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Over-the-Air Aggregation for Federated Learning:

Waveform Superposition and Prototype Validation
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Abstract—In this paper, we develop an orthogonal-frequency-
division-multiplexing (OFDM)-based over-the-air (OTA) aggrega-
tion solution for wireless federated learning (FL). In particular,
the local gradients in massive IoT devices are modulated by
an analog waveform and are then transmitted using the same
wireless resources. To this end, achieving perfect waveform
superposition is the key challenge, which is difficult due to the
existence of frame timing offset (TO) and carrier frequency offset
(CFO). In order to address these issues, we propose a two-stage
waveform pre-equalization technique with a customized multiple
access protocol that can estimate and then mitigate the TO and
CFO for the OTA aggregation. Based on the proposed solution,
we develop a hardware transceiver and application software to
train a real-world FL task, which learns a deep neural network
to predict the received signal strength with global positioning
system information. Experiments verify that the proposed OTA
aggregation solution can achieve comparable performance to
offline learning procedures with high prediction accuracy.

Index Terms—Over-the-air aggregation, federated learning,
Internet of Things (IoT)

I. INTRODUCTION

Wireless federated learning (FL) is an emerging technique

that enables a deep neural network (DNN) to be collaboratively

trained by massive Internet of Things (IoT) sensors with the

coordination of an edge parameter server connecting to an

access point (AP), while the privacy-preserving raw dataset is

stored locally without exchange [1]–[6]. In particular, the IoT

sensors iteratively update their local model weights/gradients

locally based on their own datasets according to a broadcast

common global model, and then synchronize a new global

model via weights/gradients aggregation to the parameter

server. As a result, the uplink weights/gradients aggregation

becomes a primary bottleneck because massive sensors will

be involved but the radio resource is limited. Much work has

been done in this area to reduce the aggregation overhead

based on conventional multiple access protocols that allocate

dedicated radio resource to difference sensors. In [7]–[9],
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compression technology is utilized to alleviate the aggregation

burden on weights/gradients exchanges. In [10]–[17], user

scheduling algorithms are designed to reduce the number

of sensors participating in every aggregation iteration. In

essence, all these solutions deal with the trade-offs between

aggregation overhead and accuracy in FL. Fixing the target

learning accuracy, the aggregation overhead generally grows

proportionally to the number of sensors, which usually is very

large, and thus it still imposes a huge requirement on the radio

resource.

Recently, a new technique named over-the-air (OTA) aggre-

gation was proposed to address this scalability issue based on

the fact that the FL aggregation only concerns the summation

of the local weights/gradients instead of the individual updates.

Specifically, all sensors transmit the local updates with analog

uncoded modulation in one common radio resource block

by exploiting the free aggregation property in the wireless

channels. As a result, the increase of involved sensors can

be beneficial with a proper design since the total power

of the aggregated signals increases. Most existing OTA-FL

investigations focus on user scheduling and power control

to minimize the mean squared error (MSE) of the aggre-

gated weights/gradients, and the modification on the learning

algorithm to make sure the FL problem can converge to

the same optimum as the noise-free case. In [18]–[21], a

channel-inversion transmitter is proposed to extract an un-

biased estimator of the updated weights/gradients. In [22],

[23], time-varying precoding is proposed to mitigate the noise

by exploiting the non-stationarity of the gradient updates. In

[24], joint channel-and-data-aware user scheduling is proposed

with dynamic residual feedback to guarantee the training

convergence. In [25], a hierarchical OTA-FL framework is

proposed for the vertical data partitioning. The authors in

[26], [27] prove that the training may converge even without

transmit power control and user scheduling by designing a

dynamic learning rate.

Existing works on the OTA technique all suppose perfect

superposition of the analog waveforms coming from different

sensors since a similar idea has already been verified and

applied for modulation-free remote state estimations [28]–

[32] and the over-the-air fusion of sensor measurements [33]–

[35]. In the existing prototype validation works [36], [37], a

time-domain waveform design is adopted, and the waveform

misalignment is the key issue since the sensors experience dif-

ferent multi-path propagations and also suffer different frame

timing offsets (TOs). The misaligned waveforms not only

cause superposition distortion but also result in inter-symbol

http://arxiv.org/abs/2110.14285v1
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Fig. 1. Illustration of the over-the-air aggregation federated learning system. Sensors train the local NN with local dataset and upload the gradients. The
gradients are aggregated in a wireless channel with an analog waveform and are received by the access point (AP). The aggregated gradients are used to
update the global NN in the server.

interference. In order to alleviate this issue, the direct-sequence

spread spectrum (DSSS) technique is utilized in [36], [37],

which multiplies each analog data symbol by a pseudo-random

sequence with good correlation characteristics. By setting a

long pseudo-random sequence (N ), a high-quality waveform

superposition can be achieved, but the transmission efficiency

is reduced to 1/N . Fortunately, this efficiency loss is negligible

for remote state estimations and sensor measurements since in

these scenarios the size of the data to be transmitted is small.

However, it becomes a critical challenge for OTA-FL since

DNNs usually contain millions of weights, which leads to a

substantial increase in the resource demand.

We propose an effective waveform superposition solution

with prototype validation for the OTA-FL by utilizing the

N -point orthogonal frequency-division multiplexing (OFDM)

transmission. In contrast to [36], [37], the waveforms from dif-

ferent sensors can be aligned automatically in the frequency-

domain sub-carriers, while the time-domain misalignment is-

sue is addressed by the L-length cyclic prefixes. Therefore,

the transmission efficiency is improved to (N −L)/N (while

N ≫ L). However, a new critical issue occurs in the frequency

domain. Specifically, in OFDM transmission, the TO and

the carrier frequency offset (CFO) act as frequency-domain

multiplicative phase noise varying over the sub-carriers. Since

the sensors suffer different TOs and CFOs, the multiplicative

phase noises are different among sensors, leading to failure of

the coherent waveform superposition in the frequency domain.

To address this issue, we further propose a new protocol and

algorithm to estimate and pre-compensate the phase noise

with reasonable pilot overheads. The following summarizes

the critical issues to be addressed and the contributions of the

paper.

• OFDM-based effective waveform superposition solu-

tion for OTA-FL: We propose a novel waveform su-

perposition solution for OTA-FL by utilizing the OFDM

modulation to address the waveform misalignment issue

in existing works. By exploiting the circular convo-

lution property, the waveforms from different sensors

are aligned automatically in the frequency-domain sub-

carriers with the aid of time-domain cyclic prefixes. The

transmission efficiency can be greatly improved by setting

a long OFDM symbol length.

• Protocol and algorithm for phase error pre-

compensation: After utilizing the OFDM, the original

time-domain symbol misalignment issue is transformed

to the phase noise effect in frequency domain. Inspired

by broadband OFDM system imperfection analysis [38],

we further propose an efficient protocol to estimate and to

pre-compensate the phase noise by adding one more sig-

naling round before the consecutive OTA frames for data

transmission. The additional pilot overhead is scalable

to the number of involved sensors and is also negligible

compared to the huge amount of data to be transmitted.

• Real-world prototype design and experimental valida-

tion: We develop the first real-world prototype to prove

the concept of OTA-FL with the proposed waveform

superposition solution. The prototype is designed based

on the Xilinx software defined radio (SDR) solution,

in which we have one AP and two IoT sensors. A

neural network (NN), which predicts the received signal

strength (RSS) given global positioning system (GPS)

information, is trained. Experimental results confirm that

the OTA-FL training can be done successfully with the

proposed waveform superposition solution in practice.

II. SIGNAL MODEL AND TRANSMISSION FRAME

A. Overview of the OTA-FL

In FL, K sensors collaboratively train a global model, which

minimizes the training objective function, given as follows,

with respect to the model weight parameters w:

P(A) min
w

K∑

k=1

ǫkf(w;Dk),



3

where f(·) denotes the learning model function, Dk denotes

the k-th user’s local dataset, and ǫk denotes the ratio of the

dataset size to the global dataset. In the t-th training round,

the model weight wt is broadcast from the server to all the

sensors. Each sensor then calculates the local gradient:

gk,t = ǫk∇f(wt;Dk). (1)

Instead of updating gk,t via the error-free channel by allocat-

ing dedicated resource to each user, the AP aggregates all the

gradients in a common wireless resource, as shown in Fig.

1. If perfect waveform superposition is achieved, the server

may aggregate an unbiased estimation of the true gradient by

utilizing the channel-inversion transmitter:

ĝt =
K∑

k=1

gk,t + zt, (2)

where zt is the additive noise. Then, stochastic gradient decent

(SGD) is applied to update the model, which guarantees the

training may converge to a first-order optimum with a proper

stepsize design:

wt+1 = wt − ηtĝt, (3)

where ηt is the stepsize.

Our key task is to effectively realize equation (2) in practice.

In particular, we need a symbol-level coherent superposition

of the analog waveforms from the sensors, which bears the

information of local gradients gk,t for all k and t.

B. Signal Model

Denote the digital baseband time-domain symbol by x[m]
for m = 1, 2, . . . ,M . The corresponding continuous transmit-

ted signal x (t) =
∑M

m=1 x[m]gT (t−mTs) is constructed by

{x[m]} with a pulse-shaping filter gT (t), where Ts denotes

the baseband sampling period. For the conventional point-to-

point transmission, the received signal is given by

r(t) = x(t) ∗ h(t)ej2π∆ft + w(t), (4)

where ∗ denotes the convolution operation, w (t) ∼
CN

(
0, σ2

)
is the additive white Gaussian noise, ∆f is the

CFO, and h(t) is the multipath channel response, which is

given by

h(t) =
P∑

p=1

apδ(t− τp), (5)

where ap and τp is the channel gain and path delay of the p-th

path (p = 1, 2, . . . , P ), respectively. Next, the received signal

r (t) is down-sampled to discrete values with a TO (denoted

by ∆T ) due to the imperfection of the frame synchronization,

yielding

r[m] =x(t) ∗ h(t)δ(t −mTs −∆T )ej2π∆ft + w[m]

=x(t) ∗ h(t+∆T )δ(t−mTs)e
j2π∆ft + w[m]. (6)

We further define the effective channel as follows:

h̄(t) =h(t+∆T ). (7)

For an N -point OFDM system, according to the Fourier

transform relationship between the delay domain and the

frequency domain, the effective channel of the n-th sub-carrier

(h̃[n]) is given by

h̃[n] = F
[
h̄ (t)

]
δ (f − nfs/N)

= ej2πnfs∆T/N
∑

p

ape
−j2πnfsτp/N

= ej2πnfs∆T/N ã[n], (8)

where F [·] denotes the Fourier transform, fs = 1/Ts is the

baseband sampling rate, and ã[n] is the multipath channel

coefficient.

In the proposed prototype, the transmission frames consist

of three basic sub-frames.

1) Sub-Frame for Frame Timing: The frame timing (FT)

sub-frame is used to identify the starting point of a frame,

which is determined when a correlation peak is observed by

the match filter. In particular, the FT sequence adopts the

up-sampled time-domain differential encoded pseudo-random

BPSK sequence as follows:

xFT [m+ 2] = xFT [m]⊕ q [m] , (9)

for m = 1, . . . ,MFT, where mod (MFT, 2) = 0.

Define xFT [1] = xFT [2] = 1, and q =
{
q [1] , q [1] , . . . , q

[
MFT

2

]
, q

[
MFT

2

]}
∈ {−1, 1}(MFT)×1 is the

pseudo-random BPSK sequence.

2) Sub-Frame for CFO Estimation: The CFO estimation

sub-frame is generated by choosing one active sub-carrier

whose index is nCFO:

xCFO [m] = x̃ [nCFO] e
j2πmnCFO/N , m = 1, . . . ,MCFO, (10)

where MCFO > N is the sequence length, and x̃ [nCFO] ∈ R

is the frequency-domain pilot symbol.

3) OFDM sequence: In this prototype, we adopt OFDM for

both data transmission and OTA aggregation. Suppose that we

have already achieved a successful coarse CFO compensation,

while the residual CFO is given by ∆fr = ∆f −∆f̂ , where

∆f̂ is the estimated CFO. When κN∆frTs ≪ 1 where κ
is the number of OFDM symbols in one frame, ∆fr can

be ignored. In particular, denote the symbol in the n-th sub-

carrier by s̃ [n]. The received signal in the n-th sub-carrier is

approximated by

r̃ [n] =ej2π∆frt0 h̃ [n] x̃ [n] + w̃ [n] , (11)

where t0 is the time stamp of this received symbol, and

ej2π∆frt0 is the difference between t = t0 and t = 0 in the

effective channel.

C. Phase Noise Issue for the Proposed OFDM-based OTA

Aggregation

In order to realize the analog waveform superposition,

a channel-inversion transmitter is suggested in [18]–[21] to

pre-equalize the channel coefficients of different sensors in

each sub-carrier based on the downlink estimated channel.
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Fig. 2. Phase response of the effective OTA aggregation channel of k-th
sensor.

Combining (8) with the residual CFO effect, the effective

downlink channel of the k-th sensor at time t
(k)
DL is given by

h̃
(k)
DL [n] = ej2π(∆f(k)

r t
(k)
DL

+nfs∆T
(k)
DL

/N)ãk[n], (12)

where ∆f
(k)
r is the residual CFO of the k-th sensor and ∆T

(k)
DL

is the downlink TO. Note that the residual CFO of the uplink

channel is opposite to that of the downlink channel. Thus, the

effective uplink channel of the k-th sensor at time t
(k)
UL is given

by

h̃
(k)
UL [n] = ej2π(−∆f(k)

r t
(k)
UL

+nfs∆T
(k)
UL

/N)ãk[n], (13)

where the ∆T
(k)
UL is the uplink TO. After pre-equalization, the

uplink received aggregated signal of the n-th sub-carrier at the

AP is given by

r̃OTA[n] =
∑

k

h̃
(k)
UL [n]

x̃k[n]

h̃
(k)
DL [n]

+ w̃[n]

=
∑

k

ej(φk+2πnfsτk/N)
︸ ︷︷ ︸

effective OTA channel

x̃k[n] + w̃[n], (14)

where φk = −2π∆f
(k)
r (t

(k)
DL +t

(k)
UL ), and τk = ∆T

(k)
UL −∆T

(k)
DL .

It is observed that the OTA waveform superposition is invalid

due to the non-identical effective OTA aggregation channel,

which is caused by two issues, as shown in Fig. 2. First, there

is an unknown phase error φk due to the existence of the

residual CFO. Second, the imperfection of the frame timing

causes a timing offset difference τk in OTA computation for

the k-th sensor, which causes imperfect compensation of the

channel response. Therefore, the k-th sensor requires φk and

τk to perform a proper pre-equalization for OTA aggregation.

Note that φk changes with t
(k)
UL and t

(k)
DL , and τk may be

different with a ±1 sample between two transmissions due

to the synchronization offset.

D. Basic Transmission Frames

In the proposed prototype, there are three types of transmis-

sion frame:

• Preamble for initialization: The frame structure of

the initialization preamble is shown in Fig. 3(a). The

initialization preamble consists of two sub-frames: 1) the

FT sub-frame, and 2) the CFO estimation sub-frame. In

the initialization preamble we use a long CFO sequence to

perform CFO estimation and adjustment at the beginning

of the OTA procedure. In our prototype, the length of the

CFO in the preamble is 106 (i.e., 65.1 ms with a 15.36

MHz digital baseband sampling rate).

……
Frame 

Timing

CFO Estimation

CFO Estimation

Frame 

Timing

Frame 

Timing

Common 

Pilot
st …… th

st …… st …… thth

samples

Initialization Preamble

samples

samples

samples K OFDM symbols

Orthogonal Pilot sequence

D OFDM symbols

Data symbols

1 OFDM 

symbols
D OFDM symbols

OTA Data sequence

Digital Transmission Frame

OTA Frame

(a)
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Data symbols

OFDM 

symbols
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Digital Transmission Frame
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……
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samples
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samples K OFDM symbols

Orthogonal Pilot sequence

OFDM symbols

Data symbols

1 OFDM 

symbols
D OFDM symbols

OTA Data sequence

Digital Transmission Frame

OTA Frame

(c)

Fig. 3. Three basic transmission frame structure. (a) is the Initialization
preamble frame, (b) is the digital transmission frame, and (c) is the OTA
frame.

• Digital transmission frame: The frame structure of

the digital transmission frame is shown in Fig. 3(b).

Compared to the preamble for initialization, the CFO sub-

frame in the digital transmission frame is shorter, which

is set to the length of two OFDM symbols. In addition,

we adopt an orthogonal pilot for channel estimation,

which consists of K OFDM symbols. The orthogonal

pilot OFDM symbol contains 256 sub-carriers with a 32-

length cyclic prefix, and it adopts 4-QAM modulation.

Data symbols are followed with orthogonal pilots, which

adopt 16-QAM.

• OTA aggregation frame: The frame structure of the OTA

aggregation frame is shown in Fig. 3(c). In contrast to the

digital transmission frame, the OTA aggregation frame

does not have a CFO sub-frame. The OTA aggregation

frame uses one common OFDM symbol for all sensors,

and the analog data is modulated with pulse amplitude

modulation in each OFDM subcarrier.

III. PROTOCOL AND ALGORITHMS FOR THE WAVEFORM

SUPERPOSITION

In this section, we address the issues caused by the TO

and the CFO that lead to the failure of OTA aggregation

by proposing a new MAC protocol and the corresponding

algorithms.

A. Brief Introduction to the Proposed Protocol

In order to estimate φk and τk, we proposed a physical layer

protocol to jointly estimate and compensate the TO and CFO

for the OTA aggregation procedure. As shown in Fig. 4, the

OTA aggregation physical layer protocol can be considered as

a two-stage handshake procedure. The first stage is the pre-

equlization stage, which compensates the initial CFO effect

and multi-path fading. The second stage is the online OTA

aggregation stage, consisting of multiple OTA aggregation sub-

stages in which the instantaneous effect of the TO and residual
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Fig. 4. Illustration of the proposed physical layer OTA protocol.

CFO are tracked and compensated. The details of each step

of the protocol are given as follows.

• Pre-equlization Stage (Downlink): The AP broadcasts

a digital transmission frame to trigger the sensors. When

the sensor k receives the frame, it starts a timer and

record the current time t
(k)
DL,0. Then, the effective downlink

channel h̃
(k)
DL,0 is estimated with pilot OFDM symbols.

• Pre-equlization Stage (Uplink): The sensors feed back

a pre-equalized digital transmission frame in (14) as

acknowledgment, and records the current time t
(k)
UL,0. With

the orthogonal pilots, the AP estimates the effective OTA

aggregation channel {h̃
(k)
OTA,0} in (14) to obtain the phase

error {φk,0} and the timing offset {τk,0} in this stage for

each sensor.

• Online OTA Aggregation Stage (Downlink): The AP

broadcasts a digital transmission frame to request the

OTA aggregated data. Each sensor records the time t
(k)
DL,i

when receiving the frame, and estimates the effective

downlink channel h̃
(k)
DL,i. Note that in the 1-st OTA

aggregation operation, {φk,0} and {τk,0} are broadcast

to the sensors by the AP.

• Online OTA Aggregation Stage (Uplink): The timer

records the current time t
(k)
UL,i. The downlink and up-

link period between the previous and the current OTA

aggregation sub-stage, ∆t
(k)
DL,i = t

(k)
DL,i − t

(k)
DL,i−1 and

∆t
(k)
UL,i = t

(k)
UL,i − t

(k)
UL,i−1, are calculated. Each user

estimates φk,i and τk,i according to the effective down-

link channel h̃
(k)
DL,i, the downlink period ∆t

(k)
DL,i, and the

uplink period ∆t
(k)
UL,i. Then the OTA aggregation frame

is transmitted after pre-equalization with estimated φk,i

and τk,i simultaneously, which is shown in Section III-B.

B. Phase Error Estimation and Compensation

In the proposed protocol, the OTA pre-equalization requires

the estimated phase noise {φ̂k} and the estimated timing

offset {τ̂k}. Specifically, {φ̂k,0} and {τ̂k,0} are estimated in

the pre-equlization stage at the AP side. As illustrated in

Section II-C, φ̂k changes with tDL and tUL, such that in

the i-th OTA aggregation sub-stage uplink step it changes

to φk,i = e−j2π∆f(k)
r (∆t

(k)
DL,i

+∆t
(k)
UL,i

)φk,i−1. As a result, the

residual CFO ∆f
(k)
r needs to be estimated to perform correct

OTA aggregation. We first introduce the estimation method

for the desired variables. The estimation of the channel h̃ is

denoted by ĥ.

1) Estimation of {φk,0} at the AP: As shown in Fig. 2,

φk,0 reflects on the intercept of the effective OTA aggregation

channel phase response in the pre-equlization stage. Thus, it

can be estimated through the average phase of the effective

OTA aggregation channel as

φ̂k,0 =
1

N − 2

N/2−1
∑

n=1

(∠ĥ
(k)
OTA,0[−n] + ∠ĥ

(k)
OTA,0[n]), (15)

where we restrict ∠ĥ
(k)
OTA,0[n + 1] − ∠ĥ

(k)
OTA,0[n] ∈ (−π, π] to

avoid the phase ambiguity.

2) Estimation of {τk,0} at the AP: As shown in Fig. 2,

τk,0 reflects on the slope of the effective OTA channel phase

response in the pre-equlization stage. Thus, it can be estimated

by taking the average of the phase increment of the effective

OTA aggregation channel between the adjacent sub-carriers:

τ̂k,0 =
N

2πfs
∠

N/2−2
∑

n=−N/2

ĥ
(k)∗
OTA,0[n] · ĥ

(k)
OTA,0[n+ 1]. (16)

3) Estimation of ∆f
(k)
r at the k-th Sensor: From (12),

the relationship between the two effective downlink channels

h̃
(k)
DL,i−1 and h̃

(k)
DL,i is given by

h̃
(k)
DL,i[n] = ej2π∆f(k)

r ∆t
(k)
DL h̃

(k)
DL,i−1[n]. (17)

So the residual CFO ∆f
(k)
r can be estimated by

∆f̂ (k)
r =

1

2π∆t
(k)
DL,i

∠

N/2−1
∑

n=−N/2

ĥ
(k)∗
DL,i−1[n] · ĥ

(k)
DL,i[n]. (18)

Note that when |∆f
(k)
r ∆t

(k)
DL,i| ≥ 1/2, there will be phase

ambiguity, causing the error of ∆f̂
(k)
r . So the residual CFO

must satisfy

|∆f (k)
r | <

1

2∆t
(k)
DL,i

. (19)

4) Phase Noise Compensation in the OTA Aggregation

Stage: With the above estimation results, the pre-equalization

in the OTA aggregation stage can be designed. First, φ̂k,i is

given by

φ̂k,i = e−j2π∆f̂(k)
r (∆t

(k)
DL,i

+∆t
(k)
UL,i

)φ̂k,i−1. (20)
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Then, the ±1 sample difference between τ̂k,i and τ̂k,i−1 can

be obtained by comparing h̃
(k)
DL,i and h̃

(k)
DL,i−1. Finally, the pre-

equalized symbol at sensor k in the i-th OTA aggregation

operation is given by

x̃k,e[n] =
1

ej(φ̂k,i+2πnfsτ̂k,i/N)ĥ
(k)
DL,i[n]

x̃k[n], (21)

Combining (14), (17) and (21), the aggregated signal at the

AP is given by

r̃OTA[n] =
∑

k

h̃
(k)
UL,i[n]x̃k,e[n] + w̃[n]

=
∑

k

x̃k[n] + w̃[n], (22)

which satisfies the requirements of waveform superposition for

the OTA aggregation procedure.

C. Carrier Frequency Offset Estimation

Effectiveness of the proposed protocol for waveform su-

perposition requires residual CFO |∆f
(k)
r | < 1/(2∆t

(k)
DL,i).

Thus, CFO compensation and residual CFO tracking is critical.

To address this issue, we propose a two-step method to

compensate the CFO for the OTA aggregation procedure:

1) initialization of coarse CFO correction, and 2) residual

CFO tracking. Specifically, initialization of CFO correction

is performed immediately after the prototype enters the OTA

aggregation state, and residual CFO tracking is performed to

monitor the value of the residual CFO.

1) Coarse CFO Estimation: At the system startup stage,

an initialization of CFO correction is performed to guarantee

the residual CFO is within the requirement of the system.

Specifically, the CFO estimation is performed with the initial-

ization preamble with a maximum likelihood estimator. Given

the received preamble rInit [m], the estimated coarse CFO ∆f̂c
is given by [39]

∆f̂c =
1

2πTsLSPAN

∠

MCFO∑

m=1

r∗Init [m] rInit [m+ LSPAN] , (23)

where Ts is the baseband sampling period, and

LSPAN is the length of the span, which satisfies that

∠r∗Init [m+ LSPAN] rInit [m] = 0. As such, the coarse CFO

estimation range is ∆f̂c ∈
(

− 1
2TsLSPAN

, 1
2TsLSPAN

]

.

2) CFO Tracking: The residual CFO is tracked to ensure

that it satisfies the requirement of the OTA aggregation pro-

tocol since the CFO usually varies slowly. Given the received

signal with residual CFO ∆fr by (13), and that the channel

is unchanged during the OTA aggregation procedure, the

received signal in the n-th subcarrier at time tp is denoted

as r̃ [n] (tp), which can be obtained by

r̃ [n] (tp) =ej2π∆fr tp h̃ [n] x̃ [n] + w̃ [n] . (24)

PS ARM PL FPGA

AXI Bus
Bottom-level driver

Software application

Physical Interface Data Exchange

Transceiver

Prototype System

Fig. 5. Structure of the prototype system. There are two parts in the system:
1) the PS ARM part, which runs the software application and driver, and 2)
the PL ARM part, which runs the physical layer transceiver modules. The
data exchange between PS-PL is handled by an AXI bus.
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Fig. 6. The state machine (SM) for control logic in the prototype. The system
initialization state is the IDLE state, and the state transition depends on last
state and input signals. The SM is divided into two parts: part A is for the
OTA and part B is for digital communication.

The estimated residual CFO ∆f̂r can be obtained by periodi-

cally sending an identical pilot frame. Specifically, for N -point

OFDM symbols, the ∆f̂r at time tp is given by

∆f̂r (tp) =
1

(tp − tp−1)N

N∑

n=1

∠
r̃ [n] (tp)

r̃ [n] (tp−1)

= ∆fr + φw, p = 1, . . . , P, (25)

where φw ∼ N
(

0, σ2
φw

)

is the phase noise caused by additive

Gaussian noise. Given (14), the sequential estimation of the

CFO is denoted as ∆f̄r (tp), which is given by

∆f̄r (tp) =
p− 1

p
∆f̄r (tp−1) +

1

p
∆f̂r (tp) , ∀p. (26)

IV. DEVELOPING KEY MODULES

As shown in Fig. 5, the prototype system consists of two

major parts: 1) the programmable software (PS) ARM, and 2)

the programmable logic (PL) FPGA. The key signal processing

modules are designed in PL, and these modules are controlled

by PS. The data exchange between PS-PL is performed with

a physical AXI bus.

A. Control Logic Designs in the ARM Platform

The control logic for the transceiver is implemented as a

state machine (SM), which is shown in Fig. 6. As the figure

shows, each block represents a state, and the state transition

depends on the previous state and current input signals. The

SM can be divided into two parts. In part A, the SM provides

the control logic for OTA aggregation operation, and in part



7
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Fig. 7. Physical layer transceiver structure. The upper link is the receiver
channel and the bottom link is the transmitter channel. Two enable signals are
controlled by the SM control logic for either digital communication purposes
or OTA purposes.
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Fig. 8. Performance of frame timing. (a) The probability of correct synchro-
nization when a valid correlation peak is detected, and (b) The probability of
the correlation peak detection.

B, it provides the control logic for digital communication. The

SM part A is implemented according to the proposed protocol.

B. Transceiver Module Designs in the FPGA

The proposed prototype performs real-time signal process-

ing in the PL FPGA with a customized transceiver module.

The structure of the transceiver module is shown in Fig.

7. As shown in the figure, the transceiver consists of a

transmitter chain and a receiver chain consisting of four key

sub-modules: 1) the frame detection and timing module, 2)

the CFO estimation and compensation module, 3) the channel

estimation and compensation module, and 4) the data pre-

equalization module.

1) Frame Detection and Timing: The frame detection and

timing module finds the start point of a received frame, which

is realized with a differential decoder and correlator. To be

specific, the received samples are first differentially decoded,

and then cross correlation is performed with the known PR

BPSK sequence as

q̂ [m] = sign (r [m] r∗ [m+ 2]) , (27)

Corr [m′] =

∞∑

m=−∞

q̂ [m] q [m−m′] , (28)

where Corr [m′] is the output result of the correlation sequence.

Under a noise-free channel, the maximum correlation output

value is equal to MFT − 2. The start point of a frame m0 is

obtained as

m0 = argmax
m′

|Corr [m′]| −MFT + 1. (29)
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Fig. 9. The CFO estimation performance. Coarse CFO estimation sequence
length is 10

6. (a) The residual CFO after coarse CFO estimation and
compensation, and (b) The NMSE of residual CFO estimation with SNR
= 0 dB.

A threshold γth is defined so that only Corr [m0] ≥ γth is

denoted as a valid correlation output, and we set γth = MFT−2
2 .

As shown in Fig. 8, a longer FT sequence achieves a higher

probability of correct frame timing and a higher probability of

miss detection.

2) Carrier Frequency Offset Estimation and Correction:

After the start point of the received frame, the coarse CFO

estimation sequence can be obtained. As introduced in Section

III-C, the coarse CFO estimation is performed with a maxi-

mum likelihood estimator. The estimated coarse CFO is com-

pensated for both digital transmission and the OTA procedure.

To evaluate the performance of the coarse CFO estimation,

we define the normalized mean square error (NMSE) of the

estimated coarse CFO as

NMSECFO =
‖∆f̂c −∆fc‖22

‖∆fc‖22
. (30)

As shown in Fig. 9(a) the residual CFO after coarse CFO

estimation and compensation decreases with an increasing

SNR. With a SNR over 0 dB, the residual CFO after coarse

CFO compensation is within 10 Hz, while the requirement of

maximum residual CFO in our prototype is 500 Hz.

After the coarse CFO is estimated and compensated, the

residual CFO is estiamted and tracked sequentially by using

the algorithm in Section III-C. As shown in Fig. 9(b), the

NMSE of ∆f̄r (tp) is decreasing with respect to the number of

estimations. Denoting the sequential estimation of the residual

CFO at time stamp tp as ∆f̄r (tp), the estimation period is

given as ∆t = tp − tp−1, ∀p. The system will request a new

coarse CFO correction if ∆t∆f̄r > 1/2.

3) Channel Estimation and OFDM Symbol Reconstruction:

The channel estimation is performed with a least-square esti-

mator in each sub-carrier. The received pilot OFDM symbols

are obtained with DFT as r̃
′

pilot = DFT
(

r
′

pilot

)

. Thus, the

estimated channel coefficients in the n-th sub-carrier ĥ [n] is

given by

ĥ [n] =
r̃
′

pilot [n]

x̃pilot [n]
, n = 1, . . . , N. (31)

The OFDM symbols x̂data are reconstructed with estimated

channel coefficients as x̂data [n] = ĥ−1 [n] r̃
′

data [n] , n =
1, . . . , N . As shown in Fig. 10, after the channel estimation
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Fig. 10. Constellation of the received OFDM symbols before and after channel
equalization. The received SNR is 30 dB. (a) The channel response is not
compensated, and (b) The channel response is estimated and compensated.
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Fig. 11. NMSE evaluation for DOTA. There are 200 measurements in this
experiment and we evaluate the measruement results with/without TO and
CFO compensation. (a) shows the NMSE of each measurement result, and
(b) shows the cumulative probability function of the NMSE. It can be seen
that 90% of measurements can obtain an NMSE of less than 0.01 by using
the proposed protocol.

and compensation, the received 16-QAM OFDM symbols can

be decoded correctly.

4) Data pre-equalization module: The data pre-

equalization module is for OTA aggregation purposes,

which follows the method in Section III-B. In order to verify

the performance of the proposed OTA aggregation protocol

and transceiver, we perform an ‘A+B’ test for two random

number sequences by using the OTA aggregation approach. In

particular, two IoT sensors transmit two independent identical

distributed (i.i.d.) random number sequences dA and dB , and

the AP obtains the result dOTA with the OTA aggregation

approach. Denoting the true result of dA + dB as dtrue, we

evaluate the NMSE of the OTA aggregation result, which is

given by

NMSEd =
‖dOTA − dtrue‖22

‖dtrue‖22
. (32)

As shown in Fig. 11, with the proposed protocol, the

NMSE for OTA aggregation results improved significantly.

The NMSE of all the results among 200 sets of measurements

are less than 0.05, and this shows that 90% of the results have

an NMSE of less than 0.01.

V. PROTOTYPE FOR OTA FL

With the proposed OTA aggregation protocol and the

transceiver module, we can design the prototype for OTA-

FL. The proposed prototype consists of the hardware platform

and software applications. The hardware platform is used
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Fig. 12. System Setup. There are two sensors and one AP. Each sensor uses
a ZC706 FPGA for baseband signal processing and the AP uses a ZCU102
FPGA for baseband signal processing. The Radio front end is AD9361 and
we use a circulator between transmitter and receiver for sharing antenna.
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Fig. 13. Application layer protocol for proposed OTA prototype. Communi-
cation between host PC and AP uses TCP/IP.

for implementation of the proposed transceiver and OTA

aggregation protocol, and software applications are designed

to perform the FL operation. In this section, we introduce the

design of the proposed prototype with one AP and two sensors

to learn an NN federatively for a toy task.

A. Brief Introduction to the Design

The structure of the hardware platform is shown in Fig. 13.

As shown in the figure, the platform consists of an RF front-

end (RFE) and a system-on-chip (SoC) baseband processing

unit. In the setup, the AD9361 is adopted as the REF, the AP

uses a Xilinx-ZCU102 SoC, and IoT sensors use a Xilinx-

ZC706 SoC. The system parameters are listed as follows:

• The digital baseband sampling rate is 15.36 MHz;

• The RF baseband sampling rate is 30.72 MHz;

• The carrier frequency is 2.72 GHz, and the RF bandwidth

is 40 MHz.
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Fig. 14. The RSS coverage map of the AP. The red markers denote the APs
site position. We consider 2 AP sites and take 2000 RSS measurements within
a circle with a 400 m radius from a center between two APs.

The software application for the FL operation follows an

application layer protocol, which is provided in Fig. 13. We

summarize the application layer protocol as follows.

• Step 1: The host PC initializes the model weights, and

sends the weights to the AP. The host PC starts the FL

training operation;

• Step 2: The AP broadcasts the model weights to the

sensors;

• Step 3: The sensors perform local training, and perform

OTA aggregation for the gradients;

• Step 4: The AP receives the OTA aggregation results and

updates the model weights;

• Step 5: Return to Step 2 and repeat until convergence;

• Step 6: The AP reports the final model weights to the

host PC at the end of the training.

B. FL problem to be learnt

In order to verify the performance of the proposed proto-

type, we promote an FL problem by training a fully connected

NN that predicts the RSS given the GPS information (latitude

and longitude) of a sensor. As shown in Fig. 14, we set

the position of two AP sites (red markers) and generate the

coverage map with the MATLAB communication toolbox.

With the radio coverage map, two sensors are randomly

placed within a circular area with 400 meter radius with a

center between two AP sites. The sensors take 2000 RSS

measurements as training data. Note that the RSS that is closer

than 20 meters to the AP sites is not measured. The prediction

NN is trained with an OTA aggregation approach by using the

proposed prototype. The structure of the NN is shown in Table.

I.

C. Finally testing

In this subsection, we use the proposed prototype to solve

the promoted FL problem with the OTA method. To evaluate

the performance of the proposed prototype, we show the

training loss to demonstrate the convergence, and we compare

TABLE I
NN STRUCTURE FOR RSS PREDITION

Operation Layer Size of output

Input GPS 2

Fc 1
Fully connected 20

ReLU 20

Fc 2
Fully connected 20

ReLU 20

Fc 3 Fully connected 20

Predicted RSS 1

the predicted RSS with the ground truth. The training result is

shown in Fig. 15. We can see that our proposed OTA aggrega-

tion solution (the blue curve) achieves a similar convergence

speed to the offline training (the red curve), in which the local

gradients of the two sensors are aggregated noiselessly. The

normalized squared predication error on the test set is shown

in Fig. 16.
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Fig. 15. The training performance of the FL problem. The learning rate is
set by ηt =

2

2000+t
. Each sensor stores 1000 pieces of training data. In

each round, each sensor randomly picks 200 samples to calculate the local
gradient.
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Fig. 16. The heatmap of the prediction error. The NMSE of most positions
is below 0.005 with the exception of the positions that are close to AP sites
due to the lack of training data.
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VI. CONCLUSION

In this paper, we developed an OFDM-based over-the-

air aggregation solution for a real-world federated learning

task. Specifically, we analyzed the effect of frame timing

offset and carrier frequency offset in the over-the-air ag-

gregation channel, and proposed a two-stage waveform pre-

equalization technique with a customized multiple access

protocol to estimate and mitigate the timing offset and carrier

frequency offset for the over-the-air aggregation. Based on

the proposed protocol, we developed the prototype with a

hardware transceiver and corresponding application software

to train a deep neural network that predicts the radio signal

strength with global positioning system information. To verify

the performance of the proposed prototype, we performed

experimental measurement and compared the learning results

of over-the-air aggregation with offline learning results. From

the experimental results, we can see that the proposed OFDM-

based over-the-air aggregation prototype is capable for real-

world federated learning tasks.
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