
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

484 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

RETCAM: An Efficient TCAM Compression
Model for Flow Table of OpenFlow

Chaoqin Zhang, Penghao Sun, Guangwu Hu, and Liang Zhu

Abstract: OpenFlow is a widely adopted dataplane protocol in
software-defined networking (SDN). However, the expansion of
supported match fields in OpenFlow brings additional pressure to
the storage space of ternary content addressable memory (TCAM)
in physical device, since the arbitrary wildcard support in the
match field of OpenFlow relies heavily on TCAM for looking-up
speed. In this paper, a mathematical model aiming at the storage
space reduction of the flow table in TCAM is presented, which is
named as RETCAM. RETCAM analyzes the relationships among
all the match fields and then categorize the redundancy among
different fields into three types. Based on the three redundancy
types, three compression algorithms named as inter-field merge,
field mapping and intra-field compression are presented. The out-
comes of each compression algorithm are flow entries with smaller
bit-width which is sent to TCAM for flow matching. In this way, the
flexibility of OpenFlow is not harmed, thus maintaining the func-
tion integrity of the original flow table. Simulation at the end shows
that RETCAM saves almost about 60% of TCAM space for a given
flow table with no damage to the function integrity of OpenFlow,
and the compression performance stands stable with the increase
of flow table size.

Index Terms: Compression, OpenFlow, SDN, storage space opti-
mization, TCAM.

I. INTRODUCTION

RE cently, an innovative network architecture software de-
fined networking (SDN) [1] has been widely adopted in

various environments. With the separation of control plane and
forwarding plane, SDN provides network users and researchers
with much more flexibilities, such as user-defined flow control
and open programmability, which propel greatly the revolution
towards future networks. To achieve such flexibilities of upper

Manuscript received July 15, 2020; revised October 9, 2020; approved for
publication by Jin-Ghoo Choi, Division 3 Editor, November 15, 2020.

This work was supported in part by The National Key Research and Develop-
ment Program of China (No. 2020YFB1804803), The National Nature Science
Foundation of China (No. 61521003, No. 61872382, No.61902361), The Re-
search and Development Program in Key Areas of Guangdong Province (No.
2018B010113001), and The Fundamental Research Project of Shenzhen Mu-
nicipality (JCYJ20170817115335418).

C. Zhang is with the National Digital Switching System Engineering and
Technological R & D Center, Zhengzhou, China, and School of Computer
and Communication Engineering, Zhengzhou University of Light Industry,
Zhengzhou, China, email: 2000007@zzuli.edu.cn.

P. Sun is with the National Digital Switching System Engineering and Tech-
nological R & D Center, Zhengzhou, China. email: sphshine@126.com.

G. Hu is with the School of Computer Science, Shenzhen Institute of Infor-
mation Technology, Shenzhen, China. email: hugw@sziit.edu.cn.

L. Zhu is with the School of Computer and Communication Engineer-
ing, Zhengzhou University of Light Industry, Zhengzhou, China, email:
lzhu@zzuli.edu.cn.

G. Hu is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2020.000033

layer, SDN requires a powerful southbound interface to manip-
ulate the basic functions of hardware in the forwarding plane.

OpenFlow [2] is widely cognized as an early SDN implemen-
tation and also a popular southbound interface of SDN, which
derives from the “clean-slate” project of Stanford. Supported by
open networking foundation (ONF), the version of OpenFlow
has been continuously updated, and in a recent version Open-
Flow1.3 [3], 40 match fields are defined, which take up a to-
tal storage space of up to 1227 bits. Though increased match
fields have broadened the application scope of OpenFlow, the
pressure of storage space in ternary content addressable mem-
ory (TCAM) sets a great limit on the size of flow table. What’s
worse, TCAM has a disadvantage of high cost-to-density ratio
(about US$350 for a 1 M-bit chip) and high power consumption
(about 15 Watt/Mbit), which hinders greatly the expansion of
TCAM size in commodity devices.

To store more flow entries in a TCAM of a practical size, com-
pression of flow table is thus considered. The flow table com-
pression of OpenFlow differs from other compressions such as
IP routing table and ACL table in two aspects:
• One flow entry may consist of many fields while some of

them are redundant for a certain data flow. For exam-
ple, in OpenFlow1.3, a flow entry may contain both TCP
source/destination address and UDP source/destination ad-
dress, while in practice, TCP and UDP are two different
layer4 protocol and would not exist in the same data flow.

• Each field of a flow entry has a probability of being be
masked in a flow table. In traditional IP routing table, wild-
card matching has been long used and the longest prefix
matching policy of IP determines that the masked bits in
an IP address must be consecutive and at the end of the
address. However, in OpenFlow, arbitrary fields could be
masked, so the possible position of masked bits spread all
across the flow entry and are under no limitation of conse-
cution.

The stated reasons make flow table compression of OpenFlow
somehow different from previous works. Based on the problems
stated above, this paper makes contributions in following as-
pects:
(1) A field structure analysis model of OpenFlow is presented.

In OpenFlow1.3, up to 40 fields are defined, while a large
increase in the number of fields don’t necessarily mean a
large increase of entry amount. In fact, there are some spe-
cial relationships among fields that could contribute to the
compression, on which the model of this paper is mainly
based.

(2) A pre-compression model for TCAM is proposed. Accord-
ing to field relationships, a mapping scheme is proposed to
compress the lengths of some fields before sent to TCAM

1229-2370/19/$10.00 © 2020 KICS

KAHSAY et al.: GAME-THEORETIC ANALYSIS OF SELFISH SECONDARY USERS ... 485

for match, thus reducing the cost of one flow entry in
TCAM. Besides, such compression allows for unforeseen
circumstances of the addition of new field value, which en-
sures the incremental capability of this scheme.

(3) A simulation experiment is carried out, which gives a clear
view of the performance. We obtain flow tables in test net-
works of OpenFlow and carried out our compression algo-
rithm. The results show that our compression ratio reaches
more than 60%.
The rest of the paper is organized as follows: Section II
describes the related work. Section III gives basic analy-
ses of the features of OpenFlow flow tables and presents a
mathematical model as the direction of compression. Sec-
tion IV illustrates our compression analysis with a demon-
stration algorithm, and describes the details of compres-
sion scheme. Section V describes the hardware support for
our scheme. Section VI validates the performance of our
compression model with a simulation experiment. At last,
a conclusion of this paper is presented.

II. RELATED WORK

Match of OpenFlow tables has similarity with traditional
packet classification. The flexibility and programmability of
OpenFlow in forwarding plane is partly based on the number
of fields it supports. However, expansion of field number also
brings the problem of flow table explosion, adding pressure to
both physical equipment storage and controller maintenance [4].

Table compression has already been a hot topic since the large
scale deployment of IP networks. In IP networks, packet clas-
sification also aims at multi-fields in a packet header, which
is similar with OpenFlow. Existing studies about packet clas-
sification could help in the research of flow table compression
in OpenFlow networks. Recursive flow classification (RFC) [5]
aims at the lookup speed of packet classification and achieves
high throughput, but the high cost of storage space and low table
update speed set a limit on the table scale. FRFC [6] improves
the update speed of RFC, but still costly in storage space. Grid
of Tie [7] focuses on the refinement of search tree in packet clas-
sification, which achieves low storage space, but the complexity
of tree structure hinders its speed of incremental update. Hi-
Cuts [8] and HyperCuts [9] focuses mainly on low-dimensional
fields, while as the number of field dimension rises, the problem
of storage space and lookup efficiency is exposed.

In traditional routing table and access control list (ACL),
some match policies are similar to that of OpenFlow. Zeng and
Yang [10] studies the optimization problem of ACL, which em-
ploys cross-coverage and inclusion relationships to reduce the
number of ACL. ACL compressor [11] illustrates a high com-
pression ratio model in their paper, which achieves the com-
pression ratio of 50.22% by a divide-and-conquer approach.
Karpilovsky et al. [12] propose to deploy a management system
to reduce the router state by 70%. The decomposition and re-
combination process perform well in multi-fields compression,
but such approach doesn’t apply to arbitrary masking of fields
in OpenFlow. Orange [13] reduces the storage space of range-
based flow table with a new look-up process in TCAM. Rot-
tenstreich et al. [14] also address the range-based storage prob-

lem by changing the looking-up process. Sun et al. [15] change
the encoding method of range-based tables in the TCAM and
increase the compressing efficiency of ranges. Li et al. [16],
[17] propose to use pre-classifier to reduce the storage space
of ranges in traditional routing table, which proves to work
well. Some works also concentrate on manipulating the stor-
age space of the flow table based on the consideration of the
whole network functions [4], [18]–[20], but these schemes can-
not be flexibly used without a full analysis of the network func-
tions such as routing. There are also many schemes that em-
ploy decision trees for packet classification. For example, Par-
titionSort [21], CutSplit [22], TabTree [23], NeuroCuts [24],
CutTSS [25], and NuevoMatch [26] all proposed a certain kind
of method to construct a decision tree for fast packet classifica-
tion. These schemes mainly aim at alleviating the search com-
plexity of the packet classification in with the rules stored in
RAM.

Due to the requirement of arbitrary mask in fields, lookup
process in OpenFlow relies heavily on TCAM for a high perfor-
mance, which in practice sets a great limit on the table scale of
OpenFlow. Therefore, the flow table storage problem is more
serious than that of traditional routing table as aforementioned.
Curtis et al. [27] pointed out the difference between the flow
table of OpenFlow and traditional routing table, and proposed
DevoFlow, a model to reduce flow table size. However, its al-
gorithm is weak in extensibility. DIFANE [28] reduces the table
size kept in one switch by splitting the rule set into different
switches, and ensures right match of flow entry by redirecting
flow to intermediate switches. However, in a practical network,
rules are not static, so frequent rule changes bring additive pres-
sure to controller of DIFANE networks. Zhang et al. [29] try to
redistribute the traffic to reduce the size of the flow table in each
switch, but the traffic redistribution also brings many problems
such as routing changes. Compact TCAM proposed by Kannan
K et al. [30] discuss in detail the reliance of TCAM in OpenFlow
and the drawbacks of TCAM. In this model, flow table size is re-
duced by adding tags to flow as a replacement of full-size entry
match, but the process of adding tags in egress switches still
need a full-size entry match of OpenFlow. LightFlow [31] anal-
yses the relationship between wildcard match and exact match
in flow table, based on which proposes a GPU based paralleliza-
tion algorithm. Also, LightFlow is not suitable for OpenFlow in
match field combination. H-SOFT [32] proposes a field parti-
tion algorithm to reduce storage space by the reduction of entry
numbers in sub-tables. However, such partition process loses the
support of arbitrary mask in flow table, thus damaging the fine-
grained control ability of OpenFlow.

It should also be noted that like OpenFlow also contains the
fields whose value could be range value (such as source port and
destination port). The range expansion problem introduced by
such range field brings much pressure on the storage space of
TCAM. Schemes such as DIPRE [34] and LIC [35] aim at al-
leviating this problem with unused bits in every TCAM entry,
which achieve good performance but rely on enough extra bits.
Therefore, compressing the bit-width of OpenFlow entry also
helps in the reduction of range expansion problem.

486 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

III. MATHEMATICAL MODEL

In this section, a mathematical model of compression is pro-
posed, with OpenFlow1.3 considered as an example to execute
flow table compression algorithm on. Since flow entry structure
is one important element in our compression model, the analysis
of structure is firstly presented.

The aim of flow table compression is the contraction of flow
entry size while at the same time maintain the intact function of
the flow entry. Basically, there are two kinds of storage medium
for flow tables, one being RAM and the other TCAM. As stated
in Section I, TCAM has the advantage of high match speed and
arbitrary wildcard match support, but a notoriety of the high
power consumption and hardware cost. On the contrary, RAM
based storage is much more economical, but inefficient in search
speed and helpless in arbitrary wildcard match. This model
is just based on such relationship between TCAM and RAM,
which aims to maximize the flow table storage ability of a hard-
ware device with limited hardware resources.

Generally, when faced with storage pressure of TCAM, RAM
has always been resorted to for an alternative. In RAM, the
search process of multi-field table is usually based on trie or
tree structure, but when it comes to OpenFlow, such structures
are helpless, because in OpenFlow, arbitrary mask of fields are
supported. In traditional multi-field match table, since wildcard
is not arbitrary, redundant tree or trie nodes could be removed,
thus the total amount of nodes are just of the same order of mag-
nitude as the amount of entries. However, with the employment
of arbitrary wildcard, redundant nodes might also be considered
as nodes with masked value, thus should be reserved, as a con-
sequence of which the problem of storage space explosion is
inevitable.

To solve this problem, a model of RAM pre-compression is
introduced, together with corresponding algorithm for the op-
timization problem. In this model, packet header is first parti-
tioned into sub-sets, and then sent to RAM for the first step of
compression. After the pre-compression algorithms processed
in RAM, a new format of packet header with reduced bit length
is then sent to TCAM for final match. Since RAM is also a
limited resource, this model also takes into consideration of the
tradeoff between RAM and TCAM.

The basis of flow table compression is the fact that a certain
field of a protocol is usually designed to allow for increment.
Take ETH_TYPE into example, the 16-bit field could accom-
modate up to 65536 type codes. However, in practice, only hun-
dreds of them are assigned, among which only dozens are in
common use. There are also other cases such as IP address. The
32-bit address length defines a space of a total amount of 232

IP addresses, while in practice, a certain router or switch should
only handle a small portion of them, say, 100 thousand. Simi-
larly, fields like ETH_SRC, ETH_DST, ETH_TYPE are also re-
dundant in field length considering the de facto values a certain
hardware would encounter. Therefore, we can take advantage of
such property of header fields to carry out the table compression.

Definition 1: Orthogonal fields pair PO, which represents
such two fields that are collided to each other and could not exist
in a packet header at the same time. In PO, if one field exists,
it’s certain that the other would not exist, and vice versa. For
example, <TCP_SRC, UDP_SRC> is a PO, and <TCP_DST,

Relationship

,i j OR R

,i j CR R

,i j ER R

 ,i j

2 4,2 4 , 6,7

7,6 , 8,9 , 9,8 , 10,11

11,10 , 12,13 , 13,12

i j

6,9 , 7,8 , 8,7 , 9,6 ,

10,12 , 10,13 , 11,12 ,

11,13 , 12,10 , 12,11 ,

13,10 , 13,11

 6,8 , 7,9 , 8,6 , 9,7

 = , 1,13ijR i j

Fig. 1. Relationship matrix of 13 required fields for OpenFlow 1.3.

UDP_DST> is also a PO.
Definition 2: Evolution fields pair PE , which represents two

fields that one is the updated version of the other. PE shows a
characteristic of evolution, which means the former field pos-
sesses all the functions that the latter one has. For example,
<IPv4_SRC, IPv6_SRC> is a PE . PE is critical in field map-
ping and also helps dealing with flow header partition illustrated
in the following sections.

Definition 3: Coexisting fields pair PC , which represents
two fields that one field exists if and only if the other exists.
PC shows a relationship of dependence. Therefore, during the
field partition process, PC should be taken into consideration to
improve the algorithm efficiency.

Definition 4: Storage coefficient η. The reduction of TCAM
is to some degree at the cost of the increase in RAM consump-
tion. η is the reflection of such condition, which by definition is
the reduction of TCAM in bit at per bit consumption of RAM.
In practice, η could help accommodating this algorithm in hard-
ware devices with different size of TCAM and RAM.

A matrix of field relationship is shown in Fig. 1 as an exam-
ple. The example of relationship matrix Π is based on common
sense of field relationship of the 13 required fields in OpenFlow
v1.3. In Fig. 1, the indicator i and j denotes the number of field
in the 13 match fields of OpenFlow v1.3. Specifically, the ta-
ble in Fig. 1 gives a detailed description of the relationship type
of each match field, e.g., in the relationship Ri,j = RE , the
numbers on the right column of the table denote that (R6, R8),
(R7, R9), (R8, R6) and (R9, R7) belong to the relationshipRE .
It should be mentioned that some fields may have more than one
relationship type, in which case we heuristically sort the priority
of relationship as PE > PO > PC according to the compression
ratio listed in the following sections. In a certain deployment en-
vironment, Π may change, for example, the number of PE may
increase.

Table 1 shows the variables used in this model.

KAHSAY et al.: GAME-THEORETIC ANALYSIS OF SELFISH SECONDARY USERS ... 487

Table 1. Variable notation for RETCAM model.

Notation Representation of the symbol or symbol
F Sets of all different fields in this model
T Flow table
M Total number of entries in T
N Total number of fields in F
Ni Number of Fields in subset i (1 ≤ i ≤ k)
Mi Number of entries in subset i (1 ≤ i ≤ k)
li Bit width of field i (1 ≤ i ≤ k)
lmn
′ Bit width of compressed pair PO

fn Field n (1 ≤ n ≤ N)
wi Bit width of subset i in RAM (1 ≤ i ≤ k)
wi
′ Bit width of search output of subset i (1 ≤ i ≤ k)

A. Field Partition

As mentioned above, almost all protocols contain redundancy
in field length. On the one hand, redundancy is necessary for
future development of such protocol, since in time scope, new
version of the protocol may introduce new type field, and in user
scope, addition of new users may bring more addresses into use;
on the other hand, since every field allows for its own redun-
dancy, the overall redundancy in a group of fields is just too
large a waste of storage space. Therefore, we can just allot some
redundancy to two or more field together, so the overall redun-
dancy is reduced while at the same time there is enough space
for such group of fields to extend their application scope.

In the compression algorithm, different fields should be
treated in different ways, with the implementation in RAM.
Therefore, partition of fields into sub-sets plays an important
role in the reduction of RAM space, which both reduce en-
try numbers of sub-sets and increase the pre-compression speed
with parallel operation. Let F = {fn|n = 1, 2, · · ·, N} be the
fields set of all N fields in the flow table.

First, partition F into k sub-sets according to PO and PC de-
fined above, of which the exact value of k is acquired by the
equation set listed below, and build a sub-table for each sub-set.
For each field, whether it should be assigned to a sub-set is also
limited by coefficient η, which balances the reduction in TCAM
size and the cost in RAM space. In the ith sub-set, the number
of fields is Ni, which satisfies (1).

N=N1+N2+· · ·+Nk. (1)

In each sub-set, since it only covers the information of the
fields within the sub-set, entry number should be less than M .
Let the entry number of each sub-set be Mi.

B. Inter-field Merge

Inter-field merge applies to PO and PC . Within each sub-set,
if there exist fm, fn ∈ Fi that< fm, fn > is aPO orPC , we can
carry out the compression process. Let lm be the bit length of
fm and ln be the bit length of fn, then before compression, the
storage space for these two fields is (lm + ln) bits. In practice,
the amount of values of fm and fn in use are much less than
2(lm+ln), as explained before. Therefore, we could allot a new
field of length lmn

′, which could accommodate all the values
of fm and fn while at the same time reserve enough space for
future extension. As a result, two fields fm and fn could be

IP
header Protocol

6:TCP 17:UDP

TCP port number:16 bits UDP port number:16 bitsOriginal length:
32 bits

TCP/UDP flag:1 bit Port number:16 bitsRETCAM: 17 bits

Fig. 2. An example of inter-field merge.

replaced by one field, thus the total storage space is reduced.
Besides, the compression ratio Co of this PO is expressed in (2).

CO =

Mi∑
i=1

l′mn/(
∑

lm +
∑

ln). (2)

The storage coefficient is given in (3).

ηPo =
M ′∑
i=1

(lm + ln − lmn
′)/(

∑
lm +

∑
ln). (3)

Compression of PO or PC doesn’t affect the final match result
of a packet header, of which the reasons are explained as fol-
lows. In TCAM, the entry structure is reconstructed according
to compression format, for example, two fields are merged into
one field. Since such operation mainly affect the compressed
fields of PO, we can classify the corresponding circumstances
into such two types:
(1) Between the two orthogonal fields fm and fn, an entry has

only one exact field value while the other field masked.
In this case, such entry would be assigned with an exact
match value of merged field PO in TCAM. We now ana-
lyze this circumstance with the assumption that field fm
is with an exact value A in this entry while fn is masked
(analysis of the opposite is just the same). In practice, a
coming packet header may come with a field fm or oth-
erwise fn(orthogonal fields would not exist together). For
different field values of fm and fn, search outcome from
RAM would be different, so only a packet header with a
value A could be matched against such entry. Therefore,
collision would not happen after the merging of fm and
fn.

(2) Both fm and fn are masked in the entry before compres-
sion. In this case, such entry after compression would have
the merged field PO masked. It’s clear that for this circum-
stance, compression operation doesn’t change the match
outcome in TCAM.

Fig. 2 shows an example of the inter-field merge. As shown in
the figure, in an original OpenFlow flow table, it takes 32 bits to
store both a TCP and a UDP port number. In RETCAM, there
is one flag bit to denote whether the coming packet is a TCP
or a UDP packet, and the space to store the port number can
be multiplexed for these two protocols. As a result, the storage
width is reduced from 32 bits to 17 bits.

C. Field Mapping

Among the fields of OpenFlow1.3, there are another special
relationship of fields, in which one field fn is just the upgraded

488 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

PL

32

40

48

56

64

96

Prefix

0------------32-----40-----48----56----64----72----80----88----96---104----------------

Prefix

Prefix

Prefix

Prefix

Prefix

IPv4(32)

IPv4(24)

IPv4(16)

IPv4
(8)

0

0

0

0

0

Suffix

Suffix

Suffix

Suffix

Suffix

(8)

(16)

IPv4(24)

IPv4(32)

IPv4(32)

Fig. 3. Address conversion table.

version of fm, such as source and destination address of IPv6
versus source and destination address of IPv4.

In IPv6, source address and destination address are expanded
to 128 bits, which defines enough address space for hosts. In
fact, IPv6 has almost all the functions IPv4 has in network layer,
together with the expansion of address space and extension of
support for some special applications. Therefore, IPv6 could
perform all the function of IPv4. Temporarily, smooth transi-
tion from IPv4 to IPv6 is proposed, so IPv6 and IPv4 coexist in
the network.

Among all the smooth transition technologies from IPv4
to IPv6, protocol conversion technology is a popular
one. RFC 6052 [33] specifies the technology of address con-
version from IPv4 to IPv6, such as shown in Fig. 3. As shown
in Fig. 3, there are six types of mapping method from IPv4 to
IPv6, which have different prefix lengths (PL). In practice, the
network has to adopt one of the mapping method as the mapping
format from IPv4 to IPv6. For example, if we adopt the mapping
method with the PL value 40, then the first 24 bits of the IPv4
address is mapped onto bit 40–64 of the IPv6 address and the
last 8 bits of the IPv4 address is mapped onto bit 72–80 of the
IPv6 address. The prefix and suffix value can be assigned to 0.

In TCAM, only the total length of prefix is concerned. After
conversion from IPv4 address to IPv6 address, the masked bits
of original IPv4 fields in an entry are still masked in TCAM.
RFC 6052 suggests six different prefix length, among which an
appropriate one for this model should be considered. In the
IPv4-converted IPv6 address, new prefix in a flow entry is the
combination of original prefix in IPv4 address and the newly-
added prefix.

The compression ratio in field mapping is:

CE =
∑

fn,fm

ln/
∑

fm,fn

(lm + ln). (4)

D. Intra-field Compression

For other fields, there could also be RAM-based search al-
gorithms to reduce the field length. For example, the 48-bit
fields ETH_SRC and ETH_DST could also be compressed. In
this way, hash algorithm could be used to accelerate the com-
pression, so collision should be carefully processed to ensure
a unique outcome for every income value. Generally, we define
the bit-length of sub-set i in RAM withwi(1 ≤ i ≤ k), of which
wi is the sum of both original field length and compressed field

MAC address: 48 bitsOriginal length: 48 bits

Compressed address:24 bitsRETCAM: 24 bits

hash

Fig. 4. An example of intra-field merge.

Algorithm 1 Sub-sets creation

Input: match field set F , the relationship among fields,
their compression ratio η and the threshold ηTH

Output: sub-sets of match fields
1: Begin
2: sort relationship pairs in Π in descending order of η;
3: While F is not empty
4: extract the relationships R in F with the maximum

value η;
5: If (ηR ≤ ηTH)
6: generate sub-set sR;
7: and remove used match fields and update F ;
8: For fi ∈ F
9: If (ηi ≤ ηTH)

10: generate sub-set si;

length. Besides, the bit length of match outcome in RAM which
is sent to TCAM is defined with wi

′. By field partition, repeti-
tive values of a field in a total flow table could be merged into
one in a sub-set table, thus reducing the entry amount. Since the
overall entry amount is denoted by M as mentioned above, we
can denote the entry amount of sub-set with Mi. Therefore, the
compression ratio Ci of sub-set i is Ci = (Mi ×wi)/(M × li),
and the storage coefficient η is ηi = (wi−w′i)/wi. Fig. 4 shows
a simple example of the intra-field compression, which is a hash
of the MAC address. With the has operation on the MAC ad-
dress, the width can be reduced from 48 bits to 24 bits.

IV. ALGORITHMS

In this section, an algorithm as an implementation of the
model is presented. The overall algorithm contains mainly three
stages, which is sub-sets creation, pre-compression in sub-sets
and recomposing of header field. Algorithm1 and Algorithm 2
show the process in detail.

Algorithm 1 partitions the overall fields in F into several sub-
sets based on PO, PE , and PC in relationship matrix Π, on
which three types of pre-compression algorithm could be per-
formed. Creation of a sub-set is according to the storage co-
efficient η, by which the user could regulate the complexity of
RETCAM with threshold value ηTH according to the hardware
condition.

Algorithm 2 accommodates the original flow table into corre-
sponding sub-flow tables created according to sub-sets. During
the accommodation process, field value of each low entry is in-
serted into the tree as a node or the hash table. For fields like
protocol number, values are usually consecutive, thus searching
process of such type is based on binary search.

KAHSAY et al.: GAME-THEORETIC ANALYSIS OF SELFISH SECONDARY USERS ... 489

Algorithm 2 Sub-sets compression

Input: sub-sets of fields, original flow table T
Output: compressed sub-flow tables

1: Begin
2: For sub-set si in sub-sets
3: select the compression type of si(hash or linear);
4: For j = 1 to M (M is the total number of flow entries)
5: If (hash)
6: get the hash value ei,j of si;
7: update ei,j into the jth flow entry;
8: Else if (linear)
9: get the hash value ei,j of si;

10: update ei,j into the jth flow entry;

V. HARDWARE SUPPORT

Like all other TCAM storage encoding schemes as mentioned
in Section III, RETCAM also relies on a minor modification
of the hardware in dataplane to conduct the functions, which
is shown in Fig. 5. When a packet comes, it’s firstly processed
in the packet processor. In an ordinary dataplane device, after
the packet header is extracted from the packet, the header field
is reformatted as the match field for matching. In the modified
circuit of RETCAM, the header field is then processed by the
pre-encoding circuit. As mentioned in this section, RETCAM
uses a combination of SRAM and TCAM to decide the match
outcome. Since the price is SRAM is omittable compared to
TCAM, the table stored in SRAM takes a low cost There are
also interfaces to the control plane as shown in Fig. 5, which is
saved for the updating of the encoding scheme. Also, the TCAM
space is divided into two parts with different widths: One part is
for the storage of the RETCAM-compressed flow table, which
takes most of the TCAM storage space; the other part is for the
original flow table, which takes only a small proportion of the
TCAM space. The reason is explained below.

The update of the flow table can be flexibly carried out with
this architecture, which is shown in Fig. 6. First, for deleting a
flow entry, it is the same for a RETCAM-compressed flow ta-
ble and ordinary flow table, i.e., just deleting an entry from the
flow table in TCAM. Then, for adding a new flow entry, we first
calculate the compression algorithms of RETCAM for this flow
entry and see after the compression, if this flow entry is in con-
flict with any flow entries in the existing flow table (i.e., two
different flow entries have the same compression outcome). If
there is no conflict, then we just add this compressed new flow
entry into the flow table, which is also the same as adding a flow
entry to an ordinary flow table. For the flow entry that is in con-
flict with the existing flow table (which will only happen in the
hash operation of the MAC address and has a small probability),
we store this flow entry in a small scale full-width TCAM space
in the switch. When the small scale full-width TCAM space is
nearly full, we take all the flow entries in a whole and run the
compression algorithm in the SDN controller again to get a new
compressed flow table, which will happen much less frequent
than the update of the flow table.

Packet processor

Pre-encoding circuit
(FPGA or network
processor or ASIC)

SR
A

M

Packet in
Header

field Match circuit
(TCAM

centralized)

Match
outcome

Interface to control plane

Data plane

Fig. 5. Hardware implementation of RETCAM.

Flow table update

Adding flow entry Deleting flow entry

Deleting the target
item in the flow

table

Conflict?

RETCAM Compression

No

Inserting the
target item in the

flow table

Yes

Place the
uncompressed item in
the full-width TCAM

When the TCAM is nearly
full, run the compression
algorithm for the whole

flow table again

Fig. 6. Flow table update process.

VI. SIMULATION AND EVALUATION

Since OpenFlow has not been publicly used in networks, it’s
infeasible to carry out the evaluation with real data in large scale
OpenFlow networks. The flow table in this experiment is col-
lected from the test network of national engineering research
center for broadband networks & applications, which roughly
reflects the flow table condition in a practical OpenFlow net-
work. The algorithms of RETCAM are simulated in Matlab
2012b, which is operated on a Core i7-4790 CPU with 8 GB
memory. Under this experiment environment, we compare the
performance of RETCAM with the following baselines:

H-SOFT [32] proposes to partition the flow table into sub-
tables according to the match fields in use. With this partition,
the number of match field in each sub-table can be reduced.
However, this method relies heavily on the pre-analysis of the
flow table, which may fail when new flow entries come.

RFC [15] propose to change the encoding method of ranges
in flow tables. A header field to be matched will firstly be pro-
cessed in a FPGA-based programmable hardware to encode the
range information. In this way, the storage space of ranges in
flow tables can be greatly reduced. However, this method only
considers the compression of ranges in flow tables.

SplitIP [17] propose a splitting algorithm to separate
the prefix-based routing table into TCAM blocks to reduce
the TCAM consumption. With the table separation, a pre-
classification operation should be performed for prefix looking
up. However, this scheme only considers the storage consump-
tion of prefixes.

490 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

Fig. 7. Compression ratio of RETCAM.

A. TCAM Reduction of RETCAM

RETCAM aims to reduce TCAM consumption with pre-
compression scheme, which reduces the entry size in the prepro-
cessing of RAM. Taking into consideration of different physical
truth of hardware, RETCAM is self-adaptive in different appli-
cation environment. Fig. 7 shows the value of performance in-
dex ρ against different flow table sizes and different value of
storage coefficient η, which is on the condition that flow parti-
tion number k is 9. From Fig. 7, we can find that compression
ratio ρ increases with the decrease of storage coefficient η, while
as flow table size grows, compression ratio ρ changes slowly.
For example, compression ratio ρ remains around 0.6 as flow
table size grows from 5000 to 25000. This result validates the
incremental stability of TCAM reduction in RETCAM, which
is an important characteristic in practice.

B. Function Integrity Comparison between RETCAM and H-
SOFT

One great advantage of OpenFlow is the fine-grained con-
trol ability of data flow. According to the OpenFlow whitepaper,
arbitrary combination of fields in an entry is supported, which
would cater to many special user needs. However, existing rout-
ing tables in current networks usually focus on one or several
fields that are widely adopted for routing. Therefore, format
conversion alone from traditional networks to OpenFlow just
like H-SOFT did could not fully reflect the flow control need of
OpenFlow networks, which omits many possible combinations
of fields in OpenFlow that do not exist in traditional networks.

In H-SOFT, fields are partitioned into many field-groups, and
match process is operated by one choice of such group. Even
though by careful identification of field relationship such as con-
flict and coexistence, group partition could avoid damage of
function integrity to some extent, the large diversity of match
field combination in OpenFlow could not support so many group
partitions as H-SOFT did. Merely format conversion from tra-
ditional routing table to OpenFlow format just cover up the
fact that the divide-and conquer policy in H-SOFT damages the
function integrity of OpenFlow, since the diversity of match field
combination in traditional routing table is fixed to a very small
scope.

Fig. 8. Comparison of function integrity among different schemes.

In the real flow table of OpenFlow collected from RETCAM,
the diverse combinations of match fields roughly reflect the flex-
ibility of OpenFlow. Under this circumstance, the damage to
function integrity of H-SOFT is exposed. In our simulation of
H-SOFT, the number of malfunction cases suffer from a man-
ifest increase as the size of flow table grows, while RETCAM
performs no functional error in this experiment. Fig. 8 shows the
percentage of flow entries that could be correctly functioned in
different schemes. When subset number k grows larger, the per-
centage of flow entries that could be correctly functioned drops
significantly in H-SOFT, thus we gave up the simulation when
k > 5 in H-SOFT, since there are too many malfunction cases.
As shown in the figure, RETCAM can maintain all the func-
tion integrity of the flow table for OpenFlow. Specifically, since
RFC and SplitIP do not change the information contained in the
flow table (which means a full function integrity), we do not add
them in the analysis of the function integrity part.

C. Compression Comparison between H-SOFT and RETCAM

H-SOFT proposed a flow table compression algorithm based
on the principle of divide-and-conquer. By the partition of sub-
tables, one flow may choose one of them to carry out the match
process. However, when the fine-grained flow control ability
of OpenFlow is taken fully used of, arbitrary wildcard may oc-
cur in a flow table, which would greatly hinder the performance
of H-SOFT. One premise of the divide-and-conquer principle is
the classification of match types in a flow table, while in Open-
Flow the distribution of match field in a flow entry may some-
times be too casual to categorize. RFC and SlpitIP concentrate
on the efficient storage of range-based match fields such as TCP
port range and IP prefixes. Therefore, such two schemes do not
bring much benefit in the reduction of match fields in Open-
Flow. As shown in the figure, under different flow table sizes,
the compression ratios of RFC and SplitIP are stable, which is
around 0.17 and 0.28, respectively. In RETCAM, since the pre-
compression outcomes in different sub-tables are recomposed
into one summarizing header field, support of arbitrary wildcard
in OpenFlow is not influenced. Fig. 9 shows the comparison of
performance among different schemes, where the threshold n
in H-SOFT set to 10000. As Fig. 9 shows, RETCAM performs

KAHSAY et al.: GAME-THEORETIC ANALYSIS OF SELFISH SECONDARY USERS ... 491

Fig. 9. Comparison of compression ratio among different schemes.

Fig. 10. Run time comparison of different schemes.

the best among all schemes. Besides, RETCAM shows a bigger
advantage when flow table size is small.

D. Computation Time Comparison

We compare the computation time of different schemes under
our test environment, of which the result is shown in Fig. 10.
Since RFC and SplitIP rely on complicated relationship analysis
among different flow entries and match fields, such two schemes
have a much higher computation complexity when the scale of
the table size grows.

VII. CONCLUSION

Flow table of OpenFlow requires much storage space of
TCAM. This paper proposed an efficient TCAM saving model
for an OpenFlow switch based on the analysis of relationships
between different fields. By the pre-compression procedure of
inter-field compression, field mapping and intra-field compres-
sion, RETCAM effectively reduces the table size in TCAM as
much as 60%, thus alleviating the pressure of storage in TCAM.
With a modest run time of thousands of entries per second and a
good performance of incremental deployment. In a word, RET-
CAM can efficiently reduce the TCAM consumption in the stor-
age of OpenFlow tables.

REFERENCES
[1] J. Montag, “Software defined networking mit OpenFlow,” in Proc. IITM,

2013.
[2] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-

works,” ACM SIGCOMM Comput. Commun. Review, vol. 38, no. 2 pp. 69–
74, Mar. 2008.

[3] OpenFlow 1.3.0 specification. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/specification/
openflowspec-v1.3.0.pdf.

[4] Z. Guo et al., “STAR: Preventing flow-table overflow in software-defined
networks,” Comput. Networks vol. 125, pp. 15–25, Oct. 2017.

[5] J. Cao and B. Chen, “Memory-optimized RFC packet classification algo-
rithm merge RFC,” J. Chinese Comput. Syst., vol. 33, no. 4, pp. 865–868,
Mar. 2012.

[6] W. Pak and S. Bahk. “FRFC: Fast table building algorithm for recursive
flow classification,” IEEE Commun. Lett., vol. 14, no. 12, pp. 1182–1184,
Dec. 2010.

[7] H. Lim, S. Lee, and E. E. Swartzlander, “A new hierarchical packet clas-
sification algorithm,” Comput. Networks, vol. 56, no. 13, pp. 3010–3022,
Sept. 2012.

[8] P. Gupta and N. McKeown, “Packet classification using hierarchical intel-
ligent cuttings,” IEEE Hot Interconnects, vol. 40, 1999.

[9] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” in Proc. ACM SIGCOMM, Aug. 2003.

[10] K. Y. Zeng and J. H. Yang, “Towards the optimization of access control
list,” J. Software, vol. 18, no. 4, pp. 978–986, Apr. 2007.

[11] A. X. Liu, E. Torng, and C. R. Meiners, “Compressing network access con-
trol lists,” IEEE Trans. Parallel Distributed Syst., vol. 22, no. 12, pp. 1969–
1977, Dec. 2011.

[12] E. Karpilovsky, M. Caesar, J. Rexford, A. Shaikh, and J. van der Merwe,
“Practical network-wide compression of IP routing tables,” IEEE Trans.
Netw. Service Manage., vol. 9, no. 4, pp. 446–458, Dec. 2012.

[13] L. Schiff, Y. Afek, and A. Bremler-Barr. “Orange: Multi field openflow
based range classifier,” in Proc. ACM/IEEE ANCS, May 2015.

[14] O. Rottenstreich et al., “Optimal in/out TCAM encodings of ranges,”
IEEE/ACM Trans. Netw. vol. 24, no. 1, pp. 555–568, Feb. 2016.

[15] P. Sun, J. Lan, P. Wang, and T. Ma, “RFC: Range feature code for TCAM-
based packet classification,” Comput. Networks, vol. 118, pp. 54–61, May
2017.

[16] W. Li, X. Liu, W. Le, H. Li, and H. Zhang, “A practical range encoding
scheme for TCAMs,” in Proc. ACM SIGCOMM Posters and Demos, Aug.
2019.

[17] L. Wenjun et al., “A power-saving pre-classifier for TCAM-based IP
lookup,” Comput. Networks, vol. 164, p. 106898, Dec. 2019.

[18] Z. Guo et al., “Balancing flow table occupancy and link utilization in
software-defined networks,” Future Generation Comput. Syst. vol. 89,
pp. 213–223, Dec. 2018.

[19] Z. Guo, S. Hui, Y. Xu, and H. J. Chao, “Dynamic flow scheduling for
power-efficient data center networks,” in Proc. IEEE/ACM IWQoS, June
2016.

[20] Z. Guo et al., “JumpFlow: Reducing flow table usage in software-defined
networks,” Comput. Networks, vol. 92, pp. 300–315, Dec. 2015.

[21] S. Yingchareonthawornchai, J. Daly, A. X. Liu, and E. Torng “A sorted-
partitioning approach to fast and scalable dynamic packet classification,”
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1907–1920, Aug. 2018.

[22] W. Li, X. Li, H. Li, and G. Xie, “CutSplit: A decision-tree combining
cutting and splitting for scalable packet classification,” in Proc. IEEE IN-
FOCOM, Apr. 2018.

[23] W. Li, T. Yang, Y.-K. Chang, T. Li, and H. Li, “TabTree: A TSS-assisted
bit-selecting tree scheme for packet classification with balanced rule map-
ping,” in Proc. ACM/IEEE ANCS, Sept. 2019.

[24] E. Liang et al., “Neural packet classification,” in Proc. ACM SIGCOMM,
Aug. 2019.

[25] W. Li et al., “Tuple space assisted packet classification with high perfor-
mance on both search and update,” IEEE J. Sel. Areas Commun., vol. 38,
no. 7, pp. 1555–1569, July 2020.

[26] A. Rashelbach, O. Rottenstreich, and M. Silberstein, “A computational
approach to packet classification,” in Proc. ACM SIGCOMM, Aug. 2020.

[27] A. R. Curtis et al., “DevoFlow: Scaling flow management for high-
performance networks,” in Proc. ACM SIGCOMM, Aug. 2011.

[28] Yu Minlan, J. Rexford, M. J. Freedman, and J. Wang “Scalable flow-based
networking with DIFANE,” ACM SIGCOMM Comput. Commun. Review,
vol. 40, no. 4, pp. 351–362, Aug. 2010.

[29] S. Q. Zhang et al., “TCAM space-efficient routing in a software defined
network,” Comput. Networks, vol. 125, pp. 26–40, Oct. 2017.

[30] K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction in
TCAM for power aware SDN,” in Proc. ICDCN. Jan. 2013.

492 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 6, DECEMBER 2020

[31] N. Matsumoto and M. Hayashi, “LightFlow: Speeding up GPU-based
flow switching and facilitating maintenance of flow table,” in Proc. IEEE
HPSR, June 2012.

[32] J. Ge, Z. Chen, Y. Wu, and Y. E “H-SOFT: A heuristic storage space op-
timisation algorithm for flow table of OpenFlow,” Concurrency Computa-
tion Practice Experience, vol. 27, no. 13, pp. 3497–3509, Aug. 2015.

[33] RFC 6052. [Online]. Available: http://datatracker.ietf.org/doc/rfc6052/.
[34] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms

for advanced packet classification with ternary CAMs,” ACM SIGCOMM
Comput. Commun. Review, vol. 35, no. 4, pp. 193–204, Aug. 2005.

[35] A. Bremler-Barr, D. Hay, and D. Hendler. “Layered interval codes for
TCAM-based classification,” in Proc. ACM SIGMETRICS, June 2008.

Chaoqin Zhang is currently pursuing the Ph.D. de-
gree with the National Digital Switching System Engi-
neering and Technological R&D Center, China. He is
also an Associate Professor with the Zhengzhou Uni-
versity of Light Industry. His research interests in-
clude Internet architecture, data mining and network
security.

Penghao Sun is a Ph.D. Candidate at China National
Digital Switching System Engineering & Technolog-
ical R&D Center. His current research interests are
in SDN, networking algorithms and packet classifica-
tion.

Guangwu Hu received the Ph.D. degree in Computer
Science and Technology from Tsinghua University in
2014. Then he became a Post-Doctoral with the Grad-
uate School at Shenzhen, Tsinghua University. He is
currently an Associate Professor with the Shenzhen
Institute of Information Technology. His research
interests include software-defined networking, next-
generation Internet and Internet security.

Liang Zhu received Ph.D. degree in Computer Sci-
ence and Technology from Beijing University of Posts
and Telecommunications (BUPT), Beijing, China, in
October 2017. He is currently a Lecturer with the
Institute of Computer and Communication Engineer-
ing at Zhengzhou University of Light Industry, Henan,
China. His current research interests include mobile
social networks, personalized service recommenda-
tion, and privacy preserving.

