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Abstract

This paper studies the fundamental limit of semantic communications over the discrete memoryless

channel. We consider the scenario to send a semantic source consisting of an observation state and its

corresponding semantic state, both of which are recovered at the receiver. To derive the performance

limitation, we adopt the semantic rate-distortion function (SRDF) to study the relationship among the

minimum compression rate, observation distortion, semantic distortion, and channel capacity. For the

case with unknown semantic source distribution, while only a set of the source samples is available,

we propose a neural-network-based method by leveraging the generative networks to learn the semantic

source distribution. Furthermore, for a special case where the semantic state is a deterministic function of

the observation, we design a cascade neural network to estimate the SRDF. For the case with perfectly

known semantic source distribution, we propose a general Blahut-Arimoto algorithm to effectively

compute the SRDF. Finally, experimental results validate our proposed algorithms for the scenarios

with ideal Gaussian semantic source and some practical datasets.
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I. INTRODUCTION

With the extensive deployment of artificial intelligence in wireless communications, semantic

communication is emerging as a hot research area for future communication systems[2]–[4]. Unlike

conventional communication technologies that aim to accurately transmit bit information from

the transmitter to the receiver, semantic communication is geared towards some specific semantic

tasks, e.g., security monitoring[5] and edge inference[6]. Moreover, by extracting and encoding

desired information from the source data that is most relevant to the considered semantic

tasks, semantic communication dramatically reduces resource consumption for communications.

Therefore, semantic communication is expected to flourish in many practical scenarios, e.g.,

virtual reality[7] and smart cities[8].

Semantic communication was first introduced by Shannon[9] and Weaver[10] in the 1950s,

aiming to study the precise transmissions of semantic information. Since then, researchers have

been working for several decades on how to define and model semantic information. Carnap

and Bar-Hillel[11] proposed a logical probability-based approach to replace the statistical one in

classical information theory where the amount of information is determined by its statistical rarity.

Floridi[12] further proposed a semantic information theory based on logical probabilities, aiming

to resolve the semantic paradox problem[13]. However, the subjectivity of semantic understanding

among different people poses a challenge in designing the logical probability functions that can

be widely applied in practice. Moreover, many recent works focused on deep learning (DL)-

based joint source-channel coding (JSCC)[14]–[16], i.e., the source coding and channel coding are

jointly optimized by using deep neural networks, and DL-based separate source-channel coding

(SSCC)[17]–[19], i.e., a deep neural network is designed to compress source symbols, followed by

a classical channel coding scheme, e.g., low-density parity check coding[20], to implement the

point-to-point semantic communications.

Recently, a new type of semantic source model was discussed in Ref. [21] and [22], and

the semantic source is modeled as two distinct parts: an extrinsic observation and an intrinsic

semantic state. Taking video as an example, the video signal itself represents the extrinsic

observation, and its features, which are generated based on this video for certain tasks, such

as action recognition[23] and object detection[24], correspond to the intrinsic semantic state.
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Two distortion measures, namely the observation and semantic distortions, were adopted to

study the semantic rate-distortion function (SRDF)[21], [22], which is defined as the minimum

compression rate subject to the maximum tolerable observation and semantic distortions. In

this semantic source model, semantic state is generally not observable while can be inferred

from the observation[21]. Then, the source encoder only focuses on encoding the observation

and the decoder reconstructs both the semantic state and the observation, subject to both the

semantic and observation distortion constraints. Under this framework, it has been shown[22], [25]

that SSCC performs the same as JSCC over the infinite discrete memoryless channels. However,

SRDF generally has no closed-form expression[22], and can only be effectively solved for some

specifically distributed semantic sources, e.g., Gaussian[22] and binary sources[26]. Considering

the high-dimensional feature of the semantic sources, e.g., text[27], speech[28], and images[29],

their distributions are general and difficult to be well modeled, making it extremely challenging

to compute the corresponding SRDFs.

Despite many efforts already made in the field of semantic communications, there remains an

absence of theoretical research on the fundamental analysis of SRDFs for generally distributed

sources. To deal with this issue, the purpose of this paper aims to analyze the fundamental

limits of the point-to-point semantic communications for general semantic sources. Specifically,

inspired by the semantic source model proposed in Ref. [21], we consider a semantic source

pair at the transmitter consisting of the extrinsic observation and its intrinsic semantic state.

Here, only the observation data is compressed and encoded at the transmitter and then sent

over a discrete memoryless channel to the receiver, where both the extrinsic observation and the

semantic state are finally recovered. We aim to compute the corresponding SRDF for generally

distributed semantic sources, which reveals the trade-off among the compression rate, observation

distortion, semantic distortion, and channel capacity. Moreover, for the case with imperfectly

known semantic source distribution, i.e., only a certain amount of source samples are available,

motivated by the neural estimation method for traditional rate-distortion functions[30], we design

a neural estimator for SRDF: first, we show that SRDF can be rewritten as an inf-sup problem

via its dual property; then, we leverage generative networks to solve this problem and derive the

neural estimation of the SRDF (NESRD), and further show NESRD to be a strongly consistent

estimator; finally, when the semantic state is a deterministic function of the observation, we

design a cascade neural network framework to train the derived NESRD. For the case with

perfectly known semantic source distribution, we generalize the conventional Blahut-Arimoto
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(BA) algorithm to numerically compute SRDF and analyze the computational complexity of this

proposed algorithm.

The rest of this paper is organized as follows. Section II introduces the SSCC-based framework.

Section III derives the neural estimator for SRDF under the case with unknown semantic source

distributions. Section IV proposes the general BA algorithm to calculate SRDF for the case with

known semantic source distributions. Experimental results are presented and discussed in Section

V to validate the theoretical results. Finally, Section VI concludes this paper.

Notation: log(x) and ln(x) denote base-2 and natural logarithms, respectively;ex stands for

natural exponent; |X | denotes the size of finite alphabet X ; max{x, y} is the maximum value

between two real numbers x and y; EPX
(·) is the expectation for random variable X with

probability distribution PX .

II. SYSTEM MODEL

We consider a general semantic communication system, where the transmitter compresses the

source data and then transmits it through a point-to-point discrete memoryless channel to the

receiver for data recovery and processing specific semantic tasks. Here, a memoryless semantic

source is modeled as a pair of random variables1 (X,S) with a joint probability distribution

(X,S) ∼ P(X,S) supported on a finite product alphabet X ×S , where X represents the extrinsic

observation of the source, S is the intrinsic semantic state relevant to the considered semantic

task, and X and S are the alphabets of X and S, respectively.

Source 
encoder

Source 
decoder

Channel 
encoder

Channel 
decoder

Channelo
ˆ( )x , xn nd

s
ˆ( )s , sn nd

x̂n

ŝn

sn

( | )x sn nP
xn W

Ŵ

cxn

cx̂n

Fig. 1: Framework of SSCC scheme for semantic communications.

1X and S can be random vectors for the case that they are obtained from high-dimensional sources, e.g., text[27] and images[29].
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As shown in Fig. 1, an SSCC-based semantic communication framework over the discrete

memoryless channel is considered in this paper. The transmitter sends a sequence of length-

n independent and identically distributed (i.i.d.) samples of source pair (X,S), denoted as

(xn, sn) = (x1, · · · , xn, s1, · · · , sn). The source encoder has access to observation sequence xn,

whereas xn is related to semantic state sequence sn through a conditional probability P (Xn =

xn|Sn = sn). Then, xn is compressed by the source encoder into an index W ∈ {1, · · · , 2nRs},

with Rs being the compression rate. After that, W is encoded by the channel encoder into a

length-n channel codeword xn
c . Then, xn

c is transmitted via the discrete memoryless channel,

and x̂n
c is the received symbol sequence. At the receiver, the channel decoder decodes x̂n

c as

an estimated index Ŵ . Finally, the source decoder recovers the observation and semantic state

sequences as x̂n = (x̂1, · · · , x̂n) and ŝn = (ŝ1, · · · , ŝn), respectively.

We denote reproduction observation and semantic states as X̂ and Ŝ, respectively, taking values

from alphabets X̂ and Ŝ, respectively. Then, we define do : X × X̂ → [0,+∞) as the single-

letter observation distortion between observation state X and its reproduction X̂ , and define

ds : S × Ŝ → [0,+∞) as the single-letter semantic distortion between semantic state S and its

reproduction Ŝ. Correspondingly, the block-wise observation and semantic distortion measures

are defined as do(x
n, x̂n) ≜ 1

n

n∑
i=1

do(xi, x̂i) and ds(s
n, ŝn) ≜ 1

n

n∑
i=1

ds(si, ŝi), respectively[22].

Then, denote Do and Ds as the maximum tolerable observation and semantic distortions, respec-

tively, and characterize the minimum of compression rate Rs that achieves a pair of distortions

(Do, Ds) in the following lemma, whose proof is given in Ref. [21] and [22].

Lemma 2.1: The minimum compression rate to achieve distortion pair (Do, Ds), i.e., SRDF

R(Do, Ds), is given as

R(Do, Ds) = min
P(X̂,Ŝ)|X

E[do(X,X̂)]≤Do

E[d̂s(X,Ŝ)]≤Ds

HKL

(
P(X,X̂,Ŝ)||PX × P(X̂,Ŝ)

)
, (1)

where design variable P(X̂,Ŝ)|X is the conditional distribution of (X̂, Ŝ) given X and PX is the

distribution of X . Besides, P(X̂,Ŝ) and P(X,X̂,Ŝ) are the joint distributions of (X̂, Ŝ) and (X, X̂, Ŝ),

respectively, which can be computed by PX and P(X̂,Ŝ)|X , and HKL(P(X,X̂,Ŝ)||PX × P(X̂,Ŝ)) is

the Kulolback-Leibler (KL) distance between joint distribution P(X,X̂,Ŝ) and product distribution

PX × P(X̂,Ŝ). Moreover, d̂s(x, ŝ) =
∑

s∈S PS|X(s|x)ds(s, ŝ) is a distortion measure satisfying

d̂s : X × Ŝ → [0,+∞), with PS|X being the conditional distribution of S given X , and its
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expected distorion E[d̂s(X, Ŝ)] is equivalent to E[ds(S, Ŝ)].

It is noted that the asymptotic optimality of semantic communications over the infinite discrete

memoryless channel can always be obtained by SSCC[22], [25]. Then, under the considered SSCC

framework shown in Fig. 1, the distortion pair (Do, Ds) is considered to be achievable if there

exist separate source and channel codes such that the distortions between the transmitter and the

receiver satisfy E[do(X, X̂)] ≤ Do and E[d̂s(X, Ŝ)] ≤ Ds. Moreover, we can immediately derive

the following lemma to characterize the achievability of distortion pair (Do, Ds).

Lemma 2.2: Utilizing the SSCC framework depicted in Fig. 1, distortion pair (Do, Ds) is

achievable if and only if

R(Do, Ds) ≤ C, (2)

where C is the channel capacity of the considered memoryless channel.

Remark 2.1: Denote Do
max as the maximum of observation distortion Do, which is computed

as the minimum expected distortion between X and x̂ ∈ X̂ [31], i.e., Do
max = minx̂∈X̂ E[do(X, x̂)].

Similarly, define Ds
max as the maximum of semantic distortion Ds, i.e., Ds

max = minŝ∈Ŝ E[d̂s(X, ŝ)].

Then, R(Do, Ds) has the following properties:

1) R(Do, Ds) is jointly convex with (Do, Ds) and monotonically nonincreasing with respect

to Do and Ds. Moreover, if Do ≥ Do
max and Ds ≥ Ds

max, it follows R(Do, Ds) = 0.

2) For any fixed Ds ∈ [0, Ds
max], there exists a D′

o(Ds) ∈ [0, Do
max] such that R(Do, Ds) =

Rs(Ds) for all Do ≥ D′
o(Ds) > 0, where Rs(Ds) is the conventional rate-distortion function[?]

derived via the distortion between S and Ŝ.

3) Similarly, for any fixed Do ∈ [0, Do
max], there exists a D′

s(Do) ∈ [0, Ds
max] such that

R(Do, Ds) = Ro(Do) for all Ds ≥ D′
s(Do), where Ro(Do) is the conventional rate-distortion

function derived via the distortion between X and X̂ .

Proof: Property 1) can be easily proved by mimicking the proof for that of the conventional

rate-distortion functions[?]. The proofs of properties 2) and 3) can be found in Appendix A.

Remark 2.2: It is easy to observe that Remark 2.1 describes the trade-off among SRDF

R(Do, Ds) and distortions Do and Ds. More specifically, for any fixed semantic distortion Ds, as

the observation distortion Do increases, R(Do, Ds) first decreases, and then becomes a constant

equal to the conventional rate-distortion function Rs(Ds). This implies that there exists a lower

bound of Do for any fixed Ds, denoted as D′
o(Ds), such that R(Do, Ds) is degenerated to Rs(Ds)

when Do ≥ D′
o(Ds). Similarly, there also exists a lower bound D′

s(Do) of Ds such that R(Do, Ds)
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is degenerated to the conventional rate-distortion function Ro(Do) when Ds ≥ D′
s(Do). Numerical

results regarding SRDF R(Do, Ds) are provided in Section V, which show the monotonic and

convex properties of R(Do, Ds) for some specific semantic sources.

However, there are still several challenges in effectively computing SRDF R(Do, Ds) by (1).

First, it is generally not possible to derive an expression for R(Do, Ds) in closed form[22], [31],

and existing numerical methods for computing R(Do, Ds) are limited to some specific sources,

e.g., Gaussian[22] and binary sources[26]. Second, it is much more challenging to compute SRDF

R(Do, Ds) when semantic source distribution P(X,S) is not perfectly known, i.e., only certain

amount of samples of the semantic source pair (X,S) is available. To address these challenges,

we propose two methods to compute R(Do, Ds) based on the assumptions of different levels of

semantic source distribution information.

III. UNKNOWN SEMANTIC SOURCE DISTRIBUTIONS

This section considers the case that the exact distribution information of semantic source

(X,S) is not available, while its realizations are obtained from some large and high-dimensional

datasets. First, we rewrite R(Do, Ds) in (1) as an inf-sup form. Then, we propose a neural-

network-based method to compute R(Do, Ds) and design a cascade neural network framework

for a special case of R(Do, Ds) when S is a deterministic function of X .

A. Reformulation of R(Do, Ds)

Before deriving the inf-sup form of R(Do, Ds), we define a semantic rate function, denoted

as R1(Q(X̂,Ŝ), Do, Ds), representing the compression rate, at which semantic source pair (X,S)

is compressed to achieve distortion pair (Do, Ds), i.e.[32]–[34],

R1(Q(X̂,Ŝ), Do, Ds) ≜ min
P(X̂,Ŝ)|X

E[do(X,X̂)]≤Do

E[d̂s(X,Ŝ)]≤Ds

HKL

(
P(X,X̂,Ŝ)||PX ×Q(X̂,Ŝ)

)
. (3)

Here, Q(X̂,Ŝ) is a joint probability distribution supported on the product alphabet X̂ × Ŝ.

Next, we show that R1(Q(X̂,Ŝ), Do, Ds) has the following dual characterization.

Proposition 3.1: The semantic rate function defined in (3) can be equivalently computed as

R1(Q(X̂,Ŝ), Do, Ds) = sup
α1,α2≤0

α1Do + α2Ds − ΛQ(α1, α2), (4)
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with

ΛQ(α1, α2) = EPX

[
lnEQ(X̂,Ŝ)

eα1do(X,X̂)+α2d̂s(X,Ŝ)
]
. (5)

Proof: Please see Appendix B.

Proposition 3.2: R(Do, Ds) given in (1) can be equivalently computed as

R(Do, Ds) = inf
Q(X̂,Ŝ)

R1

(
Q(X̂,Ŝ), Do, Ds

)
, (6)

and it has the same optimal solutions as problem (1).

Proof: Please see Appendix C.

Together with Propositions 3.1 and 3.2, SRDF R(Do, Ds) can be equivalently written as the

following inf-sup problem

R(Do, Ds) = inf
Q(X̂,Ŝ)

sup
α1,α2≤0

α1Do + α2Ds − ΛQ(α1, α2). (7)

To solve this inf-sup problem, one straightforward idea is to first solve the inner supremum of

(7), and then use the gradient descent method to optimize design variable Q(X̂,Ŝ). As proved in

Appendix B, objective function in (7) is strictly concave with respect to α1 and α2, and thus

possesses a unique solution to its inner supremum satisfying

Do = EPX×Q(X̂,Ŝ)

[
do(X, X̂)

eα1do(X,X̂)+α2d̂s(X,Ŝ)

EQ(X̂,Ŝ)

[
eα1do(X,X̂)+α2d̂s(X,Ŝ)

]] , (8)

and

Ds = EPX×Q(X̂,Ŝ)

[
d̂s(X, Ŝ)

eα1do(X,X̂)+α2d̂s(X,Ŝ)

EQ(X̂,Ŝ)

[
eα1do(X,X̂)+α2d̂s(X,Ŝ)

]] , (9)

where (8) and (9) are obtained by checking the first-order condition of the objective function in

(7). However, it is difficult to get explicit expressions for α1 and α2 from (8) and (9), making the

computation of SRDF R(Do, Ds) challenging. Therefore, we present the following proposition

to address this challenge.

Proposition 3.3: For any fixed α1 and α2, α1, α2 ≤ 0, considering

Q⋆
(X̂,Ŝ)

= arg inf
Q(X̂,Ŝ)

−ΛQ(α1, α2), (10)

SRDF R(D⋆
o , D

⋆
s ) given in (7) is computed as

R(D⋆
o , D

⋆
s ) = α1D

⋆
o + α2D

⋆
s − ΛQ⋆(α1, α2), (11)
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and D⋆
o and D⋆

s are obtained by replacing Q(X̂,Ŝ) in (8) and (9) with Q⋆
(X̂,Ŝ)

, respectively.

Proof: Please see Appendix D.

Remark 3.1: From Proposition 3.3, we observe that:

• In the inf-sup problem (7), instead of focusing on directly solving α1 and α2, we first fix

α1 and α2, and then derive the optimal distribution Q⋆
(X̂,Ŝ)

by solving problem (10). After

that, with the obtained Q⋆
(X̂,Ŝ)

, D⋆
o , D⋆

s , and R(D⋆
o , D

⋆
s ) can be computed by (8), (9), and

(11), accordingly. Finally, by selecting various values of α1 and α2, α1, α2 ≤ 0, we then

plot the whole R(D⋆
o , D

⋆
s ) surface.

• However, similar to problem (1), it is challenging to directly solve problem (10) by conven-

tional optimization or statistical methods. First, design variable Q(X̂,Ŝ) has high-dimensional

characteristics, which makes it difficult to be optimized. For example, for an 8-bit grayscale

image dataset that consists of images with m pixels in size and has n classes, we consider

that each realization of (X̂, Ŝ) is a reconstructed image and its label. Then, the full size of

alphabet X̂ is |X̂ | = 28m and the dimension of Q(X̂,Ŝ) could be 28mn. Second, it is difficult

to directly compute ΛQ(α1, α2) by (5) since this section considers the case that semantic

source distribution P(X,S) is not perfectly known.

B. Neural-network-based Approach

This subsection proposes a neural-network-based approach to solve problem (10), and then

derives the NESRD for R(D⋆
o , D

⋆
s ). Specifically, to tackle the challenges discussed in Remark

3.1, we first design a generative neural network that takes a simple distribution, e.g., Gaussian

distribution, as input, and aims to approximate distribution Q(X̂,Ŝ) as closely as possible. Then,

parameters of the generative network are trained via gradient descent methods to minimize the

objective function in (10). Finally, SRDF R(D⋆
o , D

⋆
s ) given in (11) is estimated by samples of

(X,S) and the well-trained generative network.

First, we introduce a latent variable Z following distribution PZ over alphabet Z and then

define a generative neural network from Z to X̂ ×Ŝ as H(z,θ) = [H(1)(z,θ), H(2)(z,θ)]T , with

H(1)(z,θ) and H(2)(z,θ) being realizations of reconstructed sources X̂ and Ŝ, respectively, and

θ ∈ Θ being the parameter to be optimized. After that, we replace Q(X̂,Ŝ) in (5) with generative

network H(Z,θ), which allows us to formulate problem (10) in terms of parameter θ, i.e.,
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problem (10) is transformed as

inf
θ∈Θ

−EPX

[
lnEPZ

eα1do(X,H(1)(Z,θ))+α2d̂s(X,H(2)(Z,θ))
]
. (12)

Then, we propose an iterative training algorithm to minimize problem (12) by optimizing

parameter θ of the generative network H(Z,θ). We select i.i.d. samples x1, · · · , xN1 from

PX , i.i.d. samples s1n1
, · · · , sN2

n1
from the conditional distribution PS|X=xn1

for each sample xn1 ,

n1 = 1, · · · , N1, and i.i.d. samples z1, · · · , zM from distribution PZ , with N1, N2, and M being

the number of observation samples, semantic state samples, and samples of latent variable Z,

respectively. Then, by approximating expectations in (12) with empirical averages over these

samples of (X,S) and Z, (12) is rewritten as

inf
θ∈Θ

− 1

N1

N1∑
n1=1

[
ln

1

M

M∑
m=1

e
α1do(xn1 ,H

(1)(zm,θ))+ α2
N2

∑N2
n2=1 ds(sn2

n1
,H(2)(zm,θ))

]
. (13)

Here, the objective function in (13) is defined as the loss function Lθ(α1, α2) for training

generative network H(Z,θ). Besides, in order to ensure that the gradient of the loss function

∇θLθ exists, distortion measures do and ds must be differentiable. After that, we proceed

to update parameter θ by leveraging the gradient ∇θLθ and employing the backpropagation

algorithm[35].

By utilizing the well-trained generative network H(Z,θ⋆) with θ⋆ being the trained parameters,

we derive the NESRD for semantic source (X,S), which is summarized in the following

proposition.

Proposition 3.4: For any fixed α1 and α2, α1, α2 ≤ 0, NESRD for semantic source (X,S) is

given as

R̂Θ(D̂
⋆
o , D̂

⋆
s ) ≜ α1D̂

⋆
o + α2D̂

⋆
s + Lθ⋆(α1, α2), (14)

where D̂⋆
o and D̂⋆

s are computed as

D̂⋆
o =

1

MN1

·

M∑
m=1

N1∑
n1=1

do
(
xn1 , H

(1)(zm,θ
⋆)
)
e
α1do(xn1 ,H

(1)(zm,θ⋆))+ α2
N2

∑N2
n2=1 ds(sn2

n1
,H(2)(zm,θ⋆))

1
M

∑M
m′=1 e

α1do(xn1 ,H
(1)(z′m,θ⋆))+ α2

N2

∑N2
n2=1 ds(sn2

n1
,H(2)(z′m,θ⋆))

 , (15)
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and

D̂⋆
s =

1

MN1N2

·

M∑
m=1

N1∑
n1=1

N2∑
n2=1

ds
(
sn2
n1
, H(2)(zm,θ

⋆)
)
e
α1do(xn1 ,H

(1)(zm,θ⋆))+ α2
N2

∑N2
n′
2=1

ds

(
s
n′
2

n1
,H(2)(zm,θ⋆)

)

1
M

∑M
m′=1 e

α1do(xn1 ,H
(1)(z′m,θ⋆))+ α2

N2

∑N2
n′
2=1

ds

(
s
n′
2

n1
,H(2)(z′m,θ⋆)

)
 , (16)

respectively.

Proof: It is easy to see that (14)-(16) are obtained by replacing Q(X̂,Ŝ) in (8) and (9)

with H(Z,θ⋆), approximating expectations in (8) and (9) with empirical averages over training

samples given in (13), and replacing ΛQ⋆(α1, α2) in (11) with −Lθ⋆(α1, α2) defined in (13).

In conclusion, we summarize the neural-network-based approach for NESRD in Algorithm I.

Algorithm I Neural-network-based approach for NESRD.
Input: Parameters α1 and α2 satisfying α1, α2 ≤ 0, and the number T of training steps.
Output: (D̂⋆

o , D̂
⋆
s , R̂Θ(D̂

⋆
o , D̂

⋆
s )).

1: Set a generative neural network H(z,θ) = [H(1)(z,θ), H(2)(z,θ)]T : Z → X̂ × Ŝ;
2: For t = 1, 2, · · · , T do
3: Choose batch of N̂1 i.i.d. observation samples {x1, · · · , xN̂1

} from PX ;
4: Choose batch of N̂2 i.i.d. semantic state samples {s1n̂1

, · · · , sN̂2
n̂1
} from the conditional

distribution PS|X=xn̂1
for each sample xn̂1 with n̂1 = 1, · · · , N̂1;

5: Choose batch of M̂ i.i.d. samples {z1, · · · , zM̂} that are generated from PZ ;
6: Calculate loss function Lθ(α1, α2) in (13);
7: Utilize gradient ∇θLθ(α1, α2) for backpropagation[35];
8: End for
9: Calculate D̂⋆

o , D̂⋆
s , and R̂Θ(D̂

⋆
o , D̂

⋆
s ) by (14)-(16).

Moreover, the following corollary shows that NESRD R̂Θ(D̂
⋆
o , D̂

⋆
s ) converges almost surely

to SRDF R(D⋆
o , D

⋆
s ) given in (11) as the number of samples goes to infinity, i.e., R̂Θ(D̂

⋆
o , D̂

⋆
s )

is a strongly consistent estimator for R(D⋆
o , D

⋆
s ). Notably, the proof of this corollary is actually

the same as that for the conventional rate-distortion function[30].

Corollary 3.1: (Strong consistency of NESRD). Considering that the distribution PZ of the

latent variable Z is continuous with respect to Lebesgue measure, and the distortion measures d̂s

and do are both Ld-Lipschitz, R̂Θ(D̂
⋆
o , D̂

⋆
s ) in (14) is a strongly consistent estimator of R(D⋆

o , D
⋆
s )

given in (11), i.e.,

Pr
{

lim
N1,N2,M→∞

(
D̂⋆

o , D̂
⋆
s , R̂Θ(D̂

⋆
o , D̂

⋆
s )
)
= (D⋆

o , D
⋆
s , R(D⋆

o , D
⋆
s ))

}
= 1. (17)
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Remark 3.2: Although NESRD has been shown in Corollary 3.1 to be a strongly consistent

estimator of SRDF, it is essential to note that its estimation inaccuracy is sensitivity to the number

of samples. More specifically, it has been proved in Ref. [30] and [36] that NESRD R̂Θ(D̂
⋆
o , D̂

⋆
s )

cannot be larger than O(logN1N2) with N1N2 being the number of semantic source samples in

(14).

Remark 3.3: It is easy to see that Algorithm I can be utilized to estimate SRDFs for the case

with perfectly known semantic source distributions. In such cases, the required i.i.d. semantic

source samples in (13) can be directly generated from the known source distribution P(X,S).

Then, the corresponding NESRD can be obtained by Algorithm I accordingly.

C. A Special Case for NESRD

Generator Classifier 

Loss:

Real data

Backpropagation

Latent 
variable




Z ( , )X S

1( , )θG Z
2

ˆ( , )θF X

( , )θH Z

X̂

X̂

Ŝ

Fig. 2: Training diagram for NESRD with S = h(X).

In this subsection, we mainly analyze a special case for SRDF R(Do, Ds), where the intrinsic

semantic state S is a deterministic function of the extrinsic observation X , i.e., the semantic

source (X,S) is obtained from labeled datasets, e.g., MNIST, SVHN, and CIFAR-10 datasets. In

such datasets, the raw images are samples of extrinsic observation X , while their corresponding

labels can be regarded as samples of intrinsic semantic state S. For the ease of analysis, it follows

S = h(X), and accordingly, semantic distortion measure d̂s(x, ŝ) in (1) can be simplified as

d̂s(x, ŝ) =
∑
s∈S

pS|X(s|x)ds(s, ŝ) = ds(h(x), ŝ). (18)

Moreover, we further design a cascade neural network framework to estimate SRDF for the

case with S = h(X), which is depicted in Fig. 2. Under this framework, generative network
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H(Z,θ) is composed of a generator G(Z,θ1) and a classifier F (X̂,θ2), θ = [θ1,θ2]
T , with

the generator producing samples of reconstructed observation X̂ , and the classifier generating

samples of reconstructed semantic state Ŝ. Besides, since S is a function of X , we consider

the case that Ŝ can also be regarded as a function of X̂ so that its distribution PŜ can be

directly estimated by X̂ . Therefore, the generator is connected with the classifier in series, and

the generative network H(Z,θ) defined in (12) is now equivalent to

H(Z,θ) = [G(Z,θ1), F (G(Z,θ1),θ2)]
T . (19)

Moreover, together with (18) and (19), the loss function in (13) for training parameters θ can

be simplified as

L̃θ(α1, α2) = − 1

N1

N1∑
n1=1

[
ln

1

M

M∑
m=1

eα1do(xn1 ,G(zm,θ1))+α2ds(sn1 ,F (G(zm,θ1),θ2))

]
. (20)

Here, (x1, s1), · · · , (xN1 , sN1) are i.i.d. sample pairs from the labeled dataset. First, generator

G(Z,θ1) and classifier F (X̂,θ2) are both pre-trained by the labeled dataset. Then, similar to the

training procedure in Algorithm I, we iteratively update parameters θ by utilizing the gradient

of the loss function ∇θL̃θ(α1, α2) and the backpropagation method[35]. Finally, as the training

algorithm converges, D̂⋆
o , D̂⋆

s , and R̂Θ(D̂
⋆
o , D̂

⋆
s ) are calculated by (14)-(16), with d̂s(·), H(·),

and Lθ(·) in (14)-(16) being replaced with (18), (19), and (20), respectively. In conclusion, we

summarize the training algorithm for estimating the SRDF for labeled datasets in Algorithm II.

IV. PERFECTLY KNOWN SEMANTIC SOURCE DISTRIBUTIONS

This section considers the case that the distribution of semantic source pair (X,S) is com-

pletely known and has a discrete form2, and we generalize the conventional BA algorithm[40], [41]

to numerically compute SDRF R(Do, Ds). Besides, we analyze the computational complexity of

the proposed general BA algorithm.

A. General BA Algorithm

To derive the general BA algorithm, we first show that computing R(Do, Ds) in (1) is

equivalent to solving the following double minimum problem.

2When semantic source distribution P(X,S) is not discrete, we can approximate it with a discrete distribution by discretizing
the possible values of (X,S) into a finite number of points and estimating their corresponding probability mass functions via
the known distribution P(X,S).
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Algorithm II Training algorithm for NESRD with the labeled dataset.
Input: Parameters α1 and α2 satisfying α1, α2 ≤ 0, the labeled dataset K, and the number T

of training steps.
Output: (D̂⋆

o , D̂
⋆
s , R̂Θ(D̂

⋆
o , D̂

⋆
s )).

1: Utilize dataset K to pre-train generator G in the same way as training the generative network
in GAN[37]–[39];

2: Pre-train classifier F with dataset K;
3: For t = 1, 2, · · · , T do
4: Choose batch of N̂1 semantic source sample couples {(x1, s1), · · · , (xN̂1

, sN̂1
)} from

dataset K;
5: Choose batch of M̂ samples {z1, · · · , zM̂} that are generated from PZ ;
6: Calculate loss function L̃θ(α1, α2) by (20);
7: Utilize gradient ∇θL̃θ(α1, α2) for backpropagation;
8: End for
9: Utilizing the trained generator G and classfier F , calculate D̂⋆

o , D̂⋆
s , and R̂Θ(D̂

⋆
o , D̂

⋆
s ) by

(14)-(16), where d̂s(·), H(·), and Lθ(·) in (14)-(16) are substituted with (18), (19), and (20),
respectively.

Lemma 4.1: For any fixed λ1 ≤ 0 and λ2 ≤ 0, there exist D̂o and D̂s satisfying

λ1 =
∂R(Do, D̂s)

∂Do

∣∣∣∣
Do=D̂o

and, λ2 =
∂R(D̂o, Ds)

∂Ds

∣∣∣∣
Ds=D̂s

(21)

such that

R(D̂o, D̂s)− λ1D̂o − λ2D̂s = min
P(X̂,Ŝ)|X>0

min
P̂(X̂,Ŝ)>0

[∑
x,x̂,ŝ

P(X,X̂,Ŝ)(x, x̂, ŝ) ln
P(X̂,Ŝ)|X(x̂, ŝ|x)
P̂(X̂,Ŝ)(x̂, ŝ)

−
∑
x,x̂,ŝ

PX(x)P(X̂,Ŝ)|X(x̂, ŝ|x)(λ1do(x, x̂) + λ2d̂s(x, ŝ))

]
, (22)

where P̂(X̂,Ŝ) is any distribution supported over X̂ × Ŝ.

Proof: The proof to this lemma is the same as that for the conventional rate-distortion

functions; see, e.g., Ref. [31] and [?]. A similar result was obtained in Ref. [26].

Then, by mimicking the conventional BA method given in Ref. [31], we obtain the general

BA algorithm by iteratively solving the double minimum in (22), which is summarized in

Algorithm III. In this algorithm, we first arbitrarily choose a strictly positive transition distribution

P
(0)

(X̂,Ŝx)|X as an initial point. Then, joint distribution P̂
(k)

(X̂,Ŝ)
and conditional distribution P

(k+1)

(X̂,Ŝ)|X

are recursively computed as

P̂
(k)

(X̂,Ŝ)
(x̂, ŝ) =

∑
x

PX(x)P
(k)

(X̂,Ŝ)|X(x̂, ŝ|x), (23)
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P
(k+1)

(X̂,Ŝ)|X(x̂, ŝ|x) =
P̂

(k)

(X̂,Ŝ)
(x̂, ŝ)eλ1do(x,x̂)+λ2d̂s(x,ŝ)∑̂

x′,ŝ′
P̂

(k)

(X̂,Ŝ)
(x̂′, ŝ′)eλ1do(x,x̂′)+λ2d̂s(x,ŝ′)

, (24)

respectively, where (23) and (24) are the generalizations of those iteration steps in the conven-

tional BA method[31]. Moreover, as the iteration index k goes to infinity, we have(
E

P
(k)

(X,X̂)

[do(X, X̂)],E
P

(k)

(X,Ŝ)

[d̂s(X, Ŝ)], HKL

(
P

(k)

(X,X̂,Ŝ)
||PX × P

(k)

(X̂,Ŝ)

))
→
(
D̂o, D̂s, R(D̂o, D̂s)

)
,

(25)

where P (k)

(X,X̂,Ŝ)
is calculated as P (k)

(X,X̂,Ŝ)
(x, x̂, ŝ) = PX(x)P

(k)

(X̂,Ŝ)|X(x̂, ŝ|x) for each triple (x, x̂, ŝ) ∈

X × X̂ × Ŝ, and P
(k)

(X,X̂)
and P(X,Ŝ) are computed as P

(k)

(X,X̂)
(x, x̂) =

∑̂
s

P
(k)

(X,X̂,Ŝ)
(x, x̂, ŝ) and

P(X,Ŝ)(x, ŝ) =
∑̂
x

P
(k)

(X,X̂,Ŝ)
(x, x̂, ŝ), respectively. Besides, the convergence in (25) is obtained

similar to that of the conventional BA algorithm[31].

Algorithm III General BA algorithm for computing SDRF R(D̂o, D̂s).
Input: P(X,S).
Output: (D̂o, D̂s, R(D̂o, D̂s)).

1: Set λ1, λ2 <= 0;
2: Arbitrarily choose a strictly positive transition distribution P

(0)

(X̂,Ŝ)|X > 0;
3: Set k = 0;
4: While k ≤ K do
5: Compute P̂

(k)

(X̂,Ŝ)
and P

(k+1)

(X̂,Ŝ)|X by (23) and (24), respectively;
6: k = k + 1;
7: End while
8: Compute D̂o, D̂s, and R(D̂o, D̂s) by D̂o = E

P
(K)

(X,X̂)

[do(X, X̂)], D̂s = E
P

(K)

(X,Ŝ)

[d̂s(X, Ŝ)], and

R(D̂o, D̂s) = HKL

(
P

(K)

(X,X̂,Ŝ)
||PX × P̂

(K)

(X̂,Ŝ)

)
, respectively.

B. Computational Complexity

In this subsection, we analyze the computational complexity of the proposed general BA

algorithm.

1) To compute P̂
(k)

(X̂,Ŝ)
(x̂, ŝ) in (23), we need |X | multiplications and |X | − 1 additions for a

specific tuple (x̂, ŝ), thus deriving O(|X |) operations. As a result, we need O(|X ||X̂ ||Ŝ|)

operations for all (x̂, ŝ) tuples.

2) To compute P
(k+1)

(X̂,Ŝ)|X(x̂, ŝ|x) shown in (24), we consider the computations for exponentia-

tion, ds(s, ŝ), and do(x, x̂), and all these operations need constant numbers of operations, i.e.,
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O(1). Then, d̂s(x, ŝ) is a summation over |S| variables, which requires O(|S|) computations

for a specific tuple (x, ŝ). Moreover, the numerator in (24) needs O(|S|) computations,

and the denominator in (24) requires O(|S||X̂ ||Ŝ|) since it is a summation over all (x̂, ŝ)

tuples. Therefore, computing P
(k+1)

(X̂,Ŝ)|X(x̂, ŝ|x) needs O(|X ||S||X̂ |2|Ŝ|2) computations for all

(x, x̂, ŝ) tuples.

In conclusion, the computational complexity of the proposed BA algorithm is O(|X ||S||X̂ |2|Ŝ|2)

for each iteration.

It is easy to see that |X | grows exponentially with respect to the dimension of X , leading to

an exponential growth in the computational complexity of the proposed general BA algorithm.

This drawback also applies to S. Moreover, semantic source pair (X,S) is typically derived from

large datasets in practical applications and exhibits high-dimensional characteristics, rendering

the general BA algorithm inefficient in such cases.

V. NUMERCIAL AND SIMULATION RESULTS

In this section, we present some experimental and simulation results to validate the proposed

NESRD for various typical semantic sources. First, we examine the case when X and S are

jointly Gaussian, and compare the proposed neural-network-based approach with the proposed

general BA algorithm and the semi-definite programming (SDP) method[22]. Then, we calculate

the NESRD for some classical image datasets, e.g., MNIST and SVHN datasets, and compare

it with the hyperprior-based compression method[42], which adopted as the benchmark for the

DNN-based image compression schemes.

A. Joint Gaussian Source

1) Datasets: In this subsection, extrinsic observation X follows a multivariate Gaussian

distribution N (0, KX), and intrinsic semantic state S satisfies S = HX + W , where H is

a constant matrix and W is also a Gaussian random vector following N (0, KW ). KX , H , and

KW are set as[21]

KX =


11 0 0.5

0 3 −2

0.5 −2 2.35

 , H =

 0.0701 0.305 0.457

−0.0305 −0.220 0.671

 , KW =

 0.71 −0.305

−0.305 0.220

 .

(26)
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To leverage Algorithm I for NESRD of the joint Gaussian source (X,S), we generate a sample set

as follows: First, we independently obtain N1 = 50000 samples of X following the distribution

N (0, KX). Then, for each sample xn1 , n1 = 1, · · · , 50000, we select N2 = 1000 samples of S

which are drawn i.i.d. from the conditional distribution P (S|X = xn1) ∼ N (Hxn1 , KW ).

2) Training settings: In Algorithm I, the distribution of the latent variable Z is set to be

PZ = N (0, I10) with 10 being the dimension of the latent space, and the generative network

H(z,θ) = [H(1)(z,θ), H(2)(z,θ)]T : Z → X̂ × Ŝ is parameterized by a 3-layer fully connected

neural network with 5 units in both the hidden and output layers: the first two dimensions of the

output are used to represent Ŝ, and the last three dimensions are used to represent X̂ . Besides,

the learning rate of the considered neural network is set as 1×10−4, and the training epoch is set

as 50. Moreover, we utilize the squared-error distortion measures for both the intrinsic semantic

state and the extrinsic observation, i.e., ds(s, ŝ) = ∥s− ŝ∥22 and do(x, x̂) = ∥x− x̂∥22. Based on

the above parameters, we apply Algorithm I to estimate SRDF R(Do, Ds) for the considered

joint Gaussian source.

3) Experiments: Fig. 3 plots the surface and contour of NESRD R̂Θ(Do, Ds) for the joint

Gaussian source given in (26). It is easy to see that, with fixed Ds, R̂Θ(Do, Ds) exhibits a

diminishing trend as Do increases. However, the decreasing rate gradually attenuates with the

augmentation of Do. Then, when Do remains fixed, for smaller values of Do, R̂Θ(Do, Ds) is

insensitive to variations in Ds; whereas for larger values of Do, R̂Θ(Do, Ds) experiences a

substantial reduction as Ds increases. For example, when Do is around 1, changes in Ds scarcely

impact R̂Θ(Do, Ds). In contrast, when Do equals 15, as Ds increments, R̂Θ(Do, Ds) undergoes

a notable decrease from around 2 to 0.

Fig. 4 compares the performance of NESRD R̂Θ(Do, Ds), SDP-computed R(Do, Ds)
[22], and

R(Do, Ds) computed by the proposed general BA method in Algorthm III for the joint Gaussian

source. It is noted that by directly leveraging the distribution of the joint Gaussian source (X,S),

the SDP method is able to numerically compute the corresponding SRDF R(Do, Ds) in a stable

and efficient manner[22]. Moreover, it shows that R̂Θ(Do, Ds) is remarkably close to the SDP-

computed R(Do, Ds) for any distortion couple (Do, Ds), which reveals that the proposed NESRD

is a good estimator for the SRDF in this example. However, R(Do, Ds) computed by the general

BA algorithm exhibits slight deviations from the other two methods at the low rate region (R ≤ 4

bits per sample). These deviations are potentially attributed to the errors introduced during the

discretization of the joint Gaussian source distribution in the general BA algorithm.
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(a) Surface of R̂Θ(Do, Ds)
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(b) Contour of R̂Θ(Do, Ds)

Fig. 3: NESRD R̂Θ(Do, Ds) for joint Gaussian source by Algorithm I.
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(a) R̂Θ(Do, Ds) vs. R(Do, Ds) for fixed Do

0 5 10 15
0

1

2

3

4

5

6

7

(b) R̂Θ(Do, Ds) vs. R(Do, Ds) for fixed Ds

Fig. 4: Performance comparisons among NESRD, SDP method[22], and proposed general BA
method for joint Gaussian semantic source.

B. Image Datasets

1) Datasets: In our experiment, we calculate the NESRD for MNIST and SVHN datasets by

utilizing Algorithm II.

2) Training settings: We consider that each image in the labeled dataset is a sample from

extrinsic observation PX , and its label is a sample from the intrinsic semantic distribution PS .

Besides, we utilize one-hot encoding to represent the labels. Therefore, the semantic sample

s is a one-hot vector with 10 dimensions. The distribution of the latent variable Z is set to
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be PZ = N (0, I100) with 100 being the dimension of the latent space. The generator G is

parameterized by a convolutional neural network (CNN) with 3 convolutional layers, 3 pooling

layers, and 2 fully connected layers, where the output of the generator G is used to represent X̂ .

The classifier F is also parameterized by a CNN with 2 convolutional layers, 2 pooling layers,

and 2 fully connected layers. Besides, the classifier F outputs a probability distribution over

10 classes, which is used to represent a sample of Ŝ. Then, the learning rates of generator G

and classifier F are both set as 1 × 10−4 and the training epoch is set as 50. Besides, we set

N1 = 40000 for the considered two datasets. Moreover, we adopt the squared-error distortion

measures for the extrinsic observation, i.e., do(x, x̂) = ∥x − x̂∥22. As for the intrinsic semantic

state, its distortion measure ds(s, ŝ) is defined to be the cross entropy between s and ŝ, i.e.[43],

ds(s, ŝ) = −
9∑

k=0

s(k) ln ŝ(k), (27)

where s = [s(0), · · · , s(9)] and ŝ = [ŝ(0), · · · , ŝ(9)]. Moreover, by the definition of maximum

semantic distortion Ds
max in Remark 2.1, it is easy to see that Ds

max is obtained when ŝ is the

uniform distribution over the 10 classes, i.e., ŝ = [1/10, · · · , 1/10] and Ds
max = − ln 1

10
≈ 2.3.
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Fig. 5: NESRD R̂Θ(Do, Ds) for MNIST dataset.

3) Experiments: For MNIST dataset, we draw the surface of the corresponding NESRD

R̂Θ(Do, Ds), and also plot R̂Θ(Do, Ds) as a function of Do for fixed values of Ds in Fig. 5.

Specifically, Fig. 5(a) illustrates the overall decreasing trend of R̂Θ(Do, Ds) with respect to Do

and Ds. Moreover, as depicted in Fig. 5(b), when extrinsic observation distortion Do is less
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than 25, semantic distortion Ds has only a little effect on R̂Θ(Do, Ds), which indicates that the

recovered observation state X̂ almost contains the entire semantic information S; Conversely,

for Do > 25, the impact of Ds on R̂Θ(Do, Ds) gradually intensifies and the smaller Ds, the

larger R̂Θ(Do, Ds). Additionally, for Ds = 0.01 and Do > 47, R̂Θ(Do, Ds) decreases to a

constant, which is approximately equal to log 10. This aligns with the case that only the semantic

information, i.e., labels of MNIST images, is nearly losslessly compressed, since the conventional

rate-distortion function Rs(Ds) defined in Remark 2.1 satisfies Rs(0) = log 10.

Fig. 6: Performance comparisons between NESRD and the hyperprior-based compression
method[42] for MNIST dataset.

Then, for MNIST dataset, as shown in Fig. 6, we compare NESRD R̂Θ(Do, Ds) with the

hyperprior-based compression method[42] by using the same values of Do and Ds. It is easy

to see that R̂Θ(Do, Ds) is significantly smaller than the compression rate of the hyperprior-

based compression method. This indicates that there is significant potential for enhancing the

performance of current DNN-based compression algorithms when applied to the compression of

a specific dataset. For example, most existing compression algorithms typically compress one

image at a time. However, jointly compressing multiple images from the same dataset has the

potential to further boost the compression performance.

Moreover, we further show the performance of NESRD for SVHN dataset, which is depicted

in Fig. 7 and 8. Specifically, similar to Fig. 5(a), Fig. 7 depicts the overall decreasing trend of

R̂Θ(Do, Ds) with respect to Do and Ds for SVHN dataset. Notably, the range of Do for SVHN
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dataset is quite larger than that of the MNIST dataset, due to the fact that SVHN images are

in color, whereas MNIST images are grayscale. Then, in Fig. 8(a), when extrinsic distortion

Do is small, semantic distortion Ds has only a little effect on R̂Θ(Do, Ds); as Do becomes

larger, the impact of Ds on R̂Θ(Do, Ds) gradually intensifies, which performs similar to that of

MNIST dataset shown in Fig. 5(b). Moreover, we also plot R̂Θ(Do, Ds) as a function of Ds for

fixed values of Do in Fig. 8(b). It is easy to see that variations in Ds can result in changes in

R̂Θ(Do, Ds) up to approximately log 10 bits, which aligns with the results of (28) since Rs(Ds)

satisfies Rs(0) = log 10. Finally, we also conduct a comparison between NESRD R̂Θ(Do, Ds)

and the hyperprior-based compression method[42] for the SVHN dataset, which is shown in Fig.

9. Similar to the findings observed in the MNIST dataset (as depicted in Fig. 6), our comparisons

reveal that R̂Θ(Do, Ds) for SVHN is also notably smaller than the compression rate achieved by

the hyperprior-based compression method.

Fig. 7: Surface of R̂Θ(Do, Ds) for SVHN dataset.

VI. CONCLUSION

This paper proposed an SSCC-based framework for point-to-point semantic communications,

which explored SRDF to study trad-off among the minimum compression rate, the observation

distortion, the semantic distortion, and the channel capacity for generally distributed semantic

sources. Specifically, with the utilization of the generative network, we proposed NESRD, a
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Fig. 8: NESRD R̂Θ(Do, Ds) for SVHN dataset.

Fig. 9: Performance comparisons between NESRD and the hyperprior-based compression
method[42] for SVHN dataset.
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strongly consistent neural estimator of SRDF for the case with imperfectly known semantic

source distribution. After that, we proposed a general BA algorithm to solve SRDF for the case

with perfectly known semantic source distributions and showed the computational complexity

of this algorithm. Finally, the experimental results showed the validity of our proposed methods

for the joint Gaussian source and some typical image datasets.

APPENDIX A

PROOF OF REMARK 2.1

First, SRDF R(Do, Ds) is bounded as[26]

max{Ro(Do), Rs(Ds)} ≤ R(Do, Ds) ≤ Ro(Do) +Rs(Ds). (28)

Then, by setting Do = 0 in (28), it is easy to see that R(0, Ds) ≥ max{Ro(0), Rs(Ds)} ≥ Rs(Ds).

Moreover, by (28), we have R(Do
max, Ds) ≤ Ro(D

o
max) + Rs(Ds) = Rs(Ds) , where the equality

holds since Do
max is the maximum observation distortion satisfying Ro(D

o
max) = 0[31]. Finally,

considering the monotonic property of R(Do, Ds), there exists a D′
o(Ds) ∈ [0, Do

max] such that

R(Do, Ds) = Rs(Ds) for all Do ≥ D′
o(Ds) > 0. Therefore, we have proved property 2). Besides,

based on the symmetry of Do and Ds in (1), the proof of property 3) is the same as that of 2).

As a result, we have completed this proof.

APPENDIX B

PROOF OF PROPOSITION 3.1

First, we present a lemma about ΛQ(α1, α2) to reveal its strictly convex property.

Lemma B.1: ΛQ(α1, α2) is strictly convex over the feasible region {(α1, α2) : α1 ≤ 0, α2 ≤ 0}.

Proof: For simplicity, we define Λx
Q(α1, α2) ≜ lnEQ(X̂,Ŝ)

eα1do(x,X̂)+α2d̂s(x,Ŝ), and corre-

spondingly, ΛQ(α1, α2) = EPX
[ΛX

Q (α1, α2)] = EPX

[
lnEQ(X̂,Ŝ)

eα1do(X,X̂)+α2d̂s(X,Ŝ)
]
. Λx

Q(α1, α2)

is differentiable with

∂Λx
Q(α1, α2)

∂α1

= EQ(X̂,Ŝ)

(
do(x, X̂)

eα1do(x,X̂)+α2d̂s(x,Ŝ)

EQ(X̂,Ŝ)

[
eα1do(x,X̂)+α2d̂s(x,Ŝ)

]) , (29)

and
∂Λx

Q(α1, α2)

∂α2

= EQ(X̂,Ŝ)

(
d̂s(x, Ŝ)

eα1do(x,X̂)+α2d̂s(x,Ŝ)

EQ(X̂,Ŝ)

[
eα1do(x,X̂)+α2d̂s(x,Ŝ)

]) . (30)



24

It can be easily derived that
∂Λx

Q(α1,α2)

∂α1
≥ 0 and

∂Λx
Q(α1,α2)

∂α2
≥ 0 are both held. Moreover,

Λx
Q(α1, α2) is twice differentiable with

∂2Λx
Q(α1, α2)

∂α2
1

=
EQ(X̂,Ŝ)

[
d2o(x, X̂)eα1do(x,X̂)+α2d̂s(x,Ŝ)

]
EQ(X̂,Ŝ)

[
eα1do(x,X̂)+α2d̂s(x,Ŝ)

]
−

(
EQ(X̂,Ŝ)

[
do(x, X̂)eα1do(x,X̂)+α2d̂s(x,Ŝ)

]
EQ(X̂,Ŝ)

[
eα1do(x,X̂)+α2d̂s(x,Ŝ)

] )2

, (31)

∂2Λx
Q(α1, α2)

∂α2
2

=
EQ(X̂,Ŝ)

[
d̂2s (x, Ŝ)e

α1do(x,X̂)+α2d̂s(x,Ŝ)
]

EQ(X̂,Ŝ)

[
eα1do(x,X̂)+α2d̂s(x,Ŝ)

]
−

(
EQ(X̂,Ŝ)

[
d̂s(x, Ŝ)e

α1do(x,X̂)+α2d̂s(x,Ŝ)
]

EQ(X̂,Ŝ)

[
eα1do(x,X̂)+α2d̂s(x,Ŝ)

] )2

, (32)

and

∂2Λx
Q(α1, α2)

∂α1∂α2

=
∂2Λx

Q(α1, α2)

∂α2∂α1

=
EQ(X̂,Ŝ)

[
do(x, X̂)d̂s(x, Ŝ)e

α1do(x,X̂)+α2d̂s(x,Ŝ)
]

EQ(X̂,Ŝ)

[
eα1do(x,X̂)+α2d̂s(x,Ŝ)

] −

(
EQ(X̂,Ŝ)

[
do(x, X̂)eα1do(x,X̂)+α2d̂s(x,Ŝ)

]
EQ(X̂,Ŝ)

[
eα1do(x,X̂)+α2d̂s(x,Ŝ)

] )(
EQ(X̂,Ŝ)

[
d̂s(x, Ŝ)e

α1do(x,X̂)+α2d̂s(x,Ŝ)
]

EQ(X̂,Ŝ)

[
eα1do(x,X̂)+α2d̂s(x,Ŝ)

] )
.

(33)

The above second-order partial derivatives are difficult to be directly analyzed. For simplicity,

we consider a probability measure Q̃(x) on X̂ × Ŝ defined as

dQ̃(x)(x̂, ŝ)

dQ(X̂,Ŝ)(x̂, ŝ)
=

eα1do(x,x̂)+α2d̂s(x,ŝ)

EQ(X̂,Ŝ)

[
eα1do(x,X̂)+α2d̂s(x,Ŝ)

] . (34)

Then, combining (34) with (31)-(33), the second-order partial derivatives with respective to

Λx
Q(α1, α2) are simplified as

∂2Λx
Q(α1, α2)

∂α2
1

= EQ̃(x)

[
d2o(x, X̂)

]
−
[
EQ̃(x)do(x, X̂)

]2
, (35)

∂2Λx
Q(α1, α2)

∂α2
2

= EQ̃(x)

[
d̂2s (x, Ŝ)

]
−
[
EQ̃(x) d̂s(x, Ŝ)

]2
, (36)

and
∂2Λx

Q(α1, α2)

∂α1α2

= EQ̃(x)

[
do(x, X̂)d̂s(x, Ŝ)

]
− EQ̃(x)do(x, X̂) · EQ̃(x) d̂s(x, Ŝ), (37)
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respectively. It shows that
∂2Λx

Q(α1,α2)

∂α2
1

is the variance of do(x, X̂) with probability measure Q̃(x),
∂2Λx

Q(α1,α2)

∂α2
2

is the variance of d̂s(x, Ŝ) with probability measure Q̃(x), and
∂2Λx

Q(α1,α2)

∂α1α2
is the

covariance of (do(x, X̂), d̂s(x, Ŝ)) with probability measure Q̃(x). Then, we have
∂2Λx

Q(α1,α2)

∂α2
1

≥ 0,
∂2Λx

Q(α1,α2)

∂α2
2

≥ 0, and

∂2Λx
Q(α1, α2)

∂α2
1

·
∂2Λx

Q(α1, α2)

∂α2
2

−
(
∂2Λx

Q(α1, α2)

∂α1α2

)2

≥ 0, (38)

where (38) is derived by Cauchy-Schwarz inequality. Therefore, Λx
Q(α1, α2) is a convex function

with respect to (α1, α2). Since ΛQ(α1, α2) = EPX
[Λx

Q(α1, α2)], it can be easily derived that

ΛQ(α1, α2) is also convex.

Next, we will prove that ΛQ(α1, α2) is actually strictly convex. From (29), it is easy to verify

that

lim
α1,α2→0

∂ΛQ(α1, α2)

∂α1

= EPX×QX̂
[do(X, X̂)], (39)

and

lim
α1,α2→−∞

∂ΛQ(α1, α2)

∂α1

= EPX
[ess infX̂∼QX̂

do(X, X̂)], (40)

where QX̂ is the marginal distribution of X̂ derived from Q(X̂,Ŝ). Besides, ess infX̂∼QX̂
do(x, X̂)

is the essential infimum of do(x, X̂) of the random variable X̂ with distribution QX̂ , which

is defined as ess infX̂∼QX̂
do(x, X̂) = sup{t ∈ R : QX̂{do(x, X̂) > t} = 1}. Moreover,

considering the case that do(x, x̂) is not essentially constant for all x ∈ X , it is easy to see

0 ≤ EPX
[ess infX̂∼QX̂

do(X, X̂)] < EPX×QX̂
[do(X, X̂)][32]. Consequently, ∂2ΛQ(α1,α2)

∂α2
1

is strictly

positive by (35) and the Cauchy-Schwarz inequality. Similarly, considering the case that d̂s(x, ŝ)

is not essentially constant for all x ∈ X , it is easy to see 0 ≤ EPX
[ess infŜ∼QŜ

d̂s(X, Ŝ)] <

EPX×QŜ
[d̂s(X, Ŝ)]. Then, ∂2ΛQ(α1,α2)

∂α2
2

can also be proved to be strictly positive.

Moreover, together with (38), ΛQ(α1, α2) satisfies

∂2ΛQ(α1, α2)

∂α2
1

· ∂
2ΛQ(α1, α2)

∂α2
2

−
(
∂2ΛQ(α1, α2)

∂α1α2

)2

> 0, (41)

since d̂s(X, Ŝ) and do(X, X̂) are not linearly dependent. Therefore, we have proved the Hessian

matrix ∇2ΛQ(α1, α2) ≻ 0, which means that ΛQ(α1, α2) is strictly convex in the considered

feasible region.
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Next, to prove this proposition, for simplicity, we define

LQ(α1, α2, Do, Ds) ≜ α1Do + α2Ds − ΛQ(α1, α2), (42)

as the objective function in (4), and correspondingly, (α⋆
1, α

⋆
2) ≜ arg sup

α1,α2≤0
LQ(α1, α2, Do, Ds).

In the following, we first derive that sup
α1,α2≤0

LQ(α1, α2, Do, Ds) is an upper bound of R1(Q(X̂,Ŝ), Do, Ds).

It is easy to show that LQ(α1, α2, Do, Ds) is smooth and strictly concave with respect to α1 and

α2 by Lemma B.1. Therefore, the optimal point (α⋆
1, α

⋆
2) is unique. Moreover, by the Karush-

Kuhn-Tucker (KKT) optimality conditions[44], we have(
Do −

∂ΛQ(α1, α2)

∂α1

)
· α1 = 0, (43)

(
Ds −

∂ΛQ(α1, α2)

∂α2

)
· α2 = 0, (44)

Do −
∂ΛQ(α1, α2)

∂α1

≥ 0, Ds −
∂ΛQ(α1, α2)

∂α2

≥ 0, α1, α2 ≤ 0. (45)

Then, it is easy to see that there are four cases of the optimal point (α⋆
1, α

⋆
2) of LQ(α1, α2, Do, Ds):

1) α⋆
1 < 0 and α⋆

2 < 0, which means ∂ΛQ(α1,α2)

∂α1
|(α1=α⋆

1,α2=α⋆
2)
= Do and ∂ΛQ(α1,α2)

∂α2
|(α1=α⋆

1,α2=α⋆
2)
=

Ds;

2) α⋆
1 = 0 and α⋆

2 < 0, which means Do ≥ ∂ΛQ(α1,α2)

∂α1
|(α1=α⋆

1,α2=α⋆
2)

and ∂ΛQ(α1,α2)

∂α2
|(α1=α⋆

1,α2=α⋆
2)
=

Ds;

3) α⋆
1 < 0 and α⋆

2 = 0, which means Ds ≥ ∂ΛQ(α1,α2)

∂α2
|(α1=α⋆

1,α2=α⋆
2)

and ∂ΛQ(α1,α2)

∂α1
|(α1=α⋆

1,α2=α⋆
2)
=

Do;

4) α⋆
1 = 0 and α⋆

2 = 0, which means Ds ≥ EPX×QX̂
[d̂s(X, Ŝ)] and Do ≥ EPX×QX̂

[do(X, X̂)].

For case 1), we define a probability measure W on X × X̂ × Ŝ as[32]

dW (x, x̂, ŝ)

d(PX ×Q(X̂,Ŝ))
=

eα
⋆
1do(x,x̂)+α⋆

2 d̂s(x,ŝ)

EQ(X̂,Ŝ)

[
eα

⋆
1do(X,X̂)+α⋆

2 d̂s(X,Ŝ)
] . (46)

It is easy to verify that the first marginal distribution WX of W is PX , Then, we have

R1(Q(X̂,Ŝ), Do, Ds)
(a)

≤ HKL
(
W ||PX × P(X̂,Ŝ)

)
= EW ln

{
eα

⋆
1do(X,X̂)+α⋆

2 d̂s(X,Ŝ)

EQ(X̂,Ŝ)

[
eα

⋆
1do(X,X̂)+α⋆

2 d̂s(X,Ŝ)
]}

= α⋆
1EW [do(X, X̂)] + α⋆

2EW [d̂s(X, Ŝ)]− EPX

[
lnEQ(X̂,Ŝ)

eα
⋆
1do(X,X̂)+α⋆

2 d̂s(X,Ŝ)
]
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(b)
= α⋆

1Do + α⋆
2Ds − ΛQ(α

⋆
1, α

⋆
2). (47)

where the inequality (a) is derived by the definition of R1(Q(X̂,Ŝ), Do, Ds) given in (3), and

the equality (b) holds since EW [do(X, X̂)] =
∂ΛQ(α1,α2)

∂α1
|(α1=α⋆

1,α2=α⋆
2)
= Do and EW [d̂s(X, Ŝ)] =

∂ΛQ(α1,α2)

∂α2
|(α1=α⋆

1,α2=α⋆
2)

= Ds by (29) and (30). Similarly, for case 2) - 4), we can also derive

that R1(Q(X̂,Ŝ), Do, Ds) ≤ α⋆
1Do + α⋆

2Ds − ΛQ(α
⋆
1, α

⋆
2).

Finally, by mimicking the proof steps in Section II of Ref. [32], we prove that sup
α1,α2≤0

LQ(α1, α2, Do, Ds)

is also a lower bound of R1(Q(X̂,Ŝ), Do, Ds). As given in Ref. [32], for any probability measure

Q′
(X̂,Ŝ)

defined on X̂ × Ŝ and any measurable function ϕ : X̂ × Ŝ → (−∞, 0], the following

inequality

HKL
(
Q′

(X̂,Ŝ)
||Q(X̂,Ŝ)

)
≥ EQ′

(X̂,Ŝ)

[
ϕ(X̂, Ŝ)

]
− lnEQ(X̂,Ŝ)

[
eϕ(X̂,Ŝ)

]
. (48)

always holds. Then, for any probability measure W on X × X̂ × Ŝ in (3) and any x ∈ X , by

setting Q′
(X̂,Ŝ)

= W (·|x) and ϕ(x̂, ŝ) = α⋆
1do(x, x̂) + α⋆

2d̂s(x, ŝ), (48) can be rewritten as

HKL
(
W (·|x)||Q(X̂,Ŝ)

)
≥α⋆

1EW (·|x)
[
do(X, X̂)

]
+ α⋆

2EW (·|x)
[
d̂s(X, Ŝ)

]
− lnEQ(X̂,Ŝ)

eα
⋆
1do(x,X̂)+α⋆

2 d̂s(x,Ŝ). (49)

By substituting x with X and taking expectations with respect to PX on both sides, we obtain

HKL
(
W ||PX ×Q(X̂,Ŝ)

)
≥ α⋆

1EW

[
do(X, X̂)

]
+ α⋆

2EW

[
d̂s(X, Ŝ)

]
− ΛQ(α

⋆
1, α

⋆
2)

(c)

≥ α⋆
1Do + α⋆

2Ds − ΛQ(α
⋆
1, α

⋆
2)

= sup
α1,α2≤0

LQ(α1, α2, Do, Ds), (50)

where the inequality (c) holds since α⋆
1, α

⋆
2 ≤ 0, and EW

[
do(X, X̂)

]
≤ Do and EW

[
d̂s(X, Ŝ)

]
≤

Ds in (3). Moreover, since W is chosen arbitrarily, we can derive that R1

(
Q(X̂,Ŝ), Do, Ds

)
≥

sup
α1,α2≤0

LQ(α1, α2, Do, Ds). Thus, combining this with inequality (47) completes the proof.

APPENDIX C

PROOF OF PROPOSITION 3.2

From the definitions of R(Do, Ds) and R1(Q(X̂,Ŝ), Do, Ds) in (1) and (3), it is easy to obtain

inf
Q(X̂,Ŝ)

R1(Q(X̂,Ŝ), Do, Ds) ≤ R(Do, Ds). Moreover, based on the definition of KL distance, (3)
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can be equivalently written as

R1

(
Q(X̂,Ŝ), Do, Ds

)
= min

P(X̂,Ŝ)|X

E[d̂s(X,Ŝ)]≤Ds

E[do(X,X̂)]≤Do

{
HKL

(
P(X,X̂,Ŝ)||PX × P(X̂,Ŝ)

)
+HKL(P(X̂,Ŝ)||Q(X̂,Ŝ))

}
,

(51)

which implies that R1

(
Q(X̂,Ŝ), Do, Ds

)
≥ R(Do, Ds) holds for any fixed distribution Q(X̂,Ŝ).

Therefore, (6) is derived.

Next, denoting P ⋆
(X̂,Ŝ)

as the optimal distribution of (X̂, Ŝ) in problem (1), we aim to prove

that the optimal distribution of (X̂, Ŝ) in problem (6) satisfies Q⋆
(X̂,Ŝ)

= P ⋆
(X̂,Ŝ)

. On the one hand,

if Q⋆
(X̂,Ŝ)

= P ⋆
(X̂,Ŝ)

, it is easy to obtain R1

(
Q⋆

(X̂,Ŝ)
, Do, Ds

)
= R(Do, Ds) from (51); on the other

hand, if Q⋆
(X̂,Ŝ)

̸= P ⋆
(X̂,Ŝ)

, we can show that R1

(
Q⋆

(X̂,Ŝ)
, Do, Ds

)
> R(Do, Ds) always holds in

the following. Specifically, by (51), we have

R1

(
Q⋆

(X̂,Ŝ)
, Do, Ds

)
= min

P(X̂,Ŝ)|X

E[d̂s(X,Ŝ)]≤Ds

E[do(X,X̂)]≤Do

{
HKL

(
P(X,X̂,Ŝ)||PX × P(X̂,Ŝ)

)
+HKL(P(X̂,Ŝ)||Q

⋆
(X̂,Ŝ)

)
}

(52)

= HKL

(
P ′
(X,X̂,Ŝ)

||PX × P ′
(X̂,Ŝ)

)
+HKL(P

′
(X̂,Ŝ)

||Q⋆
(X̂,Ŝ)

), (53)

where P ′
(X,X̂,Ŝ)

is the optimal distribution of (X, X̂, Ŝ) in problem (52), and P ′
(X̂,Ŝ)

is the

corresponding marginal distribution obtained from P ′
(X,X̂,Ŝ)

. Then, there are two cases to study

R1

(
Q⋆

(X̂,Ŝ)
, Do, Ds

)
:

1) if P ′
(X̂,Ŝ)

= P ⋆
(X̂,Ŝ)

, R1

(
Q⋆

(X̂,Ŝ)
, Do, Ds

)
satisfies

R1

(
Q⋆

(X̂,Ŝ)
, Do, Ds

)
≥ R(Do, Ds) +HKL(P

⋆
(X̂,Ŝ)

||Q⋆
(X̂,Ŝ)

) (54)

> R(Do, Ds), (55)

where inequality (54) is derived by (1) and P ′
(X̂,Ŝ)

= P ⋆
(X̂,Ŝ)

, and (55) is obtained since

Q⋆
(X̂,Ŝ)

̸= P ⋆
(X̂,Ŝ)

.

2) if P ′
(X̂,Ŝ)

̸= P ⋆
(X̂,Ŝ)

, (53) implies

R1

(
Q⋆

(X̂,Ŝ)
, Do, Ds

)
> R(Do, Ds) +HKL(P

′
(X̂,Ŝ)

||Q⋆
(X̂,Ŝ)

) (56)

≥ R(Do, Ds). (57)
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Therefore, we have proved R1

(
Q⋆

(X̂,Ŝ)
, Do, Ds

)
> R(Do, Ds) if Q⋆

(X̂,Ŝ)
̸= P ⋆

(X̂,Ŝ)
. In conclusion,

we have completed this proof.

APPENDIX D

PROOF OF PROPOSITION 3.3

For any fixed α1 and α2, α1, α2 ≤ 0, and given D⋆
o , D⋆

s , and Q⋆
(X̂,Ŝ)

in Proposition 3.3,

LQ⋆(α1, α2, D
⋆
o , D

⋆
s ) defined in (42) can be expressed as

LQ⋆(α1, α2, D
⋆
o , D

⋆
s ) = α1D

⋆
o + α2D

⋆
s − ΛQ⋆(α1, α2)

= inf
Q(X̂,Ŝ)

α1D
⋆
o + α2D

⋆
s − ΛQ(α1, α2) (58)

≤ inf
Q(X̂,Ŝ)

sup
α̂1,α̂2≤0

α̂1D
⋆
o + α̂2D

⋆
s − ΛQ(α̂1, α̂2) (59)

= R(D⋆
o , D

⋆
s ), (60)

where (58) is obtained by (10), (59) holds since its inner supremum is always larger than or

equal to α1D
⋆
o + α2D

⋆
s − ΛQ(α1, α2), and (60) is given by (7). Moreover, by (60), R(D⋆

o , D
⋆
s )

satisfies

R(D⋆
o , D

⋆
s ) = inf

Q(X̂,Ŝ)

sup
α̂1,α̂2≤0

α̂1D
⋆
o + α̂2D

⋆
s − ΛQ(α̂1, α̂2)

≤ sup
α̂1,α̂2≤0

α̂1D
⋆
o + α̂2D

⋆
s − ΛQ⋆(α̂1, α̂2) (61)

= LQ⋆(α1, α2, D
⋆
o , D

⋆
s ), (62)

where (62) holds since (α1, α2) is the stationary point of the objective function in (61) given in

(8) and (9). Finally, Combining (60) with (62), we have

R(D⋆
o , D

⋆
s ) = LQ⋆(α1, α2, D

⋆
o , D

⋆
s ). (63)

Together with (42), (11) is obtained and we have completed this proof.

REFERENCES

[1] LI D, HUANG J, HUANG C, et al. Neural Estimation for Rate-Distortion Function in Semantic Communica-

tions[C]//Proceedings of the IEEE Global Communications Conference. Piscataway: IEEE Press, 2023: 1-6.
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[15] KURKA D B, GÜNDÜZ D. DeepJSCC-f: Deep joint source-channel coding of images with feedback[J]. IEEE Journal

on Selected Areas in Information Theory, 2020, 1(1): 178-193.

[16] DAI J, WANG S, TAN K, et al. Nonlinear transform source-channel coding for semantic communications[J]. IEEE Journal

on Selected Areas in Communications, 2022, 40(8): 2300-2316.

[17] HUANG J, LI D, HUANG C, et al. Deep separate source-channel coding for semantic-aware image transmis-

sion[C]//Proceedings of the IEEE International Conference on Communications. Piscataway: IEEE Press, 2023: 5626-5631.

[18] PATWA N, AHUJA N, SOMAYAZULU S, et al. Semantic-preserving image compression[C]//Proceedings of the IEEE

International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2020: 1281-1285.

[19] HUANG J, LI D, HUANG C, et al. Joint Task and Data Oriented Semantic Communications: A Deep Separate Source-

channel Coding Scheme[J]. IEEE Internet of Things Journal, 2023:1-18.

[20] GALLAGER R G. Information theory and reliable communication[M]. New York: Wiley, 1968.

[21] LIU J, ZHANG W, POOR H V. A rate-distortion framework for characterizing semantic information[C]//Proceedings of

the IEEE International Symposium on Information Theory (ISIT). Piscataway: IEEE Press, 2021: 2894-2899.

[22] LIU J, SHAO S, ZHANG W, et al. An indirect rate-distortion characterization for semantic sources: General model and

the case of Gaussian observation[J]. IEEE Transactions on Communications, 2022, 70(9): 5946-5959.

[23] PAREEK P, THAKKAR A. A survey on video-based human action recognition: recent updates, datasets, challenges, and

applications[J]. Artificial Intelligence Review, 2021, 54(3): 2259-2322.

[24] YANG Y, SHU G, SHAH M. Semi-supervised learning of feature hierarchies for object detection in a video[C]//Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013: 1650-1657.

[25] COVER T M. Elements of information theory[M]. John Wiley & Sons, 1999.

[26] STAVROU P A, KOUNTOURIS M. A rate distortion approach to goal-oriented communication[C]//2022 IEEE International

Symposium on Information Theory (ISIT). Piscataway: IEEE Press, 2022: 590-595.

http://arxiv.org/abs/2303.10920


31

[27] XIE H, QIN Z, LI G Y, et al. Deep learning enabled semantic communication systems[J]. IEEE Transactions on Signal

Processing, 2021, 69(4): 2663-2675.

[28] WENG Z, QIN Z. Semantic communication systems for speech transmission[J]. IEEE Journal on Selected Areas in

Communications, 2021, 39(8): 2434-2444.

[29] KANG J, DU H, LI Z, et al. Personalized saliency in task-oriented semantic communications: Image transmission and

performance analysis[J]. IEEE Journal on Selected Areas in Communications, 2022, 41(1): 186-201.

[30] LEI E, HASSANI H, BIDOKHTI S S. Neural estimation of the rate-distortion function with applications to operational

source coding[J]. IEEE Journal on Selected Areas in Information Theory, 2023, 3(4): 674-686.

[31] YEUNG R W. Information theory and network coding[M]. Springer Science & Business Media, 2008.

[32] DEMBO A, KONTOYIANNIS L. Source coding, large deviations, and approximate pattern matching[J]. IEEE Transactions

on Information Theory, 2002, 48(6): 1590-1615.

[33] HARRISON M T, KONTOYIANNIS I. Estimation of the rate-distortion function[J]. IEEE transactions on information

theory, 2008, 54(8): 3757-3762.

[34] YANG E H, KIEFFER J C. On the performance of data compression algorithms based upon string matching[J]. IEEE

Transactions on information theory, 1998, 44(1): 47-65.

[35] O’SHEA T, HOYDIS J. An introduction to deep learning for the physical layer[J]. IEEE Transactions on Cognitive

Communications and Networking, 2017, 3(4): 563-575.

[36] MCALLESTER D, STRATOS K. Formal limitations on the measurement of mutual information[C]//International

Conference on Artificial Intelligence and Statistics. PMLR, 2020: 875-884.

[37] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the

ACM, 2020, 63(11): 139-144.

[38] CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: An overview[J]. IEEE Signal Processing

Magazine, 2018, 35(1): 53-65.

[39] WANG K, GOU C, DUAN Y, et al. Generative adversarial networks: introduction and outlook[J]. IEEE/CAA Journal of

Automatica Sinica, 2017, 4(4): 588-598.

[40] ARIMOTO S. An algorithm for computing the capacity of arbitrary discrete memoryless channels[J]. IEEE Transactions

on Information Theory, 1972, 18(1): 14-20.

[41] BLAHUT R. Computation of channel capacity and rate-distortion functions[J]. IEEE transactions on Information Theory,

1972, 18(4): 460-473.
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