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Multi-Server Federated Edge Learning for Low
Power Consumption Wireless Resource Allocation

Based on User QoE
Tianyi Zhou, Xuehua Li, Chunyu Pan, Mingyu Zhou, and Yuanyuan Yao

Abstract—Federated edge learning (FEL) deploys a machine
learning algorithm by using devices distributed on the edge of
a network, trains massive local data, uploads the local model
to update the parameters after training, and performs alternate
updating with global model parameters to reduce the pressure
for uplink data transmission, prevent systematic time delay and
ensure data security. This paper proposes that an optimal balance
between time delay and energy consumption be achieved by op-
timizing the transmission power and bandwidth allocation based
on user quality of experience (QoE) in a multi-server intelligent
edge network. Given the limited computing capability of devices
involved in FEL local training, the transmission power is modeled
as a quasi-convex uplink power allocation (UPA) problem, and
a lower energy consumption bandwidth allocation algorithm is
proposed for solution-seeking. The proposed algorithm allocates
appropriate power to the device by adapting the computing
power and channel state of the device, thereby reducing energy
consumption. As the theoretical deduction result suggests that
additional bandwidth should be allocated to those devices with
weak computing capabilities and poor channel conditions to
realize minimal energy consumption within the restraint time.
The simulation result indicates that, the maximum gain of the
proposed algorithm can be optimized by 31% compared with the
baseline.

Index Terms—Bandwidth optimization, federated edge learn-
ing, QoE, uplink power allocation.

I. INTRODUCTION

THE traditional machine learning (ML) algorithm usually
adopts the centralized model training method [1]–[3].

However, transmitting massive data to the central server not
only causes privacy leakage but also results in uplink con-
gestion and serious transmission delay. The distributed edge
learning based on distributed ML and mobile edge computing
(MEC) can significantly reduce the traffic load and end-to-end
time delay in communication networks by using the computing
capability and datasets of massively distributed edge devices
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and by co-training the shared ML model [4]–[7]. Among
the available learning approaches, federated edge learning
(FEL) [8] shows great potential in solving the above mentioned
problem.

Compared with traditional distributed machine learning,
FEL has more prospects for data privacy. Firstly, the compute
node has absolute control over the data and the central
server cannot directly or indirectly manipulate the data on
the compute node in FEL. Secondly, in the process of data
transmission, compared with traditional distributed machine
learning, FEL only needs to upload local model parameters
without sharing local data. While protecting data privacy, it can
release the pressure of uplink and greatly reduce the amount
of data transmitted.

FEL supports ML in data and model training in the mo-
bile communication system and allows multiple-edge smart
devices to complete model training and parameter sharing
through local data iteration [9]. The iteration process has
two parts, namely, local model training and updating and
global aggregation of updated parameters. Distributed local
training is performed for generating the local model. The
updated local model parameters are uploaded, and the global
model is optimized in the central server by analyzing the local
models of smart devices, then broadcasted the updated model.
Unlike traditional ML, the FEL algorithm requires users to
transmit local model parameters to the base station (BS)
through a wireless link and imposes additional requirements
for the energy consumed in training and wireless link resource
allocation. Federated learning (FL) and wireless transmis-
sion have received much research attention in recent years.
For instance, Zhang et al. proposed a method that ensures
minimal transmission time delay to improve FL algorithm
efficiency [10]. In [11], the authors used the FL algorithm
for traffic estimation to maximize user data rate. To reduce
time delay, [12] proposed a partially average solution and only
used the updated parameters from quick-response devices for
global model updating. In addition, for the purpose of reducing
communication load in FL, [13] compress gradients uploaded
by edge nodes to reduce the time required for communication.

However, affected by bandwidth, edge device energy con-
sumption, and inter-cell interference, FEL faces serious chal-
lenges in wireless link data transmission. In [10]–[13], the
authors ignored the effect of edge device energy consump-
tion and inter-cell interference on the FEL training process.
Moreover, no study has attempted to jointly optimize FEL
wireless resources and energy consumption based on user
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Fig. 1. Multi-unit and multi-server MEC cellular network.

quality of experience (QoE). Meanwhile, [14] selected suit-
able users to execute the FEL algorithm by disclosing edge
device CPU cycle frequencies and transmission power to
minimize energy consumption. Ref. [15] devises the Model
Update Compression by Soft Clustering (MUCSC) algorithm
to compress model updates transmitted between clients and
the parameter server to reduce the volume of communication
traffic in FL. Ref. [16] described how the computing capa-
bility and communication delay of mobile devices affect UE
energy consumption, system learning time, and learning pre-
cision parameters yet only considered the application scenario
of mobile cellular networks that consists of single servers.
Ref. [17] obtains the user selection and uplink resource block
allocation scheme by solving the optimization problem, and
then deduces the optimal transmission power of each user
according to the expected convergence speed of the algorithm.
However, previous studies on FEL wireless transmission have
also ignored multi-unit and multi-server scenarios or the effect
of interference.

This paper designs a multi-unit and multi-server mobile
edge cellular network for FEL wireless transmission, which
maximizes network performance by implementing a strategy
that jointly optimizes energy consumption and bandwidth op-
timization. Specifically, we consider a multi-unit MEC cellular
network, with each BS equipped with an edge server for the
global aggregation of the model. The distributed deployment
of edge servers and intensification of BSs caters to the prospect
of “smart interconnection” of all things in the future 6G
system.

In this work, multi-unit and multi-server MEC networks
are considered for the first time in FEL wireless transmission.
Based on multi-user transmission and by considering inter-cell
interference, the proposed problem is both complex and non-
convex [18]. Therefore, it’s hard to find a solution directly.
In this case, we propose a low power consumption resource
allocation strategy to reduce the complexity. The innovations
of this paper are as follows:

1) Compared with single MEC server systems, each user
in the designed strategy can select the closest server from
the multi-server network for parameter uploading to reduce
the energy consumption for FEL parameter transmission.
Moreover, the coordination and allocation of resources with
multiple servers can alleviate inter-cell interference, and these
servers fight over wireless resources between a user and

other neighboring users, thereby improving network benefits
when multiple users request for FEL parameter uploading
simultaneously.

2) We use task completion time and device energy con-
sumption to quantify the QoE and to model the transmission
efficiency of each user as the weighted sum of task completion
time and device energy consumption optimization. Based on
user QoE, the optimization problem is modeled as an uplink
power allocation (UPA) to optimize the uplink transmission
power of users. This paper then considers the problem of
minimizing edge device energy consumption, proposes a low
power consumption bandwidth allocation (BA) strategy, and
theoretically deduces the convergence form of the optimal
strategy for minimizing energy consumption.

3) Given the computing capability and energy consumption
of edge devices involved in FEL local model training, this
paper proposes a low complexity UPA algorithm for solution,
which reduces the iteration times and computing complexity
of the FEL.

The rest of this paper is organized as follows. Section II
describes the system model. Section III proposes the uplink
power allocation optimization problem for FEL wireless trans-
mission. Section IV discusses the power consumption BA
strategy. Section V provides the simulation results. Section VI
summarizes the paper.

II. SYSTEM MODEL

We consider a multi-unit and multi-server FEL system with
an edge server for each BS to achieve a convergence updating
of the global model. The system model is shown in Figure 1.
The FEL iteration process can be divided into several steps.
First, after the user utilizes local data for model training, the
local model parameters transmitted through wireless links are
used to update the global model. Second, the server distributes
the converged and updated global model to replace the original
model as shown in Figure 2. Each iteration is called a round
of communication. The sets of edge devices (user) and edge
servers in the FEL system are expressed as U = {1, 2, · · ·, u}
and S = {1, 2, · · ·, s}. The edge servers are assumed to obtain
the model size, multi-user channel gain, local computing
capability, and others through feedback. These servers use
such information to determine the uplink power allocation and
low power consumption bandwidth allocation strategy for each
round of communication. The modeling of user computing
tasks and parameter uploading is described below. The key
symbols used in this paper are listed in Table I.

A. Computing Task Model

We use Tu to represent the task of user u ∈ U that
utilizes local data for model training, 〈cu, du〉 to represent the
computing and data amounts of the task of user u, cu [cycles]
represents the amount of computing resources required to
complete the model training, and du [bits] represents the
number of data consumed for uploading the parameters from
edge devices to edge servers. The values of cu and du can be
obtained by analyzing the task execution status [19]. f lu > 0
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Fig. 2. FEL iterative process in a single server.

represents the local computing capability of user u with the
unit of CPU cycle/s. The local model training time for user u
is tlu = cu/(f

l
u).

B. Training Model

We design a general FEL model[17]. Each user u collects
an input matrix Iu = [iu1, · · ·, iun], where n represents the
number of samples collected by each user u, iun is the
input vector of FL algorithm. The size of iun depends on
the specific FEL task. For example, the network can execute
an FEL algorithm to sense the wireless environment and
generate a holistic radio environment mapping, each user
will collect the data related to the wireless environment for
training an FL model[21]. Output of local edge device index
by ou = [ou1, · · ·, oun]. We capture the input parameters of
local model training Iu and output parameter ou by wu, which
determines the local model of each user u. For example, in
the task of classification using BP algorithm, iTunwu indicates
classified output, wu is the weight vector that determines the
BP algorithm.After the local model training, user u uploads
wu to the edge server to participate in the global model
aggregation. Using the BP algorithm to perform local training
for the neural network model on a GPU is considered [21].
The experiment in [22] reveals that the energy consumption
of GPU only depends on the complexity and model parameter
size (or equivalent dimensions) of the BP algorithm. Given
that all edge devices use the BP algorithm to train the same
models with data amount du, all edge devices used for local
training are assumed to be the same and expressed as Elu. We
assume that the model training of the equipment is accurate
and the loss is within the acceptable range.

C. Parameter Uploading Task Model

We consider OFDMA as the mobile edge computing cel-
lular network for the multi-address access solution in the
uplink [23], and we divide the working frequency band B
into N equal sub-frequency bands with a size of W =
B/N [Hz]. N = {1, · · ·, N} represents the available sub-
frequency bands of each BS. To ensure the orthogonality of

uplink transmission between users related to the same BS,
each user is allocated with one sub-frequency band. The N
sub-frequency bands divided from each BS can serve up to
N users simultaneously. We define the regulation parameter
xjus, u ∈ U, s ∈ S, j ∈ N of the uplink sub-frequency band.
When xjus = 1, the computing task Tu of user u is uploaded
to the BS through channel j. Otherwise, xjus = 0. Moreover,
we define Us =

{
u ∈ U |

∑
j∈N x

j
us = 1

}
as the set of users

who are uploading parameters to server s.
The delay generated in each round of communication in-

cludes 1) the time for edge devices to use local data for model
training, tlu[s], and 2) the time for edge devices to upload
parameters to edge servers through an uplink, tu[s]. The
time restraint for local model training and model parameter
uploading is

tlu + tu ≤ T, ∀u ∈ U, (1)

where T is the maximal time constraint. The computing
capability heterogeneity of edge devices is measured by the
difference in {t&l

u} values. The computing capability hetero-
geneity of edge devices is measured by the difference in tlu
values. T = {tu|0 < tu ≤ Tu, u ∈ U} represents the time set
of users u uploading parameter du to edge servers. The value
of tu is limited by the maximal transmission time Tu = T−tlu.

We assume that each user and BS have a single an-
tenna for uplink transmissions. hjus is defined as the up-
link gain transmission between user u and edge server s
through sub-channel j and represents the effect of path loss,
shadow, and antenna gain. The association duration between
the user and server is usually much longer than the small-
scale decline duration. We assume that the effect of quick
decline during the association period is uniform [24]. P =
{pu|0 < pu ≤ Pu, u ∈ U}represents user transmission power,
and pu[W] represents the transmission power consumed by
user u in the uploading parameter du to the server. This value
is limited by maximal transmission power Pu. If u /∈ U ,
then pu = 0. Although users send tasks to the same edge
server through different sub-frequency bands, the transmission
is still affected by inter-cell interference. Under this condition,
the signal to interference plus noise ratio (SINR) of user u
uploading parameters to the server s through sub-frequency
band j can be represented as

γjus =
puh

j
us∑

r∈S
∑
k∈Ur x

j
krpkh

j
ks +N0

,∀u ∈ U, s ∈ S, j ∈ N ,

(2)
where N0 is the noise variance, and the first term of the
denominator represents the total interference of all users
related to other edge servers s on the same sub-frequency band
j. Given that the transmission of one user is always on one
sub-frequency band, the maximal transmission rate [bits/s] of
the user u to server s is given by

Rus(χ,P) = Wlog2(1 + γus). (3)

where χ is the uploading decision. Given uploading decision
χ and transmission power pu, the time for uploading the
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parameter of user u is given by

tu =
∑
s∈S

xus(
du

Rus(χ,P)
),∀u ∈ U. (4)

The uploading energy consumption, Eu [J], of user u can
be calculated as Eu = putu

ξu
,∀u ∈ U , where ξu is the power

amplifier efficiency of user u. We assume that ξu = 1,∀u ∈
U.Therefore, the uploading energy consumption of user u can
be simplified as

Eu = putu = pudu
∑
s∈S

xus
Rus(χ,P)

,∀u ∈ U. (5)

In the FEL system, user QoE is mainly reflected by task
completion time and energy consumption. In the scenar-
ios considered in this paper, compared with maximal task
completion time and maximal energy restraint, the relative
optimization of task completion time and energy consumption
is represented by T−tu

T and E−Eu
E . Therefore, we can define

user uploading utility as

Ju = (βtu
T − tu
T

+ βte
E − Eu
E

)
∑
s∈S

xus,∀u ∈ U. (6)

where βut , β
u
e ∈ [0, 1] and βtu + βeu = 1,∀u ∈ U, which

represent the preferences of user u in task completion time
and energy consumption, respectively. For example, for user
u, a short battery life can increase βeu and reduce βtu, that is,
energy consumption is reduced by extending task completion
time. In practical operations, cellphone users can set βeu
through different power-saving modes. For instance, under the
super power-saving mode, βeu = 1, and under the maximum
performance mode, βeu = 0. These users can also set the
parameters based on the battery levels of their devices. E
represents the maximal restraint for energy consumption and
is determined by the actual condition of the edge device.

D. Problem Formulation

For a given uploading strategy χ and uplink power alloca-
tion P , we define the system utility as follows as the weighted
sum of the uploading efficiency of all users:

J(P) =
∑
u∈U

λuJu, (7)

where Ju is defined in (6), and λu ∈ (0, 1] defines the
preference of the edge server in user u,∀u ∈ U. This
parameter also determines the handling priority of different
edge devices. For example, based on the obtained edge device
information, the devices with enough battery levels and more
updating data should be prioritized with high value of λu. We
now use a maximal system utility problem to represent power
allocation as

max
P,W,xjus

J(P) (8)

s.t.
∑
u∈U

xjus ≤ 1,∀u ∈ U, s ∈ S, (8a)

W > 0, (8b)

Table I  

Summary of Key Notations 
Notation Description 

 Set of  edge of devices 
Set of s MEC servers/BSs 
Training task of device  when using local data for its model  

 Input data of training task  
 Workload of training task  
 Local computing capability of device  
 Energy consumption of device  when training its model locally 

 Uplink system bandwidth 
 Set of N orthogonal sub-bands 

Task uploading indicator,  
Local training time of model training task  
Transmission time of local updates to the MEC server 

T Maximum total time 
 Maximum transmission time of updates 
 Uplink channel gain between device  and MEC server s on sub-band  

 Transmission power of device  
 Maximum transmission power of device  
 SINR from device  to MEC server s on sub-band  
 Uplink data rate from device  to MEC server s 

 Updates uploading policy 
 Energy consumption of device  when uploading its updates 
 Uploading utility of device  
 Device u’s preference on task completion time 
 Device u’s preference on energy consumption 
 MEC server s’s preference towards device u 

0 < pu ≤ Pu,∀u ∈ U, (8c)

0 < Eu < E, ∀u ∈ U, (8d)

0 ≤ tu ≤ Tu,∀u ∈ U. (8e)

The constraints in the above formulation can be explained
as follows. (8a) implies that each sub-frequency band of each
edge server serves one user at most. (8b) stipulates the system
bandwidth. (8c) to (8e) specify the maximal transmission
power, uploading energy consumption, and transmission time
for each user, respectively. Given the limited computing capa-
bility and energy consumption of the involved edge devices,
we aim to formulate a feasible low-complexity algorithm to
the abovementioned problem.

III. LOW-COMPLEXITY POWER ALLOCATION
OPTIMIZATION ALGORITHM

By exploiting the structure of the objective function and
constraints in (8), we design a low-complexity algorithm to
optimize transmission power allocation. Given a feasible task
uploading decision χ that meets restraint (8a), we use the Ju
expression in (6) to rewrite the target function in (8) as

J(P) =
∑
s∈S

∑
u∈Us

λu(βtu + βeu)− V (P), (9)

where
V (P) =

∑
s∈S

∑
u∈Us

λu(
βtutu
T

+
βeuEu
E

). (10)

The right side of (9) is constant for a specific uploading
decision, and V (P) can be seen as the total uploading cost
of all users who have uploaded parameters. Therefore, we
can redefine (8) as follows as a problem of minimizing total
uploading cost:
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min
P

V (P) (11)

s.t. (8b)(8c)(8d) (11a)

Moreover, from (10), (4), and (5), we obtain

V (χ,P) =
∑
s∈S

∑
u∈Us

φu + ψupu
log2(1 + γus)

, (12)

where φu =
λuβ

t
udu

TuW
, ψu =

λuβ
e
udu

EW .Therefore, we define (12)
as the target function of the UPA problem. Specifically, the
UPA problem can be represented as

min
P

∑
s∈S

∑
u∈U

φu + ψupu
log2(1 + γus)

, (13)

s.t. 0 < pu ≤ Pu,∀u ∈ U. (13a)

The in-cell interference Ijus =
∑
w∈S

∑
k∈Uw x

j
kspkh

j
ks

of the uplink SINR γjus of user u ∈ Us depends on the
transmission power of other users related to other BSs on the
same sub-frequency band as the cell. Therefore, problem (13)
remains a non-convex problem whose optimal solution cannot
be easily found. To facilitate solution seeking, we need to find
the approximate value of Ijus to find the solution to γjus and
therefore divide problem (13) into several sub-problems. The
optimal uplink power allocation P ∗ obtained through solution-
seeking remains the optimal value for the solution seeking of
(13).

Assume that the uplink power allocation for each BS
s ∈ S is relatively independent, that is, users have no mutual
collaboration or do not inform one another about their uplink
transmission power between edge servers. In this case, the
upper bound of Ijus is

Ĩjus ,
∑
w∈S

∑
k∈Uw

xjkspkh
j
ks,∀u ∈ U, s ∈ S, j ∈ N . (14)

We regard Ĩjus as the approximate value of Ijus. Given
that the FEL system only selects partial users for parameter
uploading for each round of communication, the value of Ijus
is very small, that is, a small error of Ĩjus will not lead to a
huge difference in γjus. By using Ĩjus to replace Ijus, we can
obtain the approximate uplink SINR value that user u uploads
to edge server s through channel j as follows:

γ̃jus =
puh

j
us

Ĩjus +N0

,∀u ∈ U, s ∈ S, j ∈ N . (15)

Let ϑus =
∑
j∈N h

j
us

Ĩjus+N0
,Γs(pu) = φu+ψupu

log2(1+ϑuspu)
The

target function in (13a) can be approximated as∑
s∈S

∑
u∈U Γs(pu). The target function and restraint

corresponding to the transmission power of each user are
independent of each other. Therefore, the UPA problem
described in (20) can be approximated as an optimization of
the uploading power of each user u, u ∈ U, s ∈ S,which can
be expressed as

min
∑
u∈Us

Γs(pu), (16)

s.t. 0 < pu ≤ Pu,∀u ∈ U. (16a)

Problem (16) remains a non-convex problem because the
pu-related second-order derivative Γ

′′

s (pu) of the target func-
tion does not meet the requirement of being constantly larger
than 0. However, we can use the quasi-convex optimization
technique to solve the problem (16) based on the following
lemma:

a) Lemma 1: The definition field defined by Γs(pu) in
(16a) is strictly quasi-convex.
Proof: See Appendix A.

Quasi-convex problems can be usually solved by dichotomy.
Specifically, dichotomy finds the solution to a convex feasi-
bility problem [25] in each round of iteration. However, the
internal cutting plane method commonly used to solve convex
feasibility problems requires O(n2/ε2) iterations, where n is
the number of problem dimensions. We also propose a method
for further reducing the complexity of dichotomy.

Note that the quasi-convex function achieves the local
optimum at the progressive decline point of the first-order
derivative, and any local optimum of a strictly quasi-convex
function is the global optimum [26]. Therefore, based on
Lemma 1, we can determine that the optimal solution p∗u of
problem (16) is at the restraint bound, that is, p∗u = Pu or
Γ
′

s(p
∗
u) = 0.When equation (17) is satisfied, we can verify

that Γ
′

s(p
∗
u) = 0.

Ωs(pu) = ψulog2(1 + ϑuspu)− ϑus(φu + ψupu)

(1 + ϑuspu)ln2
= 0. (17)

We can conclude that Ω
′

s(pu) =
ϑ2
us(φu+ψupu)

(1+ϑuspu)2ln2
> 0 and

Ωs(0) = −ϑusφuln2 < 0,which suggests that Ωs(pu) is a mono-
tonically increasing function that is negative at the starting
point pu = 0. Therefore, we can design a low-complexity
dichotomy to evaluate Ωs(pu) in each iteration instead of
finding a solution to a convex feasibility problem so as to
obtain the optimal solution p∗u as shown in Algorithm 1.

In Algorithm 1, if Ωs(pu) > 0, then the algorithm will
terminate after [log2(Pu/ξ)] iterations. ξ is the convergence
threshold in line 14. The time complexity of this algorithm
is O (log2 (n)). P ∗ = {p∗u, u ∈ U} represents the power
allocation optimization solution for a given task uploading
strategy.

IV. LOW POWER CONSUMPTION BANDWIDTH
ALLOCATION STRATEGY

In the previous section, based on user QoE and given
task uploading solution ξ, we obtain the power allocation
optimization solution P∗ = {p∗u, u ∈ U}. To further reduce
the parameter uploading energy consumption of the FEL
system, we develop a low power consumption BA strategy
based on the above mentioned solution.

We consider the BA problem for edge devices that satisfy
the time restraint. The target of solving the BA problem is to
minimize the total energy consumption, that is,

∑
u∈Us(E

l
u +

Eu). Given that the energy consumption Elu for the local
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Algorithm 1: Bisection Method for Uplink Allocation 
1: Calculate  using (17) 
2: if  then 
3:  
4: else
5: Set optimality tolerance  
6: Initialize  and  
7: repeat 
8:     Set /2 
9:  if  then 
10:        Set  
11:     else 
12:        Set  
13: end if 
14: until  
15:  Set  
16: end if

model training of all edge devices is equal, this problem can
be transformed into minimizing uploading energy, that is,

min
δu,tu

Eu (18)

s.t.
∑
u∈Us

δu = 1, 0 ≤ δu ≤ 1 (18a)

0 ≤ tu ≤ Tu,∀u ∈ U, (18b)

where δu represents the bandwidth allocation rate and Eupu =

δuBputu =
∑
u∈U

δuBtu(Ĩ
j
us+N0)

hjus
(2

du
δuBtu − 1).Constraint

(18a) means that the bandwidth sum allocated to edge devices
uploading through the same frequency band does not exceed
the total bandwidth, whereas constraint (18b) means that all
devices involved in the uploading satisfy the time restraint. The
optimal bandwidth allocation rate δu for edge devices can be
obtained by seeking a solution to problem (18).

a) Lemma 2: The target function of problem (18) is a
non-increasing function related to tu and δu, ∀u ∈ U.

The validity of Lemma 2 can be easily proven by finding a
solution to the target function. Based on this lemma, the opti-
mal solution to problem (18) can be obtained by maximizing
the transmission time of each device within the time restraint,
that is, t∗u = Tu, u ∈ U. and the values of t∗u and bandwidth
allocation ratio δu are independent of each other. Therefore,
the obtained optimal BA strategy is as follows.

b) Theorem 1: The optimal BA strategy can be expressed
as

δ∗u =
duln2

BTu[1 +W(h
j
usυ∗−BTu(Ĩjus+N0)

BTu(Ĩ
j
us+N0)e

)]
,∀u ∈ U, t∗u = Tu,

(19)
where W(·) is the Lambert W function, υ∗ is the Lagrange
multiplier, and e is the Euler number.
Proof: See Appendix B.

To easily find a solution, we propose the following corol-
lary:

c) Corollary 1: δ∗u is a non-increasing function related
to Tu and hjus.
Proof: See Appendix C.

Corollary 1 shows that edge devices with a relatively weak
computing capability, that is, relatively small Tu, will limit
the synchronous updating of model parameters. Therefore,
additional bandwidth should be allocated to these edge devices
to minimize energy consumption. Specifically, those devices
with weak computing capability can complete the model
parameter uploading and reduce transmission power within the
transmission restraint time by receiving additional bandwidth
allocation.

Additional bandwidth should also be allocated to those
devices with weak channels. The problem of poor channels can
be solved by either improving transmission power or increas-
ing bandwidth. To achieve the target of minimizing energy
consumption, increasing bandwidth is the optimal solution.

V. SIMULATION RESULTS

The performance of the proposed system with the uplink
power allocation optimization and BA strategies is evaluated
based on the simulation results. The multi-server edge cellular
network considered in this paper is closer to the actual
scenario. However, we can adjust S to let the optimization
problem presented is suitable for single server and multiple
server scenarios. Unless otherwise specified, the simulation
parameters are set as follows. We consider a dense hetero-
geneous network environment using MEC, which consists of
S = 7 intelligent edge units. Each unit includes one BS and
50 small base stations (SBS). The coverage radius of the BS is
500 meters, and that of SBS is 5 meters. It is assumed that each
small base station serves only one person. The MEC server
is deployed near BS, furthermore, the edge devices obey the
uniform distribution and choose the nearest base station for
communication. The duration of local model training,

{
tlu
}

,
is evenly distributed within (0, 10] ms. The channel bandwidth
is B=1MHz, the uplink gain,

{
hjus
}

, of the sub-channel j
between the edge device u and BS observes Rayleigh fading,
the average path loss is 10−5, the Gaussian noise variance is
N0 = 10−8, the maximal transmission power of edge device
u is Pu =10W, and the model size is set to du = 104 bits to
facilitate learning. For local model training, we assign MNIST
dataset to each user for classification. We build a CNN model
with 6 convolutional layers, 2 ∗ 2 max pooling layers, a fully-
connected layer and a softmax output layer.

a) The tradeoff performance of the proposed algorithm
with time and energy: Given that only some edge devices can
upload local model parameters simultaneously, each device is
allocated with the same bandwidth. Based on user QoE, 50
different values are randomly set within the range of (0, 1) for
the task completion time preference parameter βtu and energy
preference parameter βeu of user u. Figure 3 describes the
tradeoff between transmission time and transmission energy.
The simulation result is shown as follows. When the uploading
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Fig. 3. Relationship between energy consumption/transmission time prefer-
ence parameters and uploading power in the FEL system.
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Fig. 4. Relationship between the uploading power Pu and transmission time
T of edge devices.

time of model parameters is limited, a larger time preference
parameter value βtu can be set, and the user transmission power
will increase along with βtu. At this time, the energy preference
parameter is relatively small, while the energy consumption
is large. By contrast, when the energy consumed for model
parameter uploading is limited, a larger energy consumption
preference parameter βeu can be set. User transmission power
decreases along with an increasing βeu. At this time, the task
completion time preference parameter is relatively small, and
the energy consumption is also small. The simulation result
verifies the effectiveness of optimizing the uplink power and
uploading time based on user QoE.

b) The optimal performance of the proposed algorithm:
We then compare the practical performance of the proposed
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Fig. 5. Relationship curve between uploading energy consumption Eu and
transmission time T .

optimal strategy with the baselines of average and random
bandwidth allocations. In the average bandwidth allocation
strategy, the uplink bandwidth is evenly distributed across
all edge devices involved in uploading, with each device
having the same uplink bandwidth. In the random bandwidth
allocation strategy, the uplink bandwidth is distributed across
all edge devices involved in uploading at random proportions.
Based on Corollary 1, we verify the effectiveness of the
proposed optimal strategy from maximal transmission time
and channels.

i. The relationship curve between the uploading power
Pu and transmission time T of edge devices and the rela-
tionship curve between uploading energy consumption Eu
and transmission time T are shown in Figures 4 and 5,
respectively. Under the three circumstances, both power and
energy consumption decrease along with increasing restraint
uploading time T . As proven by Lemma 2, a longer trans-
mission time corresponds to a lower energy consumption.
The proposed optimal strategy allocates additional bandwidth
to those devices with a weak computing capability, thereby
allowing them to complete the model parameter uploading and
reduce the transmission power within the transmission restraint
time. Figures 4 and 5 show that the proposed strategy reduces
the transmission power by up to 21% and 23% compared with
the average and random bandwidth allocations, respectively.
Meanwhile, the transmission energy consumption increases by
1.4% and 1.9% compared with the baselines.

ii. Figures 6 and 7 compare the uploading power Pu and
uploading energy consumption Eu in the three circumstances
at each uplink gain hjus. At this time, the channel uplink gain
hjus takes a random value within the range of (10−5, 2∗10−5).
Under the three circumstances, the transmission power and
energy consumption decrease along with the improvement
of channels. One observation from Corollary 1 is that more
bandwidths should be allocated to those edge devices with
weak channels. Overcoming such problem allows us to boost
the transmission power or increase the bandwidths. The latter
solution is preferred for energy minimization. As proven in
Lemma 2, better channels correspond to lower transmission
energy consumption. The transmission power in the proposed
optimal strategy is 19% and 31% lower than those in the
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us.

average and random bandwidth allocations, respectively, and
the improvements in transmission energy consumption are 5%
and 9.6% higher than the baselines.

In order to further verify the effectiveness of the algorithm,
in addition to the random and average bandwidth allocation
strategies, we refer to the BW scheme in [27] as a control
experiment. Under the channel state that we can tolerate, the
maximum transmission power allocated by BW strategy and
bandwidth optimization proposed in this paper are 0.43W and
0.41W respectively. The transmitted power of the proposed
scheme will reduce 5.24%. In terms of transmission energy
consumption, the proposed scheme is optimized by 1.54%.

iii. The purpose of reflecting the generality of the algorithm,
we also carry out tests on intelligent edge units with varying
numbers (S = 10, S = 13). The addition of intelligent edge
units will lead to more inter-cell interference during parameter
transmission, and the terminals will increase transmission
power to overcome this effect. As shown in figures 8 and
9, with the increase of the number of cells, the transmission
power and energy consumption of equipment are significantly
improved. More importantly, the experimental results show the
universality of the proposed optimized bandwidth allocation.
Even if the number of multiple edge cell is different, the
proposed scheme can still effectively reduce the transmission
power and energy consumption of the terminals according to
the transmission delay limit and channel state.
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Fig. 8. Transmission time T and uploading power Pu under different multi
- intelligent edge unit.
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us and uploading power Pu under different multi -

intelligent edge unit.

VI. CONCLUSIONS

A low power consumption UPA strategy for FEL in a multi-
unit intelligent edge network is proposed in this paper. To fa-
cilitate optimization, we divide UPA into the power allocation
optimization strategy based on user QoE and the BA strategy.
Solution seeking is performed by using the quasi-convex
optimization and convex optimization techniques, and a low-
complexity algorithm is proposed to solve the quasi-convex
optimization problem. To satisfy user QoE, the proposed UPA
strategy reduces the energy consumption of devices while
adapting to the computing capability of channels and edge
devices. Simulation results show that the proposed strategy
outperforms the baselines in terms of transmission power
and transmission energy consumption by 31% and 9.6%,
respectively.

APPENDIX A

A. Proof of Lemma 1

First, we proof that Γs(pu) is quadratic differentiable on
R. Now we check the second-order condition of strictly
quasi-convex function requiring p to satisfy Γ

′

s(p) = 0 and
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Γ
′′

s (p) > 0[40]. The first and second derivatives of Γs(pu)
can be calculated as

Γ
′

s(p) =
ψuCu(pu)− ϑusDu(pu)

Au(pu)ln2

C2
u(pu)

, (20)

Γ
′′

s (p) =
ϑus[Gus(pu)Cus(pu) + 2ϑusDus(pu)/ln2]

A2
us(pu)C3

us(pu)ln2
, (21)

where,
Aus(pu) = 1 + ϑuspu, (21a)

Cus(pu) = log2(1 + ϑuspu), (21b)

Dus(pu) = φu + ψupu, (21c)

Gus(pu) = ϑusDus(pu)− 2ψuAus(pu). (21d)

Suppose pu ∈ (0, Pu], in order to prove Γ
′

s(p) = 0, we
need,

Ωs(pu) = ψulog2(1 + ϑuspu)− ϑus(φu + ψupu)

(1 + ϑuspu)ln2
= 0, (22)

Substitute pu into (21), we get,

Γ
′′

s (pu) =
ϑ3usD

2
us(pu)

A2
us(pu)C3

us(pu)ψuln22
, (23)

It can be easily verified that ∀pu ∈ (0, Pu], ϑus and D2
us(pu)

are always positive. Therefore, Γ
′′

s (p) > 0 , and Γs(pu) are
strictly quasiconvex functions on (0, Pu].

B. Proof of Theorem 1

As mentioned above, t∗u = Tu, u ∈ U.Next, we prove the
optimal bandwidth allocation policy. Substitute tu = Tu into
(18), it can be rewritten as

min
δu,tu

∑
u∈U

δuBTu(Ĩjus +N0)

hjus
(2

du
δuBTu − 1), (24)

s.t.
∑
u∈U

δu = 1, 0 ≤ δu ≤ 1 . (24a)

Since the above problem is a convex problem, by introducing
Lagrange multipliers µ∗ = [µ∗1, µ

∗
2, · · ·, µ∗U ]T ∈ RU for the

inequality constraints δ � 0, with δ = [δ1, δ2, · · ·, δU ]T , and
a multiplier υ∗ ∈ R for the equality constraint 1T δ = 1, the
KKT conditions can be written as follows

δ∗ � 0, 1T δ∗ = 1, µ∗ � 0, µ∗uδ
∗
u = 0, u ∈ U,

BTu(Ĩjus +N0)

hjus
(2

du
δ∗uBTu − duln2

δ∗uBTu
2

du
δ∗uBTu − 1)− µ∗u + υ∗

= 0, u ∈ U. (25)

By solving the above equations, we can get

δ∗u =
duln2

BTu[1 +W(h
j
usυ∗−BTu(Ĩjus+N0)

BTu(Ĩ
j
us+N0)

)]
(26)

where W(·) is the Lambert W function, and the La-
grange multiplier value υ∗ is obtained by solving

∑K
k=1[1 +

W(
hjusυ

∗−BTu(Ĩjus+N0)

BTu(Ĩ
j
us+N0)

)] = 1.

C. Proof of Corollary 1

First, we prove that δ∗u is a non-increasing function about
Tu.Denote x =

hjusυ
∗−BTu(Ĩjus+N0)

BTu(Ĩjus+N0)e
,then we can obtain Tu =

hjusυ
∗

(x+ 1
e )B(Ĩjus+N0)e

.Substituting it to the expression for γ∗k , one
can we have,

δ∗u =
duln2

BTu[1 +W(h
j
usυ∗−BTu(Ĩjus+N0)

BTu(Ĩ
j
us+N0)

)]

=
(Ĩjus +N0)eduln2

hjusυ∗

x+ 1
e

1 +W(x)
. (39)

Further, we denote,

y =
x+ 1

e

1 +W(x)
=
W(x)eW(x) + 1

e

1 +W(x)
. (40)

It can be easily proved that y is a non-decreasing function
with respect to W(x). Since W(x) is a non-decreasing func-
tion of x, x(Tk) is a non-increasing function of Tk, it follows
that δ∗u is non-increasing of Tu.

Next, we prove that δ∗u is a non-increasing function with re-
spect to hjus.h

j
us =

BTu(Ĩ
j
us+N0)e
υ∗ (x+ 1

e )can be obtained from
x =

hjusυ
∗−BTu(Ĩjus+N0)

BTu(Ĩ
j
us+N0)e

, Substituting it into the expression
for δ∗u, it follows that

δ∗u =
duln2

BTu[1 +W(h
j
usυ∗−BTu(Ĩjus+N0)

BTu(Ĩ
j
us+N0)

)]
=
duln2

BTu

1

1 +W(x)
.

(41)
Further, we let

z =
1

1 +W(x)
. (42)

Obviously, z is non-increasing with respect to W(x). Be-
cause W(x) is non- decreasing about x, x(hjus) is non-
decreasing about hjus, we can conclude that δ∗u is a non-
increasing function with respect to hjus.
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