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NOLD: A Neural-Network Optimized
Low-Resolution Decoder for LDPC Codes
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Abstract: The min-sum (MS) algorithm can decode Low-density
parity-check (LDPC) codes with low computational complexity at
the cost of slight performance loss. It is an effective way to realize
hardware implementation of the min-sum decoder by quantizing
the floating belief messages (i.e., check-to-variable messages and
variable-to-check messages) into low-resolution (i.e., 2–4 bits) ver-
sions. However, such a way can lead to severe performance degra-
dation due to the finite precision effect. In this paper, we propose
a neural-network optimized low-resolution decoding (NOLD) al-
gorithm for LDPC codes to deal with the problem. Specifically,
the optimization of decoding parameters (i.e., scaling factors and
quantization step) is achieved in a hybrid way, in which we con-
catenate a NOLD decoder with a customized neural network. All
learnable parameters associated with the decoding parameters are
assigned to each neuron in the proposed method. What’s more, we
design a new activation function whose outputs are close to the em-
ployed quantizer ones when network parameters are finally opti-
mized off-line. Finally, the performance of the proposed method is
verified by numerous experiments. For the case of 2-bit decoding,
the proposed approach significantly outperforms several conven-
tional decoders at the expense of slightly increased off-line training
time. Besides, the proposed method with 4-bit quantization incurs
only 0.1 dB performance loss compared with the floating min-sum
decoder at the coded bit-error-rate of 10−5. Moreover, we show
that the proposed NOLD decoder works over a wide range of chan-
nel conditions for regular and irregular LDPC codes. Simulation
code for reproductive results is publicly available1.

Index Terms: Low-density parity-check codes, low-resolution, min-
sum algorithm, neural network, optimization.

I. INTRODUCTION

LOW-DENSITY parity-check (LDPC) codes which were
first discovered by Gallager [1] in the 1960s have been the-

oretically proved to achieve the performance near the Shannon-
limit under belief propagation (BP) decoding algorithms [2]. It
is believed that LDPC codes are of sustaining potential in the fu-
ture wireless communication system, which is conceived to be
ultra-fast, low-latency, and ultra-reliable [3]–[6].
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The min-sum (MS) decoding algorithm has been widely stud-
ied as one of the BP decoding algorithms [7]. Compared with
its original form, known as the sum-product (SP) decoding al-
gorithm, the MS decoding algorithm has a much lower com-
putational complexity at the cost of slight performance degra-
dation. The performance loss can be compensated by using a
normalization factor or an offset factor [8], [9]. These two mod-
ified versions of the MS decoding algorithm are called normal-
ized min-sum (NMS) decoding algorithm [8] and offset min-
sum (OMS) decoding algorithm [9], respectively. The scaling
min-sum (SMS) decoding algorithm uses normalization factor
and offset factor in synergy and can achieve better performance.
Besides, they can narrow the oversized check-to-variable mes-
sages to approximate the SP algorithm.

The effects of scaling factors have been analyzed in [10]. It
has been shown that SMS outperforms MS by approximating the
check-to-variable messages to the SP algorithm. For the regu-
lar LDPC codes, fixed scaling factors can be used throughout
the decoding process for each node since the performance is in-
sensitive to the scaling factors. The work of [11] proposed a
numerical method that directly computes the theoretical values
of fixed scaling factors. However, fixed scaling factors are no
longer effective for the irregular case. In general, it is supposed
to vary the scaling factors from one node to another as well as
from one iteration to the next [12].

The typical way is to optimize the values of scaling factors by
the adaptive strategies, which design an adaptive rule that com-
putes the optimal scaling factors from the decoder’s feedback at
each iteration. The work of [13] utilized a pre-configured look-
up table, wherein wherein the proportion of unsatisfied parity-
check equations adaptively determines the scaling factors. It has
been shown in [14] that the scaling factors increase exponen-
tially with the iterations and the final values are equal to 1. As
a result, the authors of [14] used an exponential equation to cal-
culate the scaling factors. In [15], The adaptive scaling factors
are computed by the ratio of the second minimum and the max-
imum values among the variable-to-check messages. It is noted
that these adaptive methods cannot effectively jointly optimize
decoding parameters. Moreover, such adaptive processes add
some complexity and increase the decoding delay.

Alternatively, the optimal value of the scaling factors can be
determined by a probabilistic analytical method called density
evolution (DE). The works of [16], [17] employed this numer-
ical method to estimate the optimal scaling factors. In [16],
the DE method was used to obtain the optimal scaling factors
and then estimated the achievable performance gain induced by
the scaling factor. Authors of [17] specified the DE optimiza-
tion of two-dimensional scaling factors for the scaling min-sum
algorithm. Afterward, they introduced a method to determine
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the two-dimensional scaling factors. The work of [18], [19]
analyzed the bit error rate (BER) performance of the LDPC
codes under the Rayleigh fading channel and asymmetric mem-
oryless channels by DE, respectively. Nevertheless, there exist
two problems with the DE method. On the one hand, the ba-
sic premise of DE is that the analyzed LDPC code has infinite
code length or cycle-free Tanner graph under the condition of
the symmetry channel. On the other hand, searching for the opti-
mal scaling factors based on the DE method becomes intractable
when the number of different node degrees is large.

On the other hand, it is an effective way to realize hardware
implementation of the min-sum decoder by quantizing the float-
ing belief messages into low-resolution (i.e., 2–4 bits) versions.
A very recent work [25] proposed to reduce the hardware com-
plexity by adopting the novel compressed structure of the net-
work. As shown in the work of [24], a dynamic quantization
can achieve better performance than a fixed quantization. Well-
designed adaptive rules can dynamically determine the quanti-
zation parameters. Authors of [26] proposed an adaptive quanti-
zation scheme called quasi-uniform quantization that can match
the dynamic range of belief messages. The quasi-uniform quan-
tization uses a uniform quantization interval for the message
with a small magnitude and an exponentially increasing inter-
val for the message with a large magnitude. In our previous
work [28], the uniform quantization intervals are updated ev-
ery iteration based on a low-complexity adaptive rule that cal-
culates the numbers of satisfied check nodes. Another way to
estimate the quantization parameters is the well-known discrete
density evolution (DDE) method [29], which can evaluate the
low-resolution performance of the BP decoder and design the
quantizer for irregular LDPC codes in [30], [31].

Except for the adaptive optimization and DE optimization
of decoding parameters, deep learning-based methods are of
great potential since recent technological advancements make
deep learning meet the requirements of future wireless net-
works [32], [33]. Authors of [34] utilized a machine learning
technique to optimize the scaling factors of the scaling min-sum
algorithm. The work of [35] established a neural network de-
coder with similar topological construction to the Tanner graph.
The neurons corresponding to the edges in the Tanner graph are
assigned in the trainable weights. In [38], the extrinsic messages
of the BP decoder is jointly optimized by the supervised learn-
ing method and the annealing method. A novel decoding archi-
tecture proposed in [39], embedding the convolutional neural
network (CNN) with a BP decoder, achieves significant perfor-
mance gains under additive correlated Gaussian noise (ACGN).
With the novel Finite-Alphabet Message Passing scheme [27],
the authors proposed to optimize the classical iterative decoder
of LDPC codes. Besides, the experimental results in [27] proved
that the proposed method with 3-bit precision achieves compa-
rable results with the min-sum algorithm.

The deep learning based decoding algorithms [6], [27], [33],
[34], paving a new way to decoding LDPC codes, can achieve
superior performance at the cost of slightly higher computa-
tional complexity when compared to classical ones. In this pa-
per, we propose a new neural-network optimized low-resolution
LDPC decoder. The contributions of this work can be summa-
rized as follows.

I. To reduce the min-sum decoder’s hardware cost, we pro-
pose to quantize the floating belief messages (i.e., check-
to-variable messages and variable-to-check messages) into
low-resolution (i.e., 2-4 bits) versions which are benefi-
cial for hardware implementation. To deal with the finite
precision effect, we propose a new neural network-based
method. The decoding parameters, including scaling fac-
tors and quantization step for variable node and check node
output messages, are jointly optimized.

II. To fully leverage the advantages of deep learning-based
methods, we propose a new activation function whose out-
puts are close to the employed quantizer ones when net-
work parameters are finally optimized offline. Besides,
with the new activation function, the current decoder can
be extended to an arbitrary resolution.

III. We verify the performance of the proposed method with
numerous case studies. Our results reveal that the proposed
decoder enables low-resolution belief messages without a
significant performance loss in terms of coded bit error rate
performance. What’s more, it is shown that, for both regu-
lar and irregular LDPC codes, the proposed approach sig-
nificantly outperforms several conventional decoders over
a wide range of channel conditions.

For reproductive results and possible extensions of the pro-
posed method by interested readers, the decoder developed in
this paper has been made publicly available2.

The rest of the paper is organized as follows. Section II de-
scribes the system model. In Section III, we first present the MS
decoding and then introduce the modification of MS decoding
that operates scaling and quantization on the belief message of
each node, which serves as the fundamental decoding scheme
of our proposed algorithm. Section IV and Section V elaborates
the proposed NOLD decoder and present the simulation results,
respectively. Finally, Section VI concludes this paper.

II. SYSTEM MODEL

In this part, we introduce the system model of the low-
resolution LDPC decoding. We consider the BPSK modulation
over the three noise models.

A. LDPC Codes

At the transmitter, the base-band signals s of length K are
encoded to binary coded bits u of length N . The encoded bits u
is represented by

u ∈
{
c ∈ FN

2
∣∣HcT = 0

}
, (1)

where H ∈ FM×N
2 is a binary parity check matrix with M rows,

N columns and E 1-elements. The associated Tanner graph G
define by H hasN variable nodes,M check nodes andE edges.
The variable node v is connected by an edge e to the check node
c if the corresponding element in H is equal to 1. The number
of check nodes (variable nodes, resp.) that are connected to a
variable node v (check node c, resp.) is termed the degree of
variable node v (check node c, resp.) and is different from one
node to another in an irregular LDPC code. Since H is a sparse
matrix, the number of the edges E is far less than M ×N .

2https://github.com/Leo-Chu/NOLD
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B. Channel Noise Models

The N coded bits u are modulated by a binary-to-bipolar
function where the binary signals {0, 1}N are converted to
{1,−1}N . Then the BPSK modulated signals x are sent through
an additive white Gaussian noise (AWGN) channel:

y = x + n, (2)

where the noise vector n follows Gaussian distribution with zero
mean and σ2 variance.

However, practical channels can include fading noise and cor-
related noise caused by multi-path propagation and inter-symbol
interference. The LDPC codes will confront severe performance
degradation if the decoder can not deal with the fading and cor-
related noise.

B.1 Rayleigh Fading Noise Channel

The magnitude of transmit signal will vary randomly or fade
when passing through a Rayleigh fading channel. Commonly, a
Rayleigh fading model assumes that the real and imaginary parts
of the received signal follow zero-mean Gaussian distribution so
that the sum of such two independent and identically Gaussian
random variables follows a Rayleigh distribution [18], [20]. The
Rayleigh fading channel outputs are defined by:

y = rx + n, (3)

where r is known to the receiver as the Rayleigh fading factor
vector whose entries have density probability shown as p (r) =

2r · e−r2 .

B.2 Additive Correlated Gaussian Noise Channel

We analyze one-sided ACGN that has correlation along the
temporal dimension instead of the block dimension. The corre-
lated noise is modeled by n̂ = Φ

1
2n where n is an noise vector

of length N and Φ is an N × N matrix. The entries of n are
i.i.d. Gaussian variables and are turned to correlated Gaussian
variables by multiplying correlation matrix Φ

1
2 [23].

To keep the same variance of n̂ as n, we consider (1/K) ·
tr (Φ) = 1. Besides, we use an exponential covariance model to
define the entries of Φ:

Φi,j =

{
ϕj−i, i ≤ j(
ϕi−j)∗, i ≥ j , (4)

where Φi,j represents the (i, j)th entry of Φ, and ϕ is the corre-
lation factor with |ϕ| < 1.

The ACGN channel outputs are presented as:

y = x + Φ
1
2n (5)

Finally, the channel outputs y are sent to the decoder from the
receiver.

C. Quantized Decoding

A quantizer is required for the LDPC decoder in consideration
of the hardware implementation. The quantizer can output belief
messages that take finite discrete values and reduce the power
consumption and storage cost [21], [22]. Commonly, 4 ≤ b ≤ 7

are suitable values (see, e.g., [30] and references therein). The
b-bit quantization is shown as follow:

Q (x) =



q1
...
qk
qk+1

...
q2b

x ∈ T1 : (−∞, t1]
...

x ∈ Tk : (tk−1, tk]
x ∈ Tk+1 : (tk, tk+1]

...
x ∈ T2b−1 : (t2b−1,∞]

(6)

For simplicity, we shall model the quantizer as symmetric uni-
form quantizer with step size ∆ and quantization bit b. We start
by defining a set of quantization labels Q = {q1, q2, · · ·, q2b}
with entries

qk =

(
2k − 2b − 1

)
∆

2
, k = 1, 2, · · ·, 2b. (7)

Moreover, let T = {−∞, t1, · · ·, t2b−1,∞} specify the set of
quantization thresholds. For uniform quantizers, the quantiza-
tion thresholds are given by

tk =

(
2k − 2b

)
∆

2
, k = 1, 2, · · ·, 2b − 1. (8)

The uniform quantization can be uniquely determined by the
set of quantization labels Q and the set of quantization thresh-
olds T . Therefore, the mapping function Qu (·) can also be de-
scribed by the quantization step size ∆ and quantization bit b.
The quantizer maps the floating inputs into the quantized out-
puts in the following way:

Qu (x) = sgn(x) ·∆
(⌊
|x|
∆

⌋
+

1

2

)
, (9)

where b·c is the rounding down function. The messages that
have values smaller than q1 or larger than q2b are respectively
saturated to q1 and q2b .

Although the finite precision effect exacerbates the decoding
performance, the uniform quantizer has low hardware complex-
ity and is simple to be implemented. Moreover, the decoding
system with uniform quantization obviates the floating-point op-
erations and lookup table storing , reducing the hardware com-
plexity and store memory.

III. MIN-SUM DECODING SCHEME

This section introduces the decoding scheme of our work.
To elucidate our proposed algorithm, we first introduce the
MS decoding. Then, we will describe MS decoding with low-
resolution belief messages.

A. Min-sum Decoding

At the start of the MS decoding, the log-likelihood ratios
(LLRs) computed from the channel outputs are sent to the vari-
able nodes as initial variable-to-check messages for the first de-
coding iteration [7]. The LLRs of MS decoder l0v are the channel
outputs yv for v = 1, 2, · · ·, N :

l0v = yv (10)
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At the following iteration for i = 1, 2, · · ·, I where I repre-
sents the maximum number of iterations, the check-node mes-
sages and variable-node message are updated as follow:

lic,v =
∏

v′∈N (c)\v

sgn
(
li−1v′,c

)
· min
v′∈N (c)\v

∣∣∣li−1v′,c

∣∣∣ , (11)

liv,c = l0v +
∏

c′∈M(v)\c

lic′,v, (12)

where lic,v (liv,c, resp.) represents the message passed from check
node c (variable node v) to variable node v (check node c) at
iteration i. N (c) (M (v), resp.) denotes the set of neighboring
variable nodes (check nodes, resp.) of the check node c (variable
node v, resp.).

When the Ith iteration arrives, the check-to-variable mes-
sages update as (11) but the variable-to-check updating is a bit
different from (12). The variable node combines all the check-
to-variable messages and computes the final decoding outputs
x̂v through a hard decision. The estimated code bits ûv can be
obtained after demodulation:

liv = l0v +
∏

c′∈M(v)

lic′,v, (13)

x̂v = sgn
(
liv
)
, (14)

ûv = D
(
§̂v
)
, (15)

where sgn (·) represents the sign function and D (·) is a BPSK
demodulator that converts bipolar signals {1,−1}N to binary
signals {0, 1}N .

B. Modification of Min-sum Decoding

Though the MS decoding simplifies the check-to-variable
processing, it overestimates the check-to-variable messages and
causes a performance loss compared with the SP decoding. The
scaling MS algorithm compensates for the performance loss by
narrowing the check-to-variable messages. This modified MS
algorithm processes the belief messages in a one-dimensional
manner without considering the variable-to-check messages.
However, the outgoing messages from variable nodes are also
the incoming messages to the check nodes in the next itera-
tion. Thus, the variable-to-check messages also play an es-
sential role in the iterative process, which suggests processing
both the check-to-variable messages and variable-to-check mes-
sages [17]. This two-dimensional scaling MS algorithm can out-
perform the one-dimensional scaling MS algorithm. It is ratio-
nal to apply quantization to the check node and variable node in
the same light when considering the low-resolution case.

Let Qx (·) (Qy (·), resp.) be the quantizer for check-to-
variable messages (variable-to-check messages, resp.). αx and
βx (αy and βy , resp.) denote the normalization factor and
offset factor for check-node processing (variable-node process-
ing, resp.), respectively. i represents the iteration numbers for
i = 1, 2, · · ·, I . The channel initialization is shown as:

l0v = Q0
y

[
max

(
α0
y · yv + β0

y , 0
)]

(16)

The check-node processing and variable-node processing are
described as:

lic,v =Qi
x

 ∏
v′∈N (c)/v

sgn
∣∣∣li−1v′,c

∣∣∣


×max

(
0, αi

x · min
v′∈N (c)/v

∣∣∣li−1v′,c

∣∣∣+ βi
x

)]
(17)

liv,c = Qi
y

l0v + max

0, αi
y ·

∑
c′∈M(v)/c

lic′,v + βi
y

 (18)

When it reaches the maximum iteration number I , the
variable-to-check processing at iteration I can be represented by
(13). As shown in (17) and (18), within one iteration, the out-
going messages from check nodes or variable nodes are scaled
and quantized equally for each node. However, it is not efficient
for irregular LDPC codes, and we should apply different scal-
ing and quantization to each node for irregular LDPC codes. In
this case, an effective method is required to optimize numerous
decoding parameters.

IV. PROPOSED DECODING ALGORITHM

A. Proposed Neural Network

In [35], a deep neural network constructed by directly unfold-
ing a Tanner graph optimizes the network parameters and pro-
cesses the input signals just as an iterative BP decoder. In this
part, we extend the trellis representation of the BP decoder to the
proposed decoder. Similar to [35], we assign learnable parame-
ters associated with the decoding parameters to each neuron in
our neural network termed as NOLD network.

In the NOLD network, the dimension of the input layer and
output layer is N , which is the number of the variable nodes
(i.e., the code block length). The input layer receives the channel
outputs, and the output layer outputs the final marginalization.
The other layers are the hidden layers that contain E neurons
associated with the edges in the Tanner graph. The NOLD net-
work with 2I hidden layers graphically represents the NOLD
decoder with I total iterations.

We define the outputs of the vth neuron corresponding to the
variable node v in the input layer (output layer, resp.) as xInv
(xOt

v , resp.). We use xHdi
ev,c to denote the outputs of the neuron

corresponding to the edge ev,c that connects the variable node v
and the check node c in the ith hidden layer.

In the input layer, the neurons receive the channel ouputs yv
for v = 1, 2, · · ·, N :

xInv = yv (19)

For the first hidden layer (i.e., i = 1), the neuron associated
with the edge ev,c is connected to the input neuron correspond-
ing to the variable node v. This layer outputs the quantized and
scaled LLRs:

xHd1
ev,c =Q1

v

[
max

(
0, α1

v · xInv + β1
v

)]
(20)

For odd values of i (i > 1), the neuron associated with the
edge ev,c is connected to all the neurons corresponding to the
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edges ev,c′ for c′ ∈M(v) \c in the (i − 1)th layer and is addi-
tionally connected to the neuron corresponding to the edge ev,c
in the first hidden layer. The neurons in this layer deal with the
messages in the same way as the variable-to-check processing:

xHdi
ev,c=Qi

ev,c

[
xHd1
ev,c

+ max

0, αi
ev,c ·

∑
c′∈M(v)/c

xHdi−1
ev,c′

+ βi
ev,c

 (21)

For even values of i, the neuron associated with the edge ev,c
is connected to all the neurons corresponding to the edges ev′,c
for v′ ∈ N (c) \v in the (i − 1)th layer. The outputs of this
layer are equivalent to check-to-variable messages given by:

xHdi
ev,c =Qi

ev,c

 ∏
v′∈N (c)/v

sgn
∣∣∣xHdi−1

ev′,c

∣∣∣


×max

(
0, αi

ev,c · min
v′∈N (c)/v

∣∣∣xHdi−1
ev′,c

∣∣∣+ βi
ev,c

)]
(22)

The neuron that is associated with the vth variable node in the
output layer is connected to all the neurons related to the edges
ev,c for c ∈M (v) in the last hidden layer and is also connected
to the neuron corresponding to the edge ev,c in the first hidden
layer. The final outputs of the network are shown as:

xOt
v = xHd1

ev,c +
∑

c∈M(v)

xHd2I
ev,c (23)

In this network, the trainable variables are scaling factors and
quantization parameters. The trainable scaling factors are α1

v , β1
v

for v = 1, 2, · · ·, N and αi
ev,c , β

i
ev,c for ev,c = 1, 2, · · ·, E, i =

2, 3, · · ·, 2I . The trainable quantization parameters are quantiza-
tion level sets Qi

ev,c and in particular for the uniform quantiza-
tion, are the quantization steps ∆i

ev,c for ev,c = 1, 2, · · ·, E and
i = 1, 2, · · ·, 2I .

B. Neural Quantizer

The problem in the neural network is that the quantization
function is non-differentiable at some points and its derived
function is zero almost everywhere. This obstacle gets us in
trouble for obtaining the gradient information from the back-
ward computation process. Hence we can not evaluate the gra-
dients by the backward propagation mechanism. A neural quan-
tizer is needed to be designed for the neural network to train the
learnable parameters.

To tackle this difficulty, we introduce a soft quantization func-
tion to the neural quantizer [36], [37]. The soft quantization
function is suitable for the neural quantizer since it has non-zero
derivative values and non-differentiable points. We assume a b-
bit precision neural quantizer. The soft quantization function is
represented by Qn (·). Given an input x, the quantized outputs
can be written as:

Qn (x) =

2b∑
k=1

qk · e
− (x−qk)

2

2η2

2b∑
k=1

e
− (x−qk)

2

2η2

, (24)
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Fig. 1. The shapes of the soft quantization function under different η2, b = 2,
Q =

{
−1,− 1

3
, 1, 1

3

}
.

where Q = {q1, q2, · · ·, q2b} is the quantization level set of the
b-bit neural quantizer and η is a shaping factor. It is also note-
worthy that the soft quantization function (24) is the minimum
mean square error (MMSE) estimator for a discrete signal over
the AWGN channel [38].

A soft quantization function is determined by the quantization
level set and smoothness factor. Thus, if the quantization levels
are symmetric concerning the origin and each quantization level
has the same intervals to its adjacent quantization levels, we can
construct a uniform quantization. Fig. 1 shows a two-bit uniform
quantization constructed by the soft quantization function. We
keep the quantization level set unchanged and tune the shaping
factor. It is depicted that the shaping factor significantly affects
the shape of the function. As shown in Fig. 1, when η2 → ∞,
the soft quantization asymptotically approaches the linear func-
tion and when η2 → 0, the soft quantization degenerates to a
hard staircase quantization. Since the smoothness of the soft
quantization function is controlled by the shaping factor η2, the
shaping factor η2 should be tailored to the determined quantiza-
tion level setQ. The shaping factor is set to a small number very
close to zero according to the number of quantization levels at
the training stage. It will be fixed to zero (i.e., hard staircase
quantization) during the inference stage.

In our NOLD network mentioned above, each layer’s acti-
vation function is replaced by the soft quantization function,
increasing the neural network’s generalization ability by intro-
ducing nonlinearity and can train the quantization parameters
through the quantization activation function.

C. Loss Function

A proper loss function significantly affects the final results.
In [35], the sigmoid function is used to preprocess the outputs
from the neural network before a cross-entropy function is used
to calculate the loss. In [39], a normality test term is introduced
to the loss function so that the distribution similarity between
the residual noise and Gaussian noise can be evaluated. By min-
imizing the normality test, the distribution of a network’s out-
puts is shaped to approximate Gaussian distribution.
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For the final output layer, we map the final marginalization to
the code bits by the activation function which replaces the hard
decision in the standard BP algorithm. However, the sign func-
tion we used in the BP decoder has zero derivation almost every-
where except for some non-differentiable point. We can obtain
a soft sign function by utilizing the soft quantization function in
(24). We set b = 2, Q = {−1, 1} and get a neural sign function
nsgn (·):

nsgn (x) =
e
− (x+1)2

2η2 − e−
(x−1)2

2η2

e
− (x+1)2

2η2 + e
− (x−1)2

2η2

=
e
− 2x
η2 − 1

e
− 2x
η2 + 1

(25)

The BPSK demodulatorD (·) receives the neural decision and
outputs the estimated code bits. We use θ (·) to represent this
final process:

θ (x) = D (nsgn (§)) =
∞− nsgn(§)

∈
=

∞

∞+ e−
∈§
η∈

(26)

Note that, if we set η2 = 2, θ (·) degenerates to a sigmoid
function. The sigmoid activation function used in the output
layer estimates the belief probability distribution of the code bit.
Since the target outputs uv and actual outputs ov belong to in-
terval [0, 1], we use the cross-entropy function to calculate the
loss:

Loss = − 1

N

N∑
v=1

(uv log (ov) + (1− uv) log (1− ov)) (27)

The cross-entropy loss function, which represents a measure
of the divergence between uv and ov , has a fast convergence
by using the gradient descent method [32]. The NOLD network
minimizes the cross entropy in (27) and gets the optimized val-
ues of the decoding parameters.

D. The Proposed Neural-network Optimized Low-resolution
Decoding Algorithm

The frame-chart of the proposed NOLD decoder is shown in
Fig. 2, which can be divided into two stages: Offline training
and Online decoding. At the offline training stage, the proposed
NOLD network tries to obtain a global optimization of the de-
coding parameters. The network contains a four-layer network
that optimizes one-iteration parameters. The network receives
the irrelevant messages as the training data from the concate-
nated NOLD decoder. The decoding parameters that best fit the
training data are chosen to configure the NOLD decoder for the
next iteration. The network optimization will not stop until some
criteria are satisfied. For the online decoding stage, the trained
parameters (scaling factors and the quantization parameters) are
sent to the decoder for further inference. The detailed analysis
will be given in the following.

We start by introducing some assumptions. Let an irregu-
lar LDPC code has variable-node degree distribution λ(x) =
dvmax∑
d=1

λdx
d−1 and check node degree distribution ρ(x) =

dcmax∑
d=1

ρdx
d−1. Let dv (v) be the degree of the variable node v

s u x y x̂

Fig. 2. The frame-chart of the proposed neural-network optimized low-
resolution decoding algorithm.

for v = 1, 2, · · ·, N and dc (c) be the degree of the check node
c for c = 1, 2, · · ·,M . αi

dv and βi
dv denote the normalization

factor and the offset factor for the variable nodes with degree
dv at decoding iteration i for dv = 1, 2, · · ·, dvmax. αi

dc and
βi
dc denote the normalization factor and the offset factor for the

check nodes with degree dc at decoding iteration i for dc =
1, 2, · · ·, dcmax. qidv (·) represents the ith-iteration quantization
for variable nodes with degree dv for dv = 1, 2, · · ·, dvmax.
qidc (·) represents the ith-iteration quantization for check nodes
with degree dc for dc = 1, 2, · · ·, dcmax.

The network has a four-layer architecture that represents one-
iteration decoding. The first layer, called the input layer, has E
neurons corresponding to the edges in the Tanner graph. Each
neuron associated with the edge ev,c in the input layer receives
the ith-iteration check-to-variable message that passes through
the edge ev,c from the NOLD decoder:

xInev,c = lic,v (28)

The second layer (i.e., the first hidden layer) carries out a sim-
ilar procedure to the ith (i odd) hidden layer. Each neuron re-
ceives the extrinsic message in this layer, which is quantized
and scaled LLR from the NOLD decoder. Besides, each neuron
casts up all intrinsic messages from all connected neurons in the
input layer. For variable-irregular LDPC codes, the variable-to-
check messages should be scaled and quantized considering the
degree differences among the adjacent variable nodes. Thus, we
assign the same parameters to the neurons associated with the
variable nodes that have the same degree:

xHd1
ev,c =Qi

dv(v)

[
l0v

+ max

0, αi
dv(v) ·

∑
c′∈M(v)/c

xInev,c′ + βi
dv(v)

 .
(29)

In the third layer, that is, the second hidden layer, the con-
nection of the neurons to the previous layer is similar to the
ith (i even) hidden layer. For check-irregular LDPC codes, we
also consider the check-dimensional optimization of decoding
parameters for different check node degrees. The outputs of this
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layer are:

xHd2
ev,c =Qi

dc(c)

 ∏
v′∈N (c)/v

sgn

∣∣∣∣xHd1

eH
v′,c

∣∣∣∣


×max

(
0, αi

dc(c) · min
v′∈N (c)/v

∣∣∣xHd1
ev′,c

∣∣∣+ βi
dc(c)

)]
(30)

It is noteworthy that if we consider highly popular check-
regular LDPC codes3, only variable-dimensional scaling is
needed, and we can use the same quantization for both vari-
able nodes and check nodes within an iteration. So, it is not
necessary to assign learnable parameters in this layer. Thus, the
computational complexity can be reduced by cutting down the
number of trainable variables. Since the layer applies only min-
imization and symbolization operations, the messages outgoing
from this layer have the same value as the incoming messages.
We can omit the quantization in this layer, and the outputs are:

xHd2
ev,c =

∏
v′∈N (c)/v

sgn
∣∣∣xHd1

ev′,c

∣∣∣ · min
v′∈N (c)/v

∣∣∣xHd1
ev′,c

∣∣∣ (31)

The output layer represents the final hard decision step in the
BP decoder and outputs the final marginalization. This layer
has N neurons and the same connection to the previous layer
as the second layer. It also receives irrelevant information from
the concatenated NOLD decoder. The outputs of this layer are
defined as:

xOt
v = l0v +

∑
c∈M(v)

xHd2i
ev,c (32)

The outputs are N -length messages associated with the
NOLD decoding outputs at iteration i + 1. Before calculating
the loss function, the outputs of the final layer should be prepro-
cessed by an activation function θ (·) in (26):

ov = θ
(
xOt
v

)
(33)

The network renews the parameters by minimizing the gap
between the final outputs and target codewords. When the neu-
ral optimization stops, we obtain the optimized decoding pa-
rameters for the ith iteration. For the next iteration, and (i+ 1)-
iteration NOLD decoder is fed by the newly optimized parame-
ters and outputs the training database for the initialized NOLD
network. Then the network optimizes the parameters for the
(i+ 1)th iteration. The neural optimization for the parameters
carries on until the maximum number of iteration is reached.

E. Discussions and Complexity Analysis

In the proposed NOLD algorithm, both the scaling and quan-
tization parameters contribute to the LDPC decoding perfor-
mance, but in very different ways. The scaling factors can nar-
row the MS messages to approximate the SP messages, which
is beneficial for the decoding accuracy. At the same time, the

3The check-regular LDPC codes are highly popular since they are capacity-
achieving in a much stronger sense than other LDPC codes and have a more
straightforward implementation in hardware.

low-resolution quantization reduces the memory cost and hard-
ware complexity. To identify the contribution of scaling factors
under low-resolution, we proposed two strategies for optimizing
the NOLD decoder’s decoding parameters.

1) Joint Optimization. During the training stage, with such a
strategy, both the scaling factors and the quantization pa-
rameters are jointly assigned to and optimized by the pro-
posed network.

2) Single Optimization. We only optimize the quantization pa-
rameters by the proposed network off-line, thus yielding
low computational complexity. The scaling factors are set
to α = 1.0 and β = 0.0. See Section V.D for more expla-
nations.

For the long-length codewords, a large number of parame-
ters in the standard DNN lead to high computational complexity
and strongly restrict the usability in budget-constrained devices
even though for a four-layer shallow network. However, the
proposed method introduced a quantization method that reduces
memory usage or complexity during the learning phase while
suffering from a minimal drop-in decoding performance com-
pared to floating baselines. Besides, efficient implementations
can benefit from the check-to-variable layers in which simple
arithmetical multiplications follow complex hyperbolic tangent
operations. Furthermore, The sharing weight for the nodes with
the same degree reduces the number of network parameters.

It is noted that when comparing to the classical MS decoder
with belief messages, the proposed method employed the quan-
tized messages, which should be optimized by a neural network.
The proposed method achieves some performance gain at the
expense of an increased training budget. Let O (NLDPC) be
the number of floating-point operations (FLOPs) by the classi-
cal LDPC decoder. As shown in Fig. 2, the proposed method
has an additional training complexity from a four-layer neural
network and some numeric operations (the minimization shown
in Eq. (31)). Here, we borrow the analytic tools from [40] to
give detailed complexity analysis (indicated by FLOPs). For one
Multilayer Perceptron based network layer, we can compute the
FLOPs [40] as

FLOPs = O ((2Din − 1)Dout) , (34)

where Din and Dout are the input and output dimensionality, re-
spectively. In out case, with the analysis shown in Section IV-D,
we have FLOPs = O ((2E − 1) (3E +D)), where E and N
denote the numbers of edges and nodes, respectively. Overall,
for the training stage, with K iterations, the proposed method
will enjoy FLOPs = O (K ((2E − 1) (3E +D)) + E) over
the well-established LDPC decoder (i.e., MS). However, for the
Online inference, we only need to send the trained parameters
(scaling factors and the quantization parameters) to the decoder,
which indicates that the proposed method can have a similar
computational complexity with the classical decoder.

V. SIMULATIONS

In all experiments, the simulations are implemented in
the TensorFlow platform. The experimental LDPC codes are
(1998, 1512) quasi-cyclic LDPC code and (155, 62) Tanner
code taken from [41] and [42]. The two LDPC codes are labeled
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as I [(1998, 1512) quasi-cyclic LDPC code] and II [(155, 62)
Tanner code] for future reference.

Before training the network, the training data is first generated
under AWGN. In the following experiments, we use all-zero
codewords. We pay particular attention to the range of SNR
that corresponds to the BER = 10−4–10−5 and its proximity
since it’s the critical SNR range in LDPC decoder implementa-
tions. The training data is generated under multiple SNRs in the
critical SNR range (9 SNRs for a 2 dB-SNR range). For each
SNR, we generate 4× 108 bits of LDPC codes as training data.
Another 2 × 107 bits of LDPC codes are generated as the vali-
dation data to achieve 100 codeword errors at the BER level of
10−4–10−5.

The proposed network is set to two-bit resolution (i.e., b = 2).
The initial value of the quantization parameter (i.e., quantization
step ∆) is set to 2/3 and the initial quantization level set is set to
{−1,−1/3, 1/3, 1}. As for the scaling factors, the initial values
of the normalizing factor and offset factor are respectively set to
α = 1.0 and β = 0.0.

We use the stochastic gradient descent during the network
training to train the neural network with a training batch size
of 1000. We use the Adam optimization method to search for
the optimal decoding parameters. The loss will be checked ev-
ery 100 epochs over the validation set, and the training process
will reach an early stop if the loss does not drop for some time
(800 epochs in our experiment).

Several state-of-art algorithms, such as the numerical
method [11], the adaptive method [28] and the DE method [16]
are included for decoding performance comparison. In detail,
the adaptive method adds an adaptive module to select correct
decoding parameters for the next iteration after each decoding
iteration. The DE method computes the decoding error proba-
bility and searches for the decoding parameters that minimize
the error probability. The MS decoder with infinite-resolution
data converters serves as the benchmark for all compared meth-
ods. The maximum number of decoding iterations is fixed to
20. The decoding performance is measured by the coded bit er-
ror rate (BER). The above settings are the same throughout all
experiments unless otherwise specified.

A. The Decoding Performance over Regular Codes and Irregu-
lar Codes

We first compare the 2-bit decoding performance of the pro-
posed algorithm and other state-of-art algorithms under AWGN
noise. For the numerical method in [11], the parameters are
optimized in a specific SNR range for all SNR values and uti-
lize the optimized parameters of the first iteration for all subse-
quent iterations. The adaptive method in [28] adopts the three
sets of parameters and chooses one set of parameters from these
three sets according to an adaptive rule for different iterations
and SNRs. The DE decoder in [16] is also included for com-
parison. We present the results of all employed methods for
three BER regions (labeled as “high BER region”, “medium
BER region”, “low BER region”). Three BER regions repre-
sent a certain BER range that is respectively corresponding to:
10−2–10−3 , 10−3–10−4, and 10−4–10−5. The BER perfor-
mance of all the mentioned methods for the irregular code I and
the regular code II is shown in Figs. 3 and 4, respectively.

In Fig. 3, the performance of the numerical method with three
BER regions has a similar decoding performance to the adap-
tive method in their respective SNR range but can not achieve
ideal performance out of that SNR region. This can be explained
by the fact that the numerical method and the adaptive method
use fixed parameters for the irregular LDPC codes. In fact, no
matter what parameters the decoder chooses, the fixed parame-
ters can not efficiently improve the decoding performance over a
wide range of SNRs. On the other hand, as shown in Fig. 3, the
adaptive decoder in [28] can support a wide range of SNRs. The
DE method that uses different parameters for different iterations
and SNRs can also get a good performance close to the adaptive
method. The significant performance gains of both the adap-
tive method and the DE method suggest that we should apply
dynamic decoding parameters for irregular LDPC codes. Our
proposed NOLD decoder dynamically updates the parameters
updating strategy with a neural network optimization method
and achieves better performance than all competing methods,
especially when BER is between 10−3 and 10−5.

For the regular code II, we present the results of the numer-
ical method for the SNR range from 0.5 dB to 1.0 dB that is
corresponding to BER from 10−4 to 10−5 in Fig. 4. For the
regular LDPC codes, all decoders’ performance improves lin-
early with the increased SNR, demonstrating that the decoding
performance is less sensitive to the decoding parameters com-
pared with the irregular LDPC codes. Fig. 4 also illustrates that
the adaptive method and the DE method have similar decoding
performance and achieve a slight performance gain compared
with the numerical method. The NOLD algorithm slightly out-
performs the DE method and obtains comparable performance
with the floating MS algorithm.

Overall, the proposed method based on deep learning opti-
mization strategy can get remarkable performance improvement
over other compared methods for irregular LDPC codes and at-
tain comparable performance with the floating MS algorithm in
the regular LDPC codes with a wide range of SNRs. The re-
sults shown in Figs. 3 and 4 demonstrate the feasibility of low-
resolution decoders and indicate the superiority of the proposed
method.

B. Effect of Quantization Level

The quantization resolution is an important parameter that
balances the trade-off between decoding accuracy and hardware
cost. In hardware realization, the common quantization resolu-
tion values vary from 4 bits to 7 bits [30]. We will focus on
the low-resolution case. In Figs. 3 and 4, we have presented the
results of decoding performance under 2-bit resolution (b = 2),
which show the significant performance gain of the proposed
NOLD algorithm over all competing decoders. To illustrate the
effect of the low-resolution quantization, we further report the
simulation results under 3-bit (b = 3) and 4-bit (b = 4) resolu-
tions in Fig. 5.

It is shown in Fig. 5 that the NOLD algorithm can achieve
a noticeable performance gain compared with the adaptive
method and the DE method at both 3-bit and 4-bit resolutions.
At the 3-bit resolution, the NOLD method can achieve about
0.2 dB performance gain over the adaptive method and about
0.1 dB performance gain over the DE method when BER is
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Fig. 3. The BER performance of the (1998, 1512) quasi-cyclic LDPC code
under two-bit quantization over the AWGN channel.
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Fig. 4. The BER performance of the (155, 62) Tanner code under two-bit
quantization over the AWGN channel.

10−5. At the 4-bit resolution, the proposed algorithm can also
improve the decoding performance to the same extent as the 3-
bit resolution compared with the adaptive method and the DE
method. The performance gap between the 4-bit resolution and
the floating one (full-resolution) is almost negligible, indicating
the feasibility of the low-resolution decoders.

C. Effect of Different Channel Noises

So far above simulation results are obtained under AWGN.
The proposed algorithm will not be limited to a specific noise
model. This should be rational since the neural network can
learn to deal with different kinds of noise. The proposed al-
gorithm remains effective under other noises by re-training the
network. To verify this, we consider another two noise models
as depicted in Sections II.B.

C.1 Rayleigh Fading Noise

In Fig. 6, we show the 2-bit decoding performance of all the
employed methods over the Rayleigh fading noise channel. The
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Fig. 5. The BER performance of the (1998, 1512) quasi-cyclic LDPC code
under different low-resolution quantization over the AWGN channel.

numerical method that chooses the best parameters in the SNR
range corresponding to BER from 10−4 and 10−5 (labeled as
“medium SNR”) can not successfully deal with the Rayleigh
fading noise and suffers a 0.2 dB performance loss compared
with the adaptive method. A performance gain of 0.2 dB com-
pared to the adaptive approach is observed over the DE method.
We can also see that the NOLD algorithm and the DE method
have similar performance for SNR lower than 9 dB. When SNR
is higher than 9 dB, the NOLD algorithm can achieve about
0.25 dB performance gain over the DE method.

We execute the 3-bit and 4-bit decoding for the employed
methods and compare their decoding performance under the
same SNR range as the 2-bit resolution. The low-resolution de-
coding performance under Rayleigh fading noise is shown in
Fig. 7. At the 3-bit resolution, the DE method has comparable
performance with the adaptive method. The NOLD algorithm
can obtain about 0.2 dB performance at BER = 10−5–10−6

compared with the two methods. At the 4-bit resolution, the DE
method achieves about 0.2 dB performance gain over the adap-
tive method. Our proposed algorithm significantly outperforms
the compared methods and achieves comparable performance
with the floating MS decoder when SNR is 8–9 dB.

C.2 Additive Correlated Gaussian Noise

In Fig. 8, we report the simulation results under ACGN with
a strong correlation (ϕ = 0.8) at the 2-bit resolution for all con-
sidered methods. It is shown in Fig. 8 that the adaptive method
can achieve about 0.1 dB performance gain over the numerical
method for the SNR range that corresponds to BER from 10−4

to 10−5 (labeled as “medium SNR”). The DE method outper-
forms the adaptive method with about 0.25 dB gain at the same
SNR range and can achieve comparable performance with the
proposed NOLD algorithm.

We also present the results of the 3-bit and 4-bit resolution
under strong correlation (ϕ = 0.8) in Fig. 9. It should be noted
that the tested SNRs are from 2.5 dB to 4.5 dB which are the
same as the 2-bit resolution. Under the tested SNRs, the DE
method performs better than the adaptive method but is worse
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Fig. 6. The BER performance of the (1998, 1512) quasi-cyclic LDPC code
under two-bit quantization over the Rayleigh fading channel.
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Fig. 7. The BER performance of the (1998, 1512) quasi-cyclic LDPC code
under low-resolution quantization over the Rayleigh fading channel.

than the proposed NOLD algorithm. The proposed method can
reach a performance near the floating MS decoder, suggesting
that the 4-bit resolution is favored for implementation.

Overall, the proposed decoder has robust performance in all
considered cases, confirming that the proposed algorithm can
support different noises.

D. The Decoding Performance under Joint Optimization and
Single Optimization

In this subsection, we report the simulation results in Fig. 10,
using different optimization strategies for the NOLD algorithm
and the DE method. It is shown in Fig. 10 that the NOLD
algorithm can outperform the DE method for both joint opti-
mization and single optimization. The joint optimization deliv-
ers better performance than the single optimization at the cost
of higher computational complexity. This performance gain is
about 0.1 dB for the NOLD algorithm and 0.05 dB for the DE
method when BER is 10−4–10−5 dB. It is suggested that the
proposed method with single optimization can be adopted for
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Fig. 8. The BER performance of the (1998, 1512) quasi-cyclic LDPC code
under two-bit quantization over the ACGN channel.
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Fig. 9. The BER performance of (1998, 1512) quasi-cyclic LDPC code under
low-resolution quantization over the ACGN channel.

practical implementation since the quantization parameters can
be optimized off-line.

E. Effect of Decoding Iteration

We have only presented the results of the proposed NOLD
algorithm with 20 iterations. However, the iteration number is
designed to be as low as possible in a low-latency scenario. We
first set the iteration number to I = 5 and then compare the
BER performance of all employed methods. We also plot the
performance of 15 iterations and 20 iterations for comparison.
As shown in Fig. 11 increasing the decoding iterations can en-
hance the performance gain, and 20 iterations can improve the
decoding performance by 0.6 dB at BER = 10−4 compared with
five iterations. Besides, we also notice that after 15 decoding it-
erations, the performance improvement becomes smaller. The
reason is that the decoder has almost reached its maximum ca-
pacity and cannot further correct the error codewords.

At the low iteration number (I = 5), the adaptive method can
get similar performance to the DE method in SNR range from
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Fig. 10. The BER performance of the (1998, 1512) quasi-cyclic LDPC code
under joint optimization and single optimization over the AWGN channel.
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Fig. 11. The BER performance of the (1998, 1512) quasi-cyclic LDPC code
under 5, 15 and 25 iterations over the AWGN channel.

1 dB to 3 dB. And the NOLD algorithm has a significant per-
formance gain over these decoding methods. The same results
can be observed for I = 15 and I = 20. Although it is un-
known whether such an optimal local solution of each iteration
is guaranteed to be globally optimal, our proposed method can
accelerate the decoder’s convergence speed and get remarkable
performance regardless of the iteration number. Thus we con-
clude that it is efficient to replace the end-to-end optimization
algorithm with our proposed NOLD algorithm.

VI. CONCLUSIONS

This paper has introduced the modified MS decoding scheme,
which operates scaling and quantization on different variable-
node and check-node messages. The NOLD algorithm based on
a deep learning optimization strategy has been proposed to opti-
mize decoding parameters. The introduced neural quantizer can
handle the discrete variables optimization problems incurred by
the low-resolution quantization. Various experiments have been

conducted to verify the performance of the proposed method.
For both regular and irregular LDPC codes, the experimental
results demonstrate that the proposed NOLD algorithm outper-
forms all competing techniques with various conditions, i.e.,
quantization levels, noises, and iterations. For our future work,
we will investigate the proposed decoder over the intelligent re-
flecting surface assisted multiple-input multiple-output (MIMO)
systems, which is foreseen to be the critical enabler of the future
communication systems [43]–[45].
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