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Optimizing Joint Probabilistic Caching and Channel
Access for Clustered D2D Networks

Ramy Amer, Mohamed Baza, Tara Salman, M. Majid Butt, Ahmad Alhindi, and Nicola Marchetti

Abstract—Caching at mobile devices and leveraging device-
to-device (D2D) communication are two promising approaches
to support massive content delivery over wireless networks.
Analysis of such D2D caching networks based on a physical
interference model is usually carried out by assuming uniformly
distributed devices. However, this approach does not capture the
notion of device clustering. In this regard, this paper proposes
a joint communication and caching optimization framework for
clustered D2D networks. Devices are spatially distributed into
disjoint clusters and are assumed to have a surplus memory
that is utilized to proactively cache files, following a random
probabilistic caching scheme. The cache offloading gain is maxi-
mized by jointly optimizing channel access and caching scheme.
A closed-form caching solution is obtained and bisection search
method is adopted to heuristically obtain the optimal channel
access probability. Results show significant improvement in the
offloading gain reaching up to 10% compared to the Zipf caching
baseline.

Index Terms—Caching, channel access, D2D communication,
offloading gain.

I. INTRODUCTION

CACHING at mobile devices significantly improves sys-
tem performance by facilitating device-to-device (D2D)

communications, which enhances the spectrum efficiency and
alleviate the heavy burden on backhaul links [1]–[3]. There are
two main approaches for content placement in the literature,
deterministic and probabilistic. For deterministic placement,
files are cached and optimized for specific networks in a de-
terministic manner [3]–[5]. However, in practice, the wireless
channels and the geographic distribution of devices are time-
variant. This triggers the optimal content placement strategy
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to be frequently updated, which makes the content placement
quite complex. To cope with this problem, probabilistic content
placement is proposed whereby each device randomly caches
a subset of content with a certain caching probability in
stochastic networks [6], [7]. In this paper, we focus on the
probabilistic caching model. In essence, this model is shown to
be powerful and tractable for the analysis of random networks
and possibly yields a convex content caching problem, which
can be effectively solved [6], [7].

Modeling of wireless caching networks also follows two
main directions in the current state-of-art. The first line of
work focuses on the fundamental scaling results by assuming a
simple protocol channel model [3]–[5], known as the protocol
model. This model assumes that two devices can always
communicate if they are within a certain distance. The second
line of work, which is similar to the one adopted in this paper,
considers a more realistic model for the underlying physical
and medium access control (MAC) layers [8]–[16]. This is
commonly defined as the physical interference model. Driven
by this, the physical interference model allows us to study joint
caching and communications for D2D networks and design
efficient channel access-aware caching scheme.

The analysis of wireless caching networks that underlies
a physical interference model, is commonly conducted by
means of stochastic point processes. For instance, modeling
device locations as a Poisson point process (PPP) is a widely
adopted approach in the wireless caching area [8]–[10], [17].
However, while the PPP model is tractable, a realistic model
for D2D caching networks needs to capture the notion of
clustering. In particular, in clustered D2D networks, each
device has multiple proximate devices, where any of them can
act as a serving device. Such deployments can be effectively
characterized by cluster processes [18].

Performance of clustered D2D caching networks is studied
in [12]–[16], [19], [20]. For instance, the authors in [12]
discussed different strategies of content placement in a Poisson
cluster process (PCP) deployment. Meanwhile, the authors
extended their work in [13], to optimize the collective perfor-
mance of all the devices in each cluster. Moreover, the authors
in [14] proposed cooperation among the D2D transmitters and
hybrid caching strategies to save the energy cost of content
providers, where the location of these providers is modeled by
a Gauss-Poisson process. In [15], we jointly optimized content
caching and frequency partitioning between D2D cellular
communications for clustered cache-enabled networks. More-
over, we studied the role of cooperative communication for
clustered D2D networks in [16]. We particularly showed that
cooperative communication becomes more appealing in denser
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D2D caching networks and adverse interference conditions.
Meanwhile, in [20], we formulated and solved the energy
minimization problem for clustered D2D caching networks.

While the prior works in [12]–[16], [19], [20] studied cache-
enabled D2D networks from various perspectives, the joint
optimization of caching and channel access for clustered D2D
networks has not been addressed yet in the literature. Such
a study is vital for proper quantifying and optimizing the
achievable performance of D2D cache-enabled networks under
practical MAC scheduling protocols.

Compared with this prior art, the main contributions of this
paper are as follows:

• We study the content placement and delivery for a
network wherein cache-enabled devices are spatially dis-
tributed into disjoint clusters. We conduct a performance
analysis and joint optimization of channel access and
probabilistic content placement with the aim to maximize
the cache offloading gain.

• We characterize the optimal content placement as a
function of the system parameters, namely, density of
clusters, displacement distance between devices, and
required signal-to-interference ratio (SIR) threshold. We
then propose a heuristic approach to obtain the optimal
channel access probability.

• Our results reveal that the optimal caching scheme
heavily depends on the channel access probability and
the geometry of the network. Overall, joint optimization
of content placement and communication, e.g., channel
access, is shown to be vital to enhance the performance
of wireless caching networks.

The rest of this paper is organized as follows. Section II and
Section III introduce the system model and the rate coverage
analysis, respectively. The offloading gain maximization prob-
lem is discussed in Section IV. Numerical results are presented
in Section V and conclusions are drawn in Section VI.

II. SYSTEM MODEL

A. System Setup

We model the location of mobile devices with a Thomas
cluster process (TCP). The use of TCP allows us to factor
in the notion of clustering for D2D caching networks, which
is commonly ignored in the literature. The TCP is composed
of the parent points, which are drawn from a PPP Φp with
density λp, and the daughter points that are drawn from a
Gaussian PPP around each parent point [18]. In particular, the
daughter points are normally scattered with variance σ2 ∈ R
around each parent point. The parent points and offspring are
referred to as cluster centers and cluster members, respectively.
By the TCP definition, the number of devices per cluster is
a Poisson random variable (RV) with mean n. Therefore, the
density function of a cluster member location relative to its
cluster center is

fY (y) =
1

2πσ2
exp

(
− ∥y∥2

2σ2

)
, y ∈ R2, (1)

where ∥.∥ is the Euclidean norm. The intensity function of
a cluster is given by λc(y) = n/(2πσ2)exp

(
− ∥y∥2

2σ2

)
, and

therefore, the intensity of the entire process is given by λ =
nλp.

We assume that the D2D communication is operating as out-
of-band D2D under flat Rayleigh fading channels. D2D com-
munication is enabled within each cluster to deliver popular
content. It is assumed that the devices adopt a slotted-ALOHA
medium access protocol, where each transmitter during each
time slot, independently and randomly accesses the channel
with the same probability q. One can alternatively assume
that each device makes a coin flip at each time about whether
or not it accesses a shared-channel. This allows us to define
a Bernoulli process Ny with the probability that a device
located at y accesses a channel being P(Ny) = q. The
key advantage of adopting slotted-ALOHA is that it is a
simple yet fundamental MAC protocol, where there is no need
for a central controller to schedule the users’ transmissions.
Moreover, despite the vast amount of existing studies on MAC
protocols, only variations of ALOHA and CSMA are still
used in the majority of technologies adopted in the Internet of
Things [21]. According to this access model, multiple active
D2D links might coexist within a cluster. Therefore, q is a
design parameter that directly controls intra- as well as inter-
cluster interference, as described later.

If a requesting device caches the desired content, the device
directly retrieves the content. However, if the content is not
locally cached, it can be downloaded from a randomly selected
neighboring device that caches the file within the same cluster,
henceforth called catering device. This catering device is, in
turn, admitted to access the channel according to the proposed
slotted-ALOHA protocol. Finally, the device attaches to the
nearest base station (BS) as a last resort to download the
content, in the case it is not cached within the device cluster.
Since there are memory and battery consumption costs borne
by a catering device, the geographically closest device may
not want to participate in the content caching and/or delivery.
Hence, randomizing the catering device reflects the possibility
of being served by a distant device that is willing to participate
in the content delivery, which is not necessarily the nearest
one. Note that this assumption is commonly adopted in the
literature [12], [14].

B. Content Popularity and Caching

We assume that each device has a surplus memory of size
M designated for caching files. The total number of files is
Nf > M , and the set (library) of content indices is denoted as
F = {1, 2, · · ·, Nf}. These files represent the content catalog
that all devices in a cluster may request, which are indexed in
a descending order of popularity. The probability that the ith
file is requested follows a Zipf’s distribution given by [22],

pi =
i−β∑Nf

k=1 k
−β
, (2)

where β is a parameter that reflects how skewed the popularity
distribution is. For example, if β = 0, the popularity of the files
has a uniform distribution. Increasing β increases the disparity
among the files popularity such that lower indexed files have
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higher popularity. By definition,
∑Nf

i=1 pi = 1. We use the
Zipf’s distribution to model the popularity of files per cluster.

We adopt a random content placement where each device
independently selects a file to cache according to a specific
probability function b = {b1, b2, · · ·, bNf

}, where bi is the
probability that a device caches the ith file, 0 ≤ bi ≤ 1 for
all i = {1, · · ·, Nf}. To avoid duplicate caching of the same
content within the memory of the same device, we follow a
probabilistic caching approach proposed in [7], which implies
that

∑Nf

i=1 bi =M .1

Next, we proceed with the rate coverage analysis to obtain
the offloading gain, which is a key performance metric for
D2D caching networks [9]. Particularly, the offloading gain is
defined as the probability of obtaining a requested file from
the local cluster, either via self-cache or from a neighboring
device in the same cluster, with a received SIR higher than a
required threshold ϑ.

III. RATE COVERAGE ANALYSIS

We conduct the next analysis for a cluster whose center is
assumed at x0 ∈ Φp, referred to as representative cluster. The
device requesting a content in this cluster, henceforth called
typical device, is located at the origin. We denote the location
of the catering device by y0 relative to x0, where {x0, y0} ∈
R2. The distance between the typical and catering devices is
denoted as r = ∥x0 + y0∥, which is a realization of a RV
R whose distribution is described later. Having explained the
channel access and the random selection of catering devices,
the offloading gain can be expressed as

Po(q, b) =

Nf∑
i=1

pibi + pi(1− bi)(1− e−bin)

×
∫ ∞

r=0

fR(r)P(SIR|r > ϑ) dr︸ ︷︷ ︸
Υ

, (3)

where SIR|r is the received SIR at the typical device when
downloading a content from a catering device r apart from
the origin, and Υ represents the rate coverage probability.
The first term in (3) is the probability of requesting a locally
cached file (self-cache). The second term is the probability
that a requested file i is cached among at least one cluster
member and being downloadable with an SIR greater than
ϑ, given that it was not self-cached. More precisely, since
the number of devices per cluster has a Poisson distribution,
the probability that there are k devices per cluster is equal to
nke−n/k!. Accordingly, the probability that there are k devices
caching content i is (bin)

ke−bin/k!. Hence, the probability
that at least one device caches content i is 1− e−bin.

For the serving distance distribution fR(r), since both
the typical device and catering device have their locations

1It is clear that the benefits of content caching at devices is prominent only if
these devices have sufficient memory to store files of interest. The availability
of unused memory on these devices can not be always maintained. In other
words, it might happen that the devices run out of sufficient memory to cache
popular files. The analysis of device caching networks with such variations of
unused memory to store popular files is an important extension for our future
work.

drawn from a normal distribution with variance σ2, then by
definition, the serving distance has a Rayleigh distribution of
scale parameter

√
2σ, i.e., fR(r) = r/(2σ2)e

−r2

4σ2 . It is worth
noting that the serving distance is independent of the caching
probability. To clarify, from the thinning theorem [18], the
set of devices caching content i in a given cluster forms a
Gaussian PPP Φci whose intensity is λci = biλc(y). The
probability distribution function (PDF) of the distance between
a randomly selected caching device from Φci and the typical
device is fR(r), which is again independent of bi.

The received power at the typical device from a catering
device located at y0 relative to the cluster center is given by

P = Pdg0∥x0 + y0∥−α = Pdg0r
−α, (4)

where Pd denotes the D2D transmission power, g0 ∼ exp(1)
is the complex Gaussian fading channel coefficient, and α > 2
is the path loss exponent. Under this setup, the typical device
sees two types of interference, namely, the intra- and inter-
cluster interference. We first describe the inter-cluster inter-
ference, then the intra-cluster interference is characterized.
The set of active devices in any remote cluster is denoted
as Bq , where q refers to the access probability. Similarly, the
set of active devices in the local cluster is denoted as Aq . The
received interference at the typical device from simultaneously
active D2D transmitters within the remote clusters is

IΦ!
p
=

∑
x∈Φ!

p

∑
y∈Bq

Pdgyx
∥x+ y∥−α =

∑
x∈Φ!

p

∑
y∈Bq

Pdguu
−α,

where Φ!
p = Φp \ x0 for ease of notation, y is the marginal

distance between a potential interfering device and its cluster
center at x ∈ Φp , u = ∥x+y∥ is a realization of a RV U that
models the inter-cluster interfering distance, gyx

∼ exp(1), and
gu = gyx . The intra-cluster interference is then given by

IΦc
=

∑
y∈Ap

Pdgyx0
∥x0 + y∥−α =

∑
y∈Ap

Pdghh
−α,

where y is the marginal distance between the intra-cluster
interfering devices and the cluster center at x0 ∈ Φp, h =
∥x0 + y∥ is a realization of a RV H , which models the intra-
cluster interfering distance, gyx0

∼ exp(1), and gh = gyx0
.

From the thinning theorem [18], the set of active transmitters
based on the slotted-ALOHA medium access forms a Gaussian
PPP Φcq whose intensity is given by

λcq = qλc(y) = qnfY (y)

=
qn

2πσ2
exp

(
− ∥y∥2

2σ2

)
, y ∈ R2.

Assuming that the thermal noise is neglected as compared
to the aggregate interference, the received SIR at the typical
device can be written as

SIR|r = 1{Nr = 1} P

IΦ!
p
+ IΦc

= 1{Nr = 1} Pdg0r
−α

IΦ!
p
+ IΦc

, (5)

where 1{.} is the indicator function, and, for ease of exposi-
tion, Nr = Ny0

is a Bernoulli RV that takes the value one with
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probability q. Thus, the event {Nr = 1} captures the incident
when the serving device is admitted to access the channel.
Then, the probability that the received SIR is higher than the
required threshold ϑ is derived as follows:

Υ|r = P(SIR|r > ϑ)

= P
(

1{Nr = 1} Pdg0r
−α

IΦ!
p
+ IΦc

> ϑ
)

(a)
= qP

(Pdg0r
−α

IΦ!
p+IΦc

> ϑ
)
, (6)

where (a) follows from the assumption of a Bernoulli’s RV
with mean q. Rearranging the right-hand side, we get

Υ|r
(b)
= qEI

Φ!
p
,IΦc

[
exp

(−ϑrα
Pd

[IΦ!
p
+ IΦc

]
)]

(c)
= qLI

Φ!
p
(s)LIΦc

(s), (7)

where (b) follows from the assumption g0 ∼ CN (0, 1), and (c)
follows from the independence of the intra- and inter-cluster
interference and calculating the Laplace transform of them,
with s = ϑrα/Pd. The classical tradeoff between frequency
reuse and higher interference power is depicted in (7). In
other words, increasing the access probability q allows more
opportunities to access the channel, however, this channel
access would be accompanied with higher interference power.

Next, we first derive the Laplace transform of interference
to obtain the rate coverage probability Υ. Then, we formulate
the offloading gain maximization problem.

Lemma 1: Laplace transform of the inter-cluster aggregate
interference IΦ!

p
is given by

LI
Φ!
p
(s) = exp

(
− 2πλp

∫ ∞

v=0

(
1− e−qnφ(s,v)

)
v dv

)
, (8)

where s = ϑrα

Pd
, φ(s, v) =

∫∞
u=0

s
s+uα fU (u|v) du, and

fU (u|v) = Rice(u|v, σ) represents Rice’s PDF of parameter
σ, and v = ∥x∥.

Please see Appendix A.
Lemma 2: Laplace transform of the intra-cluster aggregate

interference IΦc
is approximated as

LIΦc
(s) ≈ exp

(
− qn

∫ ∞

h=0

s

s+ hα
fH(h) dh

)
, (9)

where fH(h) = Rayleigh(h,
√
2σ) represents Rayleigh’s PDF

with a scale parameter
√
2σ.

The proof of Lemma 2 proceeds in a similar way to the proof
of Lemma 1, and the approximation follows from neglecting
the correlation among intra-cluster serving distances, i.e., the
common part x0 in ∥x0 + y∥ with the detailed proof omitted.

To validate the approximation in Lemma 2, in Fig. 1, we plot
the rate coverage probability Υ, computed from (3), against
the displacement standard deviation σ. Fig. 1 verifies that the
adopted approximation is accurate. It is intuitive to see that the
Υ decreases as both σ and λp increase. This is attributed to
the fact that the desired signal level increases as σ decreases,
meanwhile, the interference power increases with λp and σ.
This is attributed to the higher density of clusters (larger λp)
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Fig. 1. The rate coverage probability Υ versus the displacement standard
deviation σ (n = 5, ϑ = 0dB, p = 0.3).

and statistically shorter distance between interfering devices
and the typical device (larger σ).

From (3), (8), and (9), we get

Po(q, b) =

Nf∑
i=1

pibi + pi(1− bi)(1− e−bin)

×
∫ ∞

r=0

r

2σ2
e

−r2

4σ2 pLI
Φ!
p
(s)LIΦc

(s) dr︸ ︷︷ ︸
Υ

. (10)

Having characterized the offloading gain, we next formulate
the joint channel access and caching optimization problem.

IV. MAXIMIZING OFFLOADING GAIN

The offloading gain maximization problem is formulated as

P1: max
q,b

Po(q, b) (11)

s.t.
Nf∑
i=1

bi =M, (12)

bi ∈ [0, 1], (13)
q ∈ [0, 1], (14)

where (12) is the device cache size constraint. Since the of-
floading gain depends on the caching probability b and access
probability q, and since q exists as a complicated exponential
term in Υ (see (7) and (9)), it is difficult to analytically
characterize the objective function, e.g., show concavity or
find a tractable expression for the optimal access probability.
In order to tackle this, we propose to find the optimal access
probability q∗ that maximizes Υ via the bisection search
method in its feasible range q ∈ [0, 1]. Then, the obtained q∗ is
used to solve for the caching probability b in the optimization
problem below.

P2: max
b

Po(q
∗, b) (15)

s.t. (12), (13)
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TABLE I
SIMULATION PARAMETERS.

Description Parameter Value
Displacement standard deviation σ 10m
Popularity index β 0.5
Path loss exponent α 4
Library size and cache size per device Nf , M 100, 8 files
Average number of devices per cluster n 4
Density of clusters λp 10 clusters/km2

SIR threshold ϑ 0 dB

Lemma 3: For fixed q∗, Po(q
∗, b) is a concave function w.r.t.

b and the optimal caching probability b∗ that maximizes the
offloading gain is given by

b∗i =

 1 , v∗ < pi − pi(1− e−n)Υ
0 , v∗ > pi + npiΥ
ψ(v∗) , otherwise,

where ψ(v∗) is the solution of v∗ = pi+pi
(
n(1−b∗i )e−nb∗i −

(1− e−nb∗i )
)
Υ, that satisfies

∑Nf

i=1 b
∗
i =M .

Please see Appendix B.
Clearly, the optimal caching solution b∗ depends on the

scheduling of devices through channel access probability q∗

from Υ, while q∗ is independent of b∗. [9] shows that a PPP
network exhibits the same property, i.e., the caching scheme
is scheduling-dependent. To gain some insights, it is useful to
consider a simple case when only one D2D link per cluster
is allowed. In this case, the rate coverage probability of the
proposed clustered model with one active D2D link within a
cluster will be [20, Lemma 2]:

Υ =
1(

4σ2πλpϑ2/αΓ(1 + 2/α)Γ(1− 2/α) + 1
) . (16)

Substituting in (10) for Υ, we get the offloading gain as

Po(b) =

Nf∑
i=1

pibi +
pi(1− bi)(1− e−bin)

4σ2πλpϑ2/αΓ(1 + 2/α)Γ(1− 2/α) + 1
.

(17)

Remark 1: From (17), it is clear that the offloading gain
increases as σ and λp decrease. Particularly, the offloading
gain is inversely proportional to the density of clusters λp and
the variance of the displacement σ2. This is because smaller
σ results in higher levels of the desired signal, while lower λp
leads to smaller encountered interference at the typical device.

V. NUMERICAL RESULTS

We first validate the developed mathematical model via
Monte Carlo simulations. Then we benchmark the proposed
caching scheme against conventional caching schemes. Unless
otherwise stated, the network parameters are selected as shown
in Table I.

In Fig. 2, we plot the rate coverage probability Υ against
the channel access probability q. The theoretical and simulated
results are plotted together, and they are consistent. Clearly,
there is an optimal q∗; before it, Υ tends to increase as the
probability of accessing the channel increases, and beyond it,
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Fig. 2. The rate coverage probability Υ versus the access probability q.
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Fig. 3. The offloading gain versus the access probability q.

Υ tends to decrease due to the effect of aggressive interference.
It is intuitive to observe that the optimal access probability q∗,
which maximizes Υ, decreases as ϑ increases. This reflects
the fact the system becomes more sensitive to the effect of
interference when a higher SIR threshold is required.

Fig. 3 manifests the effect of the access probability q on the
offloading gain. The offloading gain is plotted against q for
different caching schemes, namely, the proposed probabilis-
tic caching (PC), Zipf caching (Zipf), and uniform random
caching (RC). Fig. 3 is plotted for an SIR threshold ϑ = 0
dB, hence, the optimal access probability q∗ is near one
from Fig. 2. Clearly, the offloading gain for the different
caching schemes improves as q approaches its optimal value,
which reveals the crucial impact of the device scheduling
on the content placement and accordingly, on the offloading
gain. Moreover, the proposed PC is shown to attain the best
performance as compared to other benchmark schemes.

To show the effect of q on the caching probability, in Fig. 4,
we plot the histogram of the optimal caching probability at
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(a)

(b)

Fig. 4. Histogram of the optimal caching probability b∗: (a) q = q∗ and (b)
q < q∗.

different q values. Specifically, p = q∗ in Fig. 4(a) and q < q∗

in Fig. 4(b). It is clear from the histograms that the optimal
caching probability b∗ tends to be more skewed when q <
q∗, i.e., when Υ decreases. This shows that file sharing is
more difficult when q is not optimized. Broadly speaking, for
q < q∗, the system is too conservative, while for q > q∗, the
outage probability is high due to the aggressive interference.
In such regimes, each device tends to cache the most popular
files leading to fewer opportunities of content transfer.

Fig. 5 illustrates the prominent effect of the content pop-
ularity on the offloading gain, and compares the achievable
gain of three different caching schemes. Clearly, the offloading
gain of the proposed PC attains the best performance as
compared to other schemes. Particularly, 10% improvement in
the offloading gain is observed compared to the Zipf caching
when β = 1. Moreover, we note that all caching schemes
encompass the same offloading gain when β = 0 owing to the
uniformity of content popularity.

To show the effect of network geometry, in Fig. 6, we plot
the closed-form offloading gain in (17) against σ at different
λp. Fig. 6 shows that the offloading gain monotonically
decreases with both σ and λp. This is because content sharing
between devices turns out to be less successful when the
distance between devices is large, i.e., larger σ. Analogously,
file sharing among the cluster devices is accompanied with
higher interference when λp and σ are higher. Accordingly,
this expected degradation prohibits successful content delivery
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Fig. 5. The offloading gain versus the popularity of files β.
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Fig. 6. The offloading gain versus the displacement standard deviation σ at
different density of clusters λp (under the probabilistic caching scheme).

via D2D communication.
Last, in Fig. 7, we plot the offloading gain versus the

popularity index β at different densities of cluster devices n̄.
Fig. 7 first shows that the proposed optimized probabilistic
caching scheme achieves the best performance as compared
to caching popular files (CPF) and Zipf caching. In addition,
Fig. 7 shows that the attained offloading gain increases as
the number of devices per cluster increases. This is attributed
to the fact that the probability of having requested contents
cached at a neighbor device within the same cluster increases
when the number of cluster members is higher.

VI. CONCLUSION

In this paper, we have proposed a joint communication and
caching optimization framework for clustered D2D networks.
In particular, we have conducted joint optimization of channel
access probability and content placement in order to maximize
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Fig. 7. The offloading gain versus the popularity index β at different density
of cluster devices n̄.

the offloading gain. We have characterized the optimal content
caching scheme as a function of the system parameters,
namely, density of clusters, average number of devices per
cluster, content caching, placement and access probabilities.
A bisection search method is also proposed to calculate the
optimal channel access probability. We have demonstrated
that deviating from the optimal access probability makes file
sharing more difficult, i.e., the system is too conservative
for small access probabilities, while the interference is too
aggressive for larger access probabilities. Results showed up
to 10% enhancement in offloading gain compared to the Zipf
caching technique.

APPENDIX A
PROOF OF LEMMA 1

Laplace transform of the inter-cluster aggregate interference
IΦ!

p
can be evaluated as

LI
Φ!
p
(s) = E

[
e
−s

∑
Φ!
p

∑
y∈Bq gyx∥x+y∥−α

]
(a)
= EΦp

[∏
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p

EΦcq

∏
y∈Bq

1

1 + s∥x+ y∥−α

]
(b)
= EΦp

∏
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p

e
−qn

∫
R2

(
1− 1

1+s∥x+y∥−α

)
fY (y)dy

(c)
= e−λp

∫
R2

(
1−e

−qn
∫
R2

(
1− 1

1+s∥x+y∥−α

)
fY (y)dy

dx,

where (a) follows from the Rayleigh fading assumption, (b)
follows from the probability generating functional (PGFL) of
Gaussian PPP Φcq , and (c) follows from the PGFL of the

parent PPP Φp. By using change of variables z = x+ y with
dz = dy, we proceed as

LI
Φ!
p
(s) = e

−λp

∫
R2

(
1−e

−qn
∫
R2

(
1− 1

1+s∥z∥−α

)
fY (z−x)dy

)
dx

(18)

(d)
= e

−2πλp

∫ ∞
v=0

(
1−e

−qn
∫∞
u=0

(
1− 1

1+su−α

)
fU (u|v)du

)
vdv

= e
−2πλp

∫ ∞
v=0

(
1−e

−qn
∫∞
u=0

s
s+uα fU (u|v)du

)
vdv

, (19)

where (d) follows from converting the cartesian coordinates
to the polar coordinates with u = ∥z∥. To clarify how in
(d) the normal distribution fY (z − x) is converted to the
Rice distribution fU (u|v), consider a remote cluster centered
at x ∈ Φ!

p, with a distance v = ∥x∥ from the origin.
Every interfering device belonging to the cluster centered
at x has its coordinates in R2 chosen independently from
a Gaussian distribution with standard deviation σ. Then, by
definition, the distance from such an interfering device to
the origin, denoted as u, has a Rice distribution, denoted as
fU (u|v) = u/σ2exp

(
− (u2 + v2)/2σ2

)
I0
(
uv/σ2

)
, where

I0 is the modified Bessel function of the first kind with
order zero and σ is the scale parameter. Letting φ(s, v) =∫∞
u=0

s/(s+ uα)fU (u|v) du, the proof is completed.

APPENDIX B
PROOF OF LEMMA 3

First, to prove concavity, we proceed as follows.

∂Po

∂bi
= qi + qi

(
n(1− bi)e

−nbi − (1− e−nbi)
)
Υ

∂2Po

∂bi∂bj
= −qi

(
ne−nbi + n2(1− bi)e

−nbi + ne−nbi
)
Υ (20)

It is clear that the second derivative ∂2Po

∂bi∂bj
is negative. Hence,

the Hessian matrix Hi,j of Po(p
∗, bi) w.r.t. bi is negative

semidefinite, and the function Po(p
∗, bi) is concave with

respect to bi. Also, the constraints are linear, which implies
that the necessity and sufficiency conditions for optimality
exist. The dual Lagrangian function and the KKT conditions
are then employed to solve P2 [23]. The KKT Lagrangian
function of the energy minimization problem is given by

L(bi, wi, µi, v) (21)

=

Nf∑
i=1

qibi + qi(1− bi)(1− e−bin)Υ

+ v(M −
Nf∑
i=1

bi) +

Nf∑
i=1

wi(bi − 1)−
Nf∑
i=1

µibi, (22)

where v, wi, and µi are the dual equality and two inequality
constraints, respectively. Now, the optimality conditions are
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written as ∇biL(b∗i , w∗
i , µ

∗
i , v

∗) =

qi + qi
(
n(1− bi)e

−nbi − (1− e−nbi)
)
Υ− v∗ + w∗

i − µ∗
i = 0

w∗
i ≥ 0 (23)
µ∗
i ≤ 0 (24)

w∗
i (b

∗
i − 1) = 0 (25)

µ∗
i b

∗
i = 0 (26)
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Nf∑
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The optimality conditions imply that:
1) w∗

i > 0: We have b∗i = 1, µ∗
i = 0, and

qi − qi(1− e−n)Υ = v∗ − w∗
i ,

v∗ < qi − qi(1− e−n)Υ (28)

2) µ∗
i < 0: We have b∗i = 0, and w∗

i = 0, and

qi + nqiΥ = v∗ + µ∗
i ,

v∗ > qi + nqiΥ (29)

3) 0 < b∗i < 1: We have w∗
i = µ∗

i = 0, and

v∗ = qi + qi
(
n(1− b∗i )e

−nbi − (1− e−nbi)
)
Υ. (30)

By combining (28), (29), and (30), with the fact that∑Nf

i=1 b
∗
i =M , Lemma 3 is proven.

REFERENCES

[1] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug. 2014.

[2] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in
wireless D2D networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp.
849–869, Feb. 2016.

[3] K. Shanmugam et al., “Femtocaching: Wireless content delivery through
distributed caching helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[4] N. Golrezaei et al., “Base-station assisted device-to-device commu-
nications for high-throughput wireless video networks,” IEEE Trans.
Wireless Commun., vol. 13, no. 7, pp. 3665–3676, July 2014.

[5] R. Amer, M. M. Butt, M. Bennis, and N. Marchetti, “Inter-cluster
cooperation for wireless D2D caching networks,” IEEE Trans. Wireless
Commun., vol. 17, no. 9, pp. 6108–6121, Sept. 2018.

[6] Z. Chen, N. Pappas, and M. Kountouris, “Probabilistic caching in
wireless D2D networks: Cache hit optimal versus throughput optimal,”
IEEE Commun. Lett., vol. 21, no. 3, pp. 584–587, Mar. 2017.

[7] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in Proc. IEEE ICC, June 2015.

[8] S. Andreev et al., “Analyzing assisted offloading of cellular user sessions
onto D2D links in unlicensed bands,” IEEE J. Sel. Areas Commun.,
vol. 33, no. 1, pp. 67–80, 2015.

[9] B. Chen, C. Yang, and Z. Xiong, “Optimal caching and scheduling for
cache-enabled D2D communications,” IEEE Commun. Lett., vol. 21,
no. 5, pp. 1155–1158, May 2017.

[10] S. H. Chae, T. Q. S. Quek, and W. Choi, “Content placement for wireless
cooperative caching helpers: A tradeoff between cooperative gain and
content diversity gain,” IEEE Trans.Wireless Commun., vol. 16, no. 10,
pp. 6795–6807, Oct. 2017.

[11] M. Lee, A. F. Molisch, N. Sastry, and A. Raman, “Individual preference
probability modeling and parameterization for video content in wireless
caching networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 676–690,
Apr. 2019.

[12] M. Afshang, H. S. Dhillon, and P. H. J. Chong, “Modeling and
performance analysis of clustered device-to-device networks,” IEEE
Trans. Wireless Commun., vol. 15, no. 7, pp. 4957–4972, July 2016.

[13] ——, “Fundamentals of cluster-centric content placement in cache-
enabled device-to-device networks,” IEEE Trans. Commun., vol. 64,
no. 6, pp. 2511–2526, June 2016.

[14] N. Deng and M. Haenggi, “The benefits of hybrid caching in gauss-
poisson D2D networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 6,
pp. 1217–1230, June 2018.

[15] R. Amer et al., “Optimized caching and spectrum partitioning for D2D
enabled cellular systems with clustered devices,” IEEE Trans. Commun.,
vol. 68, no. 7, pp. 4358–4374, July 2020.

[16] R. Amer, H. Elsawy, J. Kibiłda, M. M. Butt, and N. Marchetti,
“Performance analysis and optimization of cache-assisted CoMP for
clustered D2D networks,” IEEE Trans. Mobile Comput., 2020, early
Access.

[17] R. Amer, W. Saad, H. ElSawy, M. Butt, and N. Marchetti, “Caching
to the sky: Performance analysis of cache-assisted CoMP for cellular-
connected UAVs,” in Proc. IEEE WCNC, Apr. 2019.

[18] M. Haenggi, Stochastic geometry for wireless networks. Cambridge
University Press, 2012.

[19] R. Amer, H. ElSawy, J. Kibiłda, M. M. Butt, and N. Marchetti,
“Cooperative transmission and probabilistic caching for clustered D2D
networks,” in Proc. IEEE WCNC, Apr. 2019.

[20] R. Amer et al., “On minimizing energy consumption for D2D clustered
caching networks,” in Proc. IEEE GLOBECOM, Dec. 2018.

[21] A. Rachedi, M. H. Rehmani, S. Cherkaoui, and J. J. P. C. Rodrigues,
“The plethora of research in Internet of things (IoT),” IEEE Access,
vol. 4, pp. 9575–9579, 2016.

[22] L. Breslau, Pei Cao, Li Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: evidence and implications,” in Proc. IEEE
INFOCOM, Mar. 1999.

[23] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

Ramy Amer received his Ph.D. in Electrical and
Communications Engineering from Trinity College
Dublin in November 2020. He was a Visiting
Scholar at Virginia Tech, USA from September 2018
to March 2019. He holds one best paper award, IEEE
student travel grant, and IEEE exemplary reviewer
award. His research interests include edge caching
and Intelligence, edge computing and IoT, machine
learning, and UAVs. Ramy has been first author in
one book chapter and six journals and eight IEEE
conference papers.

Mohamed Baza is currently an Assistant Professor
at the Department of Computer Science at College
of Charleston, SC, USA. He received his Ph.D.
degree in Electrical and Computer Engineering from
Tennessee Tech University, Cookeville, Tennessee,
United States in Dec. 2020 and B.S. and M.S.
degrees in Electrical & Computer Engineering from
Benha University, Egypt in 2012 and 2017 respec-
tively. From August 2020 to May 2021, he worked as
a Visiting Assistant Professor at the Department of
Computer Science at Sam Houston State University,

TX, USA. He also has more than two years of industry experience in
information security in Apache-khalda petroleum company, Egypt. Dr. Baza
is the Author of numerous papers published in major IEEE conferences and
journals, such as IEEE Wireless Communications and Networking Conference
(IEEE WCNC), IEEE International Conference on Communications (IEEE
ICC), IEEE Vehicular Technology Conference (IEEE VTC), IEEE Transac-
tions on Dependable and Secure Computing, IEEE Transactions of Vehicular
Technology (TVT), IEEE Transactions on Network Science and Engineering
(TNSE), and IEEE Systems Journal. He served as a Reviewer for several
journals and conferences such as IEEE Transactions on Vehicular Technology,
IEEE IoT Journal, and the journal of Peer-to-Peer Networking. His research
interests include blockchains, cyber-security, machine learning, smart-grid,
and vehicular ad-hoc networks. He also a recipient of best IEEE paper award
in the International Conference on Smart Applications, Communications and
Networking (SmartNets 2020).



AMER et al.: OPTIMIZING JOINT PROBABILISTIC CACHING AND CHANNEL ... 441

Tara Salman is finishing a graduate Research
Assistant at Washington University in St. Louis.
She received her B.S. in Computer Engineering
and M.S. degrees in Computer Networking from
Qatar University Doha, Qatar in 2012 and 2015,
respectively. She is currently pursuing a Ph.D. in
Computer Science & Engineering at Washington
University in St Louis, Missouri, USA. From 2012
-2015, she worked as a Research Assistant with
Qatar University on an NPRP (National Priorities
Research Program) funded project targeting physical

layer security. Since 2015, she has been working as a Graduate Research
Assistant at Washington University in St. Louis. Her research interests span
network security, distributed systems, the Internet of things, and financial
technology. She is an Author of 1 book chapter and numerous papers published
at major IEEE conferences and journals. Tara Salman is an EECS Rising Star
in UC Berkeley 2020, is a Recipient of the Cisco Certified Network Associate
(CCNA) certification in 2012, and has completed all four levels of CCNA at
Cisco academy-Qatar university branch.

M. Majid Butt received the M.Sc. degree in Digital
Communications from Christian Albrechts Univer-
sity, Kiel, Germany, in 2005, and the Ph.D. degree in
Telecommunications from the Norwegian University
of Science and Technology, Trondheim, Norway, in
2011. He is currently a Senior Research Specialist
5G+ at Nokia Bell Labs, Paris-Saclay, France, and
also an adjunct Research Professor at Trinity College
Dublin, Dublin, Ireland. Prior to that, he has held
various positions at the University of Glasgow, U.K.,
Trinity College Dublin, Ireland, Fraunhofer HHI,

Germany, and the University of Luxembourg. His current research interests
include communication techniques for wireless networks with a focus on radio
resource allocation, scheduling algorithms, energy efficiency, and machine
learning for RAN. He has Authored more than 70 peer-reviewed conference
and journal publications, and filed some 10 patents in these areas. He
frequently gives invited talks, as well as technical tutorial talks on various
topics in IEEE conferences, including ICC, Globecom, PIMRC, VTC, ISWCS,
etc. He was a Recipient of the Marie Curie Alain Bensoussan Post-Doctoral
Fellowship from the European Research Consortium for Informatics and
Mathematics. He has served as the Organizer/chair for technical workshops
on various aspects of communication systems in conjunction with major IEEE
conferences. He has been an Associate Editor of the IEEE ACCESS and the
IEEE Communication Magazine since 2016.

Ahmad Alhindi received the B.Sc. degree in
Computer Science from Umm Al-Qura University
(UQU), Makkah, Saudi Arabia, in 2006, and the
M.Sc. degree in Computer Science and the Ph.D.
degree in Computing and Electronic Systems from
the University of Essex, Colchester, U.K., in 2010
and 2015, respectively. He is currently an Assistant
Professor in Artificial Intelligence (AI) with Com-
puter Science Department, UQU. His current re-
search interests include evolutionary multi-objective
optimization and machine learning techniques. He is

currently involved in AI algorithms, focusing particularly on machine learning
and optimization with a willingness to implement them in a context of decision
making and solving combinatorial problems in real-world projects.

Nicola Marchetti is Associate Professor in Wireless
Communications at Trinity College Dublin, Ireland.
He performs his research under the Irish Research
Centre for Future Networks and Communications
(CONNECT), where he leads the Wireless Engi-
neering and Complexity Science (WhyCOM) lab.
He received the Ph.D. in Wireless Communications
from Aalborg University, Denmark in 2007, and
the M.Sc. in Electronic Engineering from University
of Ferrara, Italy in 2003. He also holds an M.Sc.
in Mathematics which he received from Aalborg

University in 2010. His research interests include Complex Systems Science,
Self-Organizing Networks, Signal Processing for Communication, and Radio
Resource Management. He has authored in excess of 140 journals and
conference papers, 2 books and 8 book chapters, holds 4 patents, and received
4 best paper awards. He is a senior member of IEEE and serves as an associate
editor for the IEEE Internet of Things Journal since 2018.


