Processing Systems Foundation, Inc., 2018.

[87] SHI W, HOU Y, ZHOU S, et al. Improving device-edge coopera-
tive inference of deep learning via 2-step pruning[C]//Proceedings of
2019 IEEE Conference on Computer Communications Workshops.
Piscataway: IEEE Press, 2020.

[88] PARK J, KIM J, KO J H. Auto-tiler: variable-dimension autoencoder
with tiling for compressing intermediate feature space of deep neural
networks for Internet of things[J]. Sensors, 2021, 21(3).

[89] CHOI J, CHANG H J, FISCHER T, et al. Context-aware deep feature
compression for high-speed visual tracking[C]//Proceedings of 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Piscataway: IEEE Press, 2018.
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