
Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 1, FEBRUARY 2022 83

Reinforcement Learning based Resource
Management for Fog Computing Environment:
Literature Review, Challenges, and Open Issues

Hoa Tran-Dang, Sanjay Bhardwaj, Tariq Rahim, Arslan Musaddiq, and Dong-Seong Kim

Abstract—In the IoT-based systems, the fog computing allows
the fog nodes to offload and process tasks requested from IoT-
enabled devices in a distributed manner instead of the centralized
cloud servers to reduce the response delay. However, achieving
such a benefit is still challenging in the systems with high rate of
requests, which imply long queues of tasks in the fog nodes, thus
exposing probably an inefficiency in terms of latency to offload
the tasks. In addition, a complicated heterogeneous degree in
the fog environment introduces an additional issue that many of
single fogs can not process heavy tasks due to lack of available
resources or limited computing capabilities. Reinforcement learn-
ing is a rising component of machine learning, which provides
intelligent decision making for agents to response effectively to
the dynamics of environment. This vision implies a great potential
of application of RL in the concept of fog computing regarding
resource allocation for task offloading and execution to achieve
the improved performance. This work presents an overview of RL
applications to solve the resource allocation related problems in
the fog computing environment. The open issues and challenges
are explored and discussed for further study.

Index Terms—Fog computing, machine learning, performance
improvement, reinforcement learning, resource allocation, task
offloading, task scheduling.

I. INTRODUCTION

A. Context and Motivations

THE Internet of things (IoT) paradigm has been recognized
as a key driving force to realize the smart concept in

various domains such as smart cities [1], smart grids [2], smart
factories [3] since it enables the interconnection and interop-
erability of IoT-enabled physical and virtual entities to create
smart services and informed decision makings for monitoring,
control, and management purposes [4], [5]. The underlying

Manuscript received August 5, 2021; approved for publication by SuKyoung
Lee, Division III Editor, October 24, 2021.

This research was supported by the MSIT (Ministry of Science and ICT),
Korea, under the Grand Information Technology Research Center support
program (IITP-2020-2020-0-01612) and supervised by the IITP (Institute for
Information & communications Technology Planning & Evaluation), Priority
Research Centers Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science and Technology
(2018R1A6A1A03024003), and Korea Research Fellowship Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Science and ICT (NRF-2020R1I1A1A01073019).

H. Tran-Dang, S. Bhardwaj, T. Rahim, A. Musaddiq, and D.-S. Kim are
with department of IT Convergence Engineering, Kumoh National Institute
of Technology, Korea, email: {hoa.tran-dang, arslan, dskim}@kumoh.ac.kr,
sanjay.b1976@gmail.com, tariqrahim@ieee.org.

D.-S. Kim is the corresponding author.
Digital Object Identifier: 10.23919/JCN.2021.000041

principle of realization involve a set of activities that includes
collecting, processing, analyzing, and getting insights from IoT
data perceived by the IoT devices. Traditionally, the cloud
computing platform plays an essential role in the realization
process since it provides rich and powerful resources (e.e.,
storage, computation, networking) to handle an enormous
amount of IoT data (big data) efficiently [6]. However, the
data traffic has increased exponentially due to the increase of
IoT-enabled devices and growth of customized applications,
thus leading to congested networks consequently. Some of the
leading IoT applications have put higher demand on resource-
constrained devices. Additionally, more stringent quality of
service (QoS) requirements of IoT service provisioning such as
(ultra)low delay expose crucial limitations of the cloud based
solutions because the delivery of data from the IoT devices
to the centralized cloud computing servers seriously affects
the performance in processing, analyzing data and results in
network congestion issues and excessive delay as an ultimate
consequence. This fact context leads to a strong push of fog
computing integration into the IoT-cloud systems since it puts
computing, storage, communication, and control closer to the
IoT devices to meet the prescribed QoS requirements [7], [8].
Technically, the fog computing platform that is placed between
the physical IoT devices and the cloud servers can handle a
majority of service requests on behalf of the cloud servers
to improve the system performance in terms of service delay,
workload balancing, and resource utilization [9].

The mutual benefits gained from the combination of fog and
cloud enable the resulting IoT-fog-cloud systems to provide
uninterrupted IoT services with various QoS requirements for
the end users along the things-to-cloud continuum. However,
employing the fog computing raises another concern regarding
decisions whether the tasks should be processed in the fog or in
the cloud. There are many factors impacting on the offloading
decision policies such as offloading criteria, application scenar-
ios [9]. Basically, in the most of existing offloading techniques
the tasks are probably offloaded to the best surrogate nodes,
which have the most ample resources (e.g., large storage
capacity, high speed processing) and reliable communication
network conditions in terms of delay, bandwidth between
them and their neighbors, the IoT devices, and even the
cloud servers. However, such the fog offloading solutions
face significant challenges regarding the workload distribution
among the complicated heterogeneous fog devices character-
ized by different computation resources and capabilities. The
challenge is further amplified by increasing the rates of service

1229-2370/21/$10.00 © 2021 KICS

84 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 1, FEBRUARY 2022

requests, which probably make the task queues of resource-
rich fog nodes longer. As a result, the requirements of latency-
sensitive applications can be violated because of excessive
waiting time of long queue. Furthermore, the reliance on the
remote cloud servers to accomplish the tasks may not help in
improving the situation due to high communication delay or
networking related disturbance.

Executing the tasks in the fog computing tier requires an
efficient resource allocation and management to satisfy the
QoS requirements. However, to achieve the objective is facing
many critical challenges due to the complex heterogeneity
and limitations of fog resources, locality restrictions as well
as dynamic nature of resource demands. Most of heuristics
existing algorithms are proposed as efficient resource alloca-
tion solutions for distributing and executing the tasks in some
certain computing scenarios [10], [11]. In other word, they lack
a generic framework to study the resource allocation issues in
the practical computing context, which encompasses multiple
criteria to derive the efficient algorithms such as heterogeneity,
QoS management, scalability, mobility, federation, and inter-
operability [12].

RL has been increasingly studied and applied to effectively
solve the resource allocation related issues in many uncertain
computing environments [13]. In principle, RL-based algo-
rithms employ the learning processes to learn the dynamic
and changing environment to enrich the experiences, thus
deriving the best decisions in the long-term operations [14]–
[16]. For example, a RL-based task scheduling algorithm has
been developed and deployed in the cloud computing scenarios
to reduce the average task execution delay, and task congestion
level [17]. Many RL-powered algorithms have been proposed
to improve the computing performance such as saving the
energy consumption in the data centers [18]–[20]. Recently,
the collaboration between deep learning and RL can further
enhance the capabilities of resulting deep RL (DeepRL) ap-
proaches which achieves outstanding performance in complex
control fields strongly shows its superiority of decision making
in complex and uncertain environment [21], [22]. For example,
such a DeepRL algorithm is developed to optimize the task
scheduling in the data center [23]. The resource allocation
problem is also tackled by using a DeepRL algorithm to
achieve the optimal job-virtual machine scheduling in the
cloud [24]. The dynamic task scheduling problems are ef-
fectively addressed by RL-based techniques in the field of
computer science [25]. These primary findings expose an
efficient alternative to solve the resource allocation problems
in the fog computing using the RL concept. In this regard,
this paper provides a significant review to channelize the state-
of-the-art RL based methods to solve the resource allocation
problems in the fog computing environment.

B. Contributions

The main contributions of paper are summarized as follows:
• We highlight key issues regarding the fog resource man-

agement in the fog computing for task offloading and task
computation algorithms.

Cloud layer

Fog layer

IoT layer

Servers

F1

F2

F4

F3

Task
 scheduling

Task
offloading

Resource
sharing Se

rv
ic
e
re
sp
on

se

YES

NO

IoT Service
Requests

IoT node/ end
device

Service A Service B Service C

A1

A2

A3

B

Task queue of cloud server

C

Forward to cloud

Service
provisioning

in fog?

Re
so
ur
ce
 A
llo

ca
tio

n
 &
 M

an
ag
em

en
t

Fig. 1. A typical three-tier architecture of IoT-fog-cloud system, which
provides specific kinds of IoT services (e.g., service A, B, C as examples)
through either the fog layer or the cloud based on the adaptive resource
allocation mechanism.

• We examine the RL concept as potential solutions to the
resource management issues.

• The state-of-the-art review of existing applications of RL
in the fog computing environment is surveyed.

• We explore and discuss the challenges as well as associ-
ated open issues when using RL algorithms in the context
of fog computing.

C. Paper Structure

The rest of paper is structured as follows. Section II present
the key concept of fog computing and existing resource
management issues of fog nodes. Section III overviews the
principle of RL and key algorithms developed and used in the
practical applications. Section IV presents a comprehensive
review of existing works which apply RL algorithms in the
context of fog computing. Section V discuss the challenges
and open issues. Finally, Section VI concludes the work.

II. FOG COMPUTING ENVIRONMENT

A. System Model

A fog computing system is usually placed between an IoT
layer and a cloud layer to form a three-tier architecture for the
resulting IoT-fog-cloud system as illustrated in Fig. 1.

The first layer include all IoT-enabled devices that generate
IoT data, and/or primarily process the data, and periodically
reports the raw and/or pre-processed data to the fog or cloud
for further advanced processing, and computing (i.e., data
streaming applications). The fog computing devices (e.g.,
routers, switches, gateways, and cloudlets for mobile comput-
ing services) and servers distributed in the fog layer and cloud
layer, respectively are responsible for receiving, processing,

TRAN-DANG et al.: REINFORCEMENT LEARNING BASED RESOURCE ... 85

TABLE I
RESOURCE STATE TABLE OF NEIGHBORS OF FOG NODE F1 .

Node ID Fog specification & Resource Status
M f Processor RTT W

F2 200 10 CPU 2.5 350.2
F3 100 5 CPU & GPU 3.1 500
F4 400 2.5 GPU 4.8 239.1

and responding to the IoT computing service requests sent
from the IoT layer. In contrast to the powerful servers in the
cloud tier, the fog devices have limited resources. In addition,
they are heterogeneous in terms of computation, storage, and
communication capability. Therefore, these resources require
an efficient resource allocation strategy to improve the per-
formance of fog computing tier in serving and delivering the
services.

Depending on the specific objectives and scale of applica-
tion system, the fog layer can be structured by three main
architecture: centralized, distributed and hierarchical form. In
the first architecture, the computing system comprises of a
fog controller and a set of fog nodes [26]. The controller is
responsible for information aggregation and decision-makings,
whereas the nodes work directly to serve as the supportive
computing devices. Such the architecture is widely applicable
in the software-defined networks. The second one is referred as
to a network of fogs which forms connectivity among fogs in a
distributed manner. Task scheduling and resource allocation in
the task offloading processes can be decided by fogs through
distributed manners. Whereas in the hierarchical architecture,
there exists clusters in which each cluster operates according
to the master-slave operations. Specially, a fog node serves as
a master to control and manage the operations of associated
fog nodes known as slaves. The master is able to know the
states of slaves regarding the resources, capacity, thus it can
derive optimal resource allocation and task scheduling in its
cluster. In addition, a federation is enabled among the master
fogs for further resource and load sharing.

Regardless architecture, the systems rely on available re-
source tables that contain the updated resource states of fogs
in the systems to facilitate the resource allocation processes.
Depending on the specific architecture of fog systems, the ta-
bles are maintained by different responsible fogs. For example,
the controllers and fog masters are able to know the resource
state of all fog devices, and in their clusters, respectively in
the first two architecture. Whereas, in the distributed system
each fog maintains it own neighbor resource table containing
the updated information about the available resources of its
colony [27], [28]. These tables are shared among the member
of their colony to support the primary host to make offloading
decisions, which ultimately aim at selecting the offloadees, the
hosts, and the collaborative fogs. Table I shows an example
of neighbor resource table stored by the fog node F1, which
records the resource states of neighbors with respect to residual
memory (M), clock frequency (f), processor (i.e., CPU or
GPU support), round-trip time (RTT), and expected waiting
time in queue (W).

Each computing task k can be described with a tuple

t1
Processing a1

t4
Transferring f(a2)

t5
Transferring f(a3)

t2
Processing a2

t3
Processing a3

t6
 Aggregating
f(a1), f(a2), f(a3)

Fig. 2. Based on the data fragmentation concept, processing the input
data a includes a set of tasks, which distributively process the data subsets
a1, a2, a3 before completing the whole task by jointly processing the output
data f(a1), f(a2), and f(a3) to achieve f(a).

(Ak, Bk), where Ak and Bk are the vectors representing the
input data features and required computing resources, respec-
tively. Basically, Ak can include following features: Total size
(in bits or bytes), splittable or non-splitable, number of data
types. The sizes of input data of tasks can be ranged from kilo-
bytes to tera-bytes depending the specific applications [29].
Based on this feature, the tasks can be classified into light,
medium, and heavy tasks as studied in many of existing
works [28], [30] for further analyzing the impact of task sizes
on the performance of fog computing systems. The divisibility
of task (i.e., input data) is also investigated in the literature.
Accordingly, the whole input data can only be processed by a
single fog device as it is unable to be splitted into data subsets.
Whereas, several existing works assumed that the task can be
divided into subtasks with smaller data sizes. Such the task
division is employed to get benefit from parallel computing
since the substasks can be processed by different fog devices
simultaneously. Fig. 2 illustrates main subtasks for computing
the input data a as it can be divided into three independent
subsets {a1, a2, a3}.

In particular, the outputs of substasks (i.e., f(a1), f(a2), and
f(a3)) are collected and jointly processed in the final stage to
achieve the desired outcome (i.e., f(a)). This mechanism is
called partial offloading as investigated in the existing works
such as [31]. The input data of a certain computing task can
include multiple types of data such as text, image, video,
and audio as studied in [27], [32]. Regarding the required
computing resource, there are many attributes included in
Dk to process the task. Some of existing works just only
consider Bk as the central processing units (CPU cycles) [33].
In another scenarios, GPU and memory requirements are
considered during resource allocation for executing heavy and
complex task such as the machine learning algorithms [34].

B. Resource Allocation Problems in Fog Computing Environ-
ment

The fog computing technology provides additional resources
for executing the tasks and correspondingly providing various
services with improved quality in the computing systems.
However, the nature of fog computing environment exposes
major challenges regarding the resource allocations for task
execution to achieve the objective. This section explores and

86 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 1, FEBRUARY 2022

W1

W2

W3

W4

Service request A

F1: Sufficient resource but
long queue waiting time W1

F3: Sufficient resource but
long queue waiting time W3

F2: Insufficient resource but
short queue waiting time W2

F4: Insufficient resource but
short queue waiting time W4

Fig. 3. The heterogeneity and unbalanced workload of fog environment in
the IoT-fog-cloud systems expose issues in providing IoT services.

discusses such key challenges in the fog computing, which
urge a need to develop alternative solutions beyond the existing
heuristics propositions.

Firstly, the fog computing environment is complex and
dynamically changing. Basically, the fog computing devices
like gateways, hubs, and switches are heterogeneous in terms
of computation, storage, and communication capability. In
many of use cases, the complicated heterogeneity of fog
environment represents a critical challenge for these systems to
achieve the performance improvement objective. For instance,
the presence of limited resource fogs results in the imbalance
of workload distribution among the fogs, which in turn impacts
negatively on the performance of system in terms of delay.
Fig. 3 illustrates such typical issue in the fog computing
environment systems, in which a fog node F2 is unable to
process the whole input data of service request A due to lack of
resources. Meanwhile, offloading the task to the fog neighbors
F1 and F3 may lead to an extensive delay since there are high
workloads in queues of these fog nodes.

In addition, the high rate of requests potentially prolong the
task queues in the powerful fog nodes since the limited re-
source fog nodes with respect to the computational capability,
and storage may be unable to process the whole input data
of service. Furthermore, constrained by the cloud rental cost,
the other objective of proposed framework is to maximize the
usage of fog resources, thus minimizing the reliance on the
cloud. All these perspectives lead to a direction to explore
the task division concept, that potentially can help in reducing
the task execution delay through parallel subtask executions
in the limited resources fogs. However, dividing tasks may
not be effective in the large-scale systems or high task request
rate since it may increase the resource contention among the
fogs, thus increasing the time and computation complexity of
algorithms [27].

Secondly, the fog computing resource is dynamically chang-
ing due to mobility. In many practical applications, the pres-
ence of mobile fog nodes such as drones [35] and vehi-
cles [36], [37] leads a dynamic change of fog computing
resources over time. Moreover, leaving out and joining in
the fog computing systems by fog devices are accounted for
as causes for this change. Therefore, the resource allocation
strategies must be designed in an adaptive and flexible way to
cope with this situation.

Thirdly, the resource requirements for executing the tasks

also change dynamically due to a various types of tasks. The
demand for resources varies according to specific applications,
different time periods, and environmental condition. Gener-
ally, there are three major computing problems involving the
resource allocation in fog computing systems which include
resource sharing, task scheduling, and task offloading [12].
Basically, resource sharing is referred as to methods to share
available resources among the fog devices to execute the
computation demands of tasks [38], [39]. This algorithm is
essential in the fog computing environment, where the hetero-
geneity of fog resources stress the need of multiple computing
devices to complete a single task. As the fog computing system
is considered as a pool with a set of resource types such as stor-
age, CPU, and GPU the resource sharing requires a cooperative
among the nodes to execute the computational task demands.
Therefore, mechanisms for fog-to-fog collaboration must be
established within the fog computing domains to facilitate the
resource sharing [40]. However, to enable such the cooperative
fog-to-fog is a challenging job since the practical devices are
different in terms of hardware, software, and functionalities
such as gateways, routers, and hubs. Specially, task scheduling
is usually performed without sufficient information support.
Practically, there are no patterns to predict the arriving task
profiles characterized by number and size of tasks as well as
arrival rate. Therefore, the algorithm has to schedule the tasks
at once without any prior experience and prepared information.
In addition, the scheduling algorithm needs automatically opti-
mize resource utilization based on the changing demand.Task
scheduling is a problem, which have a high impact on the
performance of computing system, especially in terms of
task execution delay. Generally, scheduling the tasks involves
assigning which resources process which tasks within which
expected time period. In the large-scale systems including IoT
layer, edge and fog layer, and cloud layer possible resources
for computation execution include IoT devices, edge devices,
fog devices, and also server in the cloud tier. The heterogeneity
of fog resources in term of computation capabilities directly
lead to the imbalance of workload distributed among the
nodes. Concretely, more loads may be carried by powerful
devices such as fast processing speed from greedy perspec-
tives. As there exists a lack of management the performance
of computing systems can be degraded in the long run since
a large available resource in the limited resource fogs are
underutilized. Balancing the workload among the computing
devices is a challenging problem to ensure a stable operation
of computing systems in a long run. There are many factors
needed to be considered during designing and developing
efficient task offloading algorithms such as resource states of
fog devices, and task requirements, which dynamically change
over time.

In order to solve the above problems, a lot of related studies
are carried out. Most of them focus on some specific scenarios
or rely on the acquired details of the incoming tasks in advance
to derive efficient heuristics algorithms. In addition, most of
the previous studies are single objective optimization-oriented
(i.e., delay, energy consumption, and resource utilization). In
particular, none of them have a generic framework to model
and examine the above mentioned challenges for further de-

TRAN-DANG et al.: REINFORCEMENT LEARNING BASED RESOURCE ... 87

TABLE II
SYMBOLS USED IN THE WORK.

Symbol Description
t Time step t
at Action that agent can take at t
st State that agent is be in at t
rt Immediate reward for agent to take at
A Action space, A = {at}
S State space, S = {st}
R Return or cumulative reward
Q Q value (function)
π Policy
γ Discount factor
P Transition probability

Environment

Agent

Action
RewardState

at
rtst
rt+1
st+1

Fig. 4. The fundamental operation of RL with agent, environment, reward,
state and action.

signing appropriate algorithms. In the next sections, we briefly
introduce the principal concept of RL and conduct an analysis
review on application of RL-based methods for solving the
resource allocations in the fog computing environment.

III. REINFORCEMENT LEARNING

A. Basic Concept

RL is a method of supervised and unsupervised learning. It
is not exclusively supervised because it does not depend just
on a training data, but it is not unsupervised because rewards or
punishment are given to the agent in return of the optimization.
In the RL algorithms, the agents are able to identify the best
as well right actions in any situations so as to achieve the
overall goal based on the rewards and punishments. In other
words, RL can be in simplest terms defined as the “science of
decision making” [41].

For the sake of clarity, Table II provides symbols mostly
used in the RL frameworks.

In the standard RL model, the agent interacts with its
environment to learn the characteristics of environment. The
data perceived through the environment sensing serves as input
for the agents for decision makings. The actions taken by the
agent results in the change of environment and which is further
communicated back to the agent for entire the process to start
over again. Fig. 4 illustrate the basic operation of RL.

At every time step t of interaction, the agent makes a partial
observation of the state (st) of the world and then decides
to take an action (at) [42]. The environment changes when
the agent acts on it or it may change on its own. The agent
also perceives a reward (rt) from the environment, which tells
it how good or bad the current sate is. The ultimate goal

A B B A C

a1 (5,0.5)

a1 (10,1) a1 (5,0.5) a1 (‐1,1)

a1 (0,1)

a1 (2,1)

a2 (0,1)

a1 (2,1)

Fig. 5. Two simple MDP’s that illustrate the underlying concepts and
algorithms. [46]

of the agent is to maximize its cumulative reward, called as
return. Therefore, RL methods are the ways that the agent can
learn behaviors to achieve its goal [43]. The followings define
fundamental concepts and notations used to describe the RL
problems and algorithms.

1) State Space: Interaction with the dynamic environment
trains the RL system by trail and error as it learns mapping
from situations to actions. The RL system must be able to
perfectly observe the information provided by the environment
which influences the action to be taken, thus the true states
of the environment affects the action taken by the RL system.
In the most of environment, the state transition is following a
Markovian property that, the current state st provides enough
information obtain an optimal decision. Therefore, a selection
of an action a will have same probability distribution over
next states when this action is taken in the same state [44].
Markov decision process (MDP) is a mathematical framework
used to model decision making situations in the RL problem.
MDPs consists of states, action, transition between states and
a reward function. The system is Markovian if the results
of an action does not depend on the previous action and
historical already visited states, but only on the current state,
i.e. P (st+1|st, at, st−1, at−1) = P (st+1|st, at) [45]. Often
MDPs are depicted as a state transition graph where the nodes
correspond to states and (directed) edges denote transitions.
Two simple MDP’s as illustrated in Fig. 5 show the underlying
concepts and algorithms, in which each transition is labeled
with the action taken and a pair of numbers. First number is
immediate reward and second number represents the transition
probability.

2) Action Space: An action taken by the agent is com-
pletely dependent on the environment, therefore different envi-
ronment results in different actions. The set of all valid actions
in a given environment is called as an action space abbreviated
as S [47]. Some environment such as Atari and Go have
discrete action spaces, where only finite number of actions
are available to the agent [48]. Other environments have
continuous action spaces, such as, where an agent controls
a robot in a physical world [49].

3) Reward and Return: As the agent perform an action at,
it will immediately get a reward rt. The immediate reward rt is
quantified by a numerical value (either in positive or negative)
to evaluate the desirability of action that the agent took.
Therefore, the goal of agent is to maximize the total amount
of rewards or the cumulative reward instead of immediate
rewards.

88 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 1, FEBRUARY 2022

The return or commutative reward at time step t is defined
as:

Rt =
∞∑
k=0

rt+k+1. (1)

However, to account for the importance of immediate and
future rewards, the return is discounted by a discount factor γ
(0 ≤ γ ≤ 1), thus:

Rt =
∞∑
k=0

γkrt+k+1. (2)

4) Policy: Policy is defined as the rule used by the agent
to decide which action to take in each state. In other words, a
policy is a function mapping states to actions. Therefore, the
ultimate objective of RL algorithms is to derive the optimal
policy that maximizes the return.

5) State Value and State-action Value Function: A state
value function (V π(s)) is used to specify how good it is for
an agent to be in a particular state (s) with a policy π. In the
mathematical formulation, V π(s) is defined as:

V π(s) = Eπ[
∞∑
k=0

γkrt+k+1|st = s]. (3)

A state-action value function or Q-function (Qπ(s, a)) is
used to specify how good it is for an agent to perform a
particular action (a) in a sate (s) following a policy π. The
mathematical formulation of Q function is as follow:

Qπ(s, a) = Eπ[
∞∑
k=0

γkrt+k+1|st = s, at = a]. (4)

Since the environment is stochastic, there is a probability
denoted as π(a|s) for a policy π to take an action a given the
current state s. Certainly,

∑
a∈A π(a|s) = 1. The relationship

between V π(s) and Qπ(s, a) is expressed by:

V π(s) =
∑
a

π(a|s)Qπ(s, a). (5)

By denoting P ass′ as transition probability to transit from a
state s to a state s′ as performing an action a, the relationship
between V π(s) and Qπ(s, a) is also expressed by:

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P ass′Vπ(s′), (6)

where r(s, a) is the immediate reward achieved after taking
action a given the current state s.

Consequently, the state values can be formulated as:

Vπ(s) =
∑
a∈A

π(a|s)(r(s, a) + γ
∑
s′∈S

P ass′Vπ(s′). (7)

Similar for Q functions, we have:

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

P ass′
∑
a′∈A

π(a′|s′)Qπ(s′, a′), (8)

RL algorithms

Model free RL Model based RL

Policy
optimization Q‐learning Learn the

model
Given the
model

Policy
gradient

A2C/A3C

PPO

TRPO

DDGP

TD3

SAC

DQN

C51

QR‐DQN

HER

Word
models

12A

MBMF

MBVE

Alpha
zero

Fig. 6. Taxonomy of RL algorithms.

where a′ is next possible action of a.
In order to achieve the maximal return, the RL algorithms

have to find the optimal policy, that has an associated optimal
state value function or state-action value function. Mathemat-
ically, the optimal policy π is found as:

V∗(s, a) = max
π
Vπ(s), (9)

or

Q∗(s, a) = max
π
Qπ(s, a). (10)

The next sub-section is to review the key algorithms and
taxonomies used in the literature to find the optimal policies
for different scenarios.

B. Taxonomy of RL Algorithms

Broadly, RL can be classified into two categories including
model-free and model-based methods [50]. A non-exhaustive
list of RL based algorithms in these two classes is presented
in Fig. 6.

In the model-based model, the agent is supported to make
plan as it can see a range of future possibilities of choices
and thus deciding between its option well ahead. Thus the
agent can filter out the results into a learned policy. For
example, the authors of [51] used this approach and called it
as AlphaZero (AZ), where in the sample efficiency improved
significantly over other methods which were also not having
models. However, this approach exposes shortcomings, as the
learning by the agent of the model is based only on the
experience which itself creates many challenges. The biggest
one is that of bias which can be exploited by the agent thereby
forcing the agent to perform below par in real environment,
secondly it is very computation intensive, which can ultimately
results in failure to pay sometime.

In contrary, the model-free algorithms do not need “model”
as a result the sample efficiency is lower but they are easier in
implementation and tuning, which makes them quite popular
than its counter-part. The algorithms in this type can be further

TRAN-DANG et al.: REINFORCEMENT LEARNING BASED RESOURCE ... 89

divided into based on the learning to be carried out. Accord-
ingly, there are two types of learning carried out. The first one
is policy optimization in which the parameter θ is optimized
for a policy πθ (·|st) based on the recent collection of the data.
Some of key examples of this optimization are A2C/A3C, [52],
where performance is maximized by suing gradient ascent
and another is PPO [53], where a surrogate objective func-
tion is used as a indirect measure of the performance. The
second learning method is Q-Learning in which learning of
an approximator Qθ(s, a) gives an optimal function Q∗(s, a).
Objective function for Q-Learning approach is based on the
Bellman equation [54]. Recently this approach is used by
in [55] called as DQN which is milestone for deep RL and [56]
called as C51, where the returns are learned leading to the
policy expectation as Q∗. In particular, there are some certain
algorithms used simultaneously policy optimization and Q-
Learning to compromise the strengths and weakness of either
sides. For example, the authors of [57] proposed DDPG which
simultaneously learns policy as well Q-function. In addition,
the proposition in [58] proposed a combined approach of SAC
and Q-learning with the help of stochastic policies and entropy
regularization, thereby giving higher scores.

The model based RL are not well defined methods as models
can be used in many orthogonal ways. Broadly they can be
classified, based on whether model is given or the model is
learned. The learning of the model based approach is used
by [59] and called it as MBMF where pure planning technique,
model predictive control is used in the selection of the action
on some standard benchmark tasks for deep RL. The given
model approach is used by [51], called its as AZ in which
explicit representation of the policy is learned with the pure
planning which produces an action that have strong influence
as compared to when policy alone would have produced.

IV. RL-BASED ALGORITHMS FOR RESOURCE
ALLOCATION IN THE FOG COMPUTING SYSTEM

This section summarizes key RL-based algorithms in the
literature to address the resource allocation problems in the
fog computing environment, which are discussed according
to key types, namely Rl-based and DRL based methods. In
particular, the review analysis is conducted to emphasize on
describing how the components of RL-based solutions in the
fog computing such as state space, action space, MDP, and
reward are formulated.

A. Resource Sharing and Management

Considering the fog computing systems as a resource pool
with multiple kinds of resources (i.e., CPU, GPU, storage,
and memory), the resource sharing is an important mechanism
to allocate the resource efficiently. In principle, the resource
sharing algorithms requires the collaboration of fog entities
for exchanging their available resource states, thus facilitating
the resource allocation.

The work [60] studies the resource management for con-
serving the energy consumption in the Fog Radio Access

Networks (F-RAN), which can provide two main types of
services: communication and computation. Considering the
dynamic of edge and fog resource states, the network con-
troller is able to make the fast and intelligent decisions on
the user equipment (UE) communication modes (i.e., C-RAN
(Cloud-RAN) mode, D2D mode, and FAP (fog access point)
mode) and the on-off states of processors to minimize the
long-term power consumption of systems. The well-trained
DRL model is built on the system architecture to derive this
optimal decision. In this model, the state space is defined
as S = {s = (sprocessor, smode, scache)}, where sprocessor

is a vector representing the current on–off states of all the
processors, smode is a vector representing the current com-
munication modes of all the UEs, and scache is a vector
consisting of the cache state at each D2D transmitter. The
network controller is able to control the on-off state of a
processor and communication mode of a UE each time step.
Thus, to reduce the number of action, the action space is
defined as A = {a = (aprocessor, amode)}, where aprocessor
indicates “turn on” or “turn off” action for a processor, and
amode represents to change the communication mode for a
UE (i.e., C-RAN, FAP, or D2D). To achieve the green F-
RAN, the reward function is defined as the negative of system
energy consumption is incurred by operation of processor in
the cloud, fronthaul transmission, and wireless transmission
in the fog tier. To enhance the performance of proposed
algorithm, multiple factors are developed and integrated in
the DRL model. Firstly, the prioritized replay is proposed to
reuse the experienced transition more effectively. Secondly,
double DRL is used to overcome the optimistic Q-value
estimation as well as improve the learning process in cases
of environment change. In particular, the transfer learning is
integrated to accelerate the learning process, thus allowing the
quick convergence of learning. These key factors result in the
superiority of proposed algorithms compared to the related and
baseline works.

Internet of vehicles (IoV) where all vehicles are connected
has emerged as a fundamental element of smart cities using
real-time data to react instantly to user requests. The vehicular
fog computing (VFC) has appeared as an emerging paradigm
that facilitate the dynamic problems of networking, caching,
and computing resources to enhance the efficacy of next-
generation vehicular networks [61]. In these networks, the
vehicles both in movements or parked status equally sever
as fog nodes, which have limited resources for offering the
services such as communication, computation, and storage.
Considering the immense dynamic and highly complicated
nature of VFC environment, to enhance the QoS such as real-
time response is of the challenging job. This sort of problem in
the vehicular applications is investigated in [62], which aims at
seeking efficient resource allocation strategies to minimize the
service latency minimization. The Rl algorithm accordingly
is developed to achieve the target that employed an LSTM-
based DNN to predict the movement and parking status of
vehicles, thus facilitating the resource assignment. In addition,
the proposed RL technique uses the latest techniques i.e.,
proximal policy optimization technique, which has the ability
to learn continuously the dynamic environment, and therefore

90 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 1, FEBRUARY 2022

can adjust to decide the resource allocation correspondingly.
It is a significant challenge to present high quality, low bit-

rate variation, and live streaming assistance for vehicles be-
cause of the dynamic characteristics of wireless resources and
channels of IoV. A unique transcoding and streaming system
for the maximization of video bit-rate and reduces bit-rate vari-
ance and time-delays in VFC powered IoV is presented. The
scheme jointly optimizes the scheduling of vehicles, selection
of bit-rate, and spectrum/computational resource allocation
as an MDP problem. A deep RL algorithm i.e., soft actor-
critic based on the highest entropy frame is employed for the
solution of MDP [63]. Moreover, an asynchronous advantage
actor-critic (A3C) RL-based cooperative resource allocation
and computation offloading frame for vehicular networks is
presented [64].

In another VFC application, a resource sharing scheme
for supporting task offloading in terms of VFC is presented
in [65]. In this model, the incentivization of vehicles is
performed upon sharing the resource of idle computing over
dynamic pricing. In the particular case, task priority, avail-
ability of service, and mobility of vehicles are comprehen-
sively acknowledged. A MDP diagram is formulated for task
offloading due to the dynamic vehicular environment that
aims to maximize the average latency-aware use of tasks
in a time. Based on the DRL method, a soft actor-critic
is developed for the maximization of the policy of entropy
and anticipated reward. Moreover, a mobile network opera-
tor (MNO) preference and switching problem is formed by
simultaneously analyzing switching cost, various prices that
can be charged by diverse MNOs and fog servers, and quality-
of-service alterations within MNOs. A switching policy that
is based on a double deep Q network (DQN) is presented
proving to reduce each vehicle’s long-term mean cost with
promising reliability and latency performance [66]. Similarly,
modeling of optimal computational offloading policy as MDP
problem while considering ultra dense system for mobile edge
computing (MEC) is performed. A deep Q-network based
on the RL algorithm as a computation offloading method
is presented to overcome the large dimensionality that will
determine the optimum policy for dynamic statistics and no
prior knowledge [67]. A semi-MDP is formulated for the
optimum and agile framework of resource slicing that simulta-
neously allocates the storage, radio resources, and computing
of the network provider to various slice requests. Dual NN
of Deep Q-learning method is implemented that improves the
performance by outperforming other RL-based approaches for
network slicing management [68].

B. Task Scheduling
Overall, in the IoT-fog-cloud systems, task scheduling is

referred to as making decisions on which tasks are processed
by the IoT layer, the fog layer, or the cloud layer to achieve the
target design objectives [12], [69]. In the most of applications,
the main objective of scheduling algorithms is to minimize the
task execution delay. However, an efficient scheduling design
may improve other system performance indicators simulta-
neously such as reduced energy consumption, and balanced

workload distribution.
To minimize the long-term service delay and computation

cost for the fog computing systems under task deadline
and resource constraints, a double deep Q-learning (DDQL)-
based scheduling algorithm is introduced in the work [70].
Considering a fog-based IoT system with hierarchical archi-
tecture, the work aims at developing schedulers (also known
as agents in the RL algorithm) each of which is embedded
in a corresponding gateway (GW) to allocate resources (i.e.,
virtual machines (VM) embedded in the fog nodes, and the
cloud servers) for executing tasks. To reduce the dimension of
RL-based algorithm, paths with the updated resource states
are modeled as state space of system as S = {s(t)ij =
(uCPU ij , uMemoryij , uStorage

i
j)}. In this formula, three

elements represents the resource utilization of pathi in term
of CPU, memory, and storage, respectively at the moment t
that taskj arrives at. The agent (i.e., scheduler) is responsible
for assigning a certain resource (i.e., VM in fog or cloud) to
process the task through the action. Thus, the action space is
formulated as A = {aij |1 ≤ aij ≤ vmni}, where aij is the
action that is taken by the agenti and for a taskj , and vmni
is the total number of VMs in pathi. To obtain the end-to-end
(E2E) service delay, the immediate reward function is defined
as IRij(a) = 1/nSDi

j , where IRij(a) is the immediate reward
after taking action a for the taskj in pathi, and nSDi

j is the
normalized service delay of taskj in pathi. nSDi

j accounts
for waiting time delay in pathi to get VMa, execution delay
by VMa, transmission, and propagation time of taskj . In
this model, the objective to achieve the minimized E2E delay
is enabled since the agent tries to maximize the cumulative
reward through efficient action selection. In particular, to select
the optimal action the double DQL concept is introduced
in the algorithm in which each agent is supported by two
separate models as Q1 and Q2 for action selection, and Q-
value calculation, respectively. With two Q values, the agents
are able to reduce the probability of taking valid and inefficient
action, thus accelerating the learning process. For evaluating
the performance of framework, the work firstly creates a sim-
ulation environment with multiple agents, state space, action
space, and reward functions. Then, the proposed DDQL-based
scheduling algorithm is applied in this environment to assign
appropriately which fog nodes will process which tasks in
order to achieve the objectives. In particular, the target network
and experience replay mechanisms are integrated into the
DDQL-based scheduling policy to cease the fluctuation of
results.

In the data-driven IoT-based systems, the end devices or
IoT sensors constantly generate online tasks, which requires
the upper layer such as fog computing or cloud to process
within the deadlines. The nature of online tasks exhibits critical
challenges for the system to conduct the task scheduling since
there exists an inherent lack of prior information relating to the
task arrivals. The issues stress the need for adaptive scheduling
solutions, which have been investigated and developed in
the literature using the RL principle. In particular, the DRL-
based approaches exhibit many effectiveness to deal with the
situation of online task scheduling. For example, the work [22]

TRAN-DANG et al.: REINFORCEMENT LEARNING BASED RESOURCE ... 91

designed an efficient scheduler based on a forward neural
network (FNN), which is able to schedule n online tasks at
a time to reduce the overall task slowdown. Although the
algorithm is well performed in case of predetermined n, it
exposes the limitation in terms of flexibility since adjusting
n may lead to adverse performance of system. In the same
method, the RL-based model in [71] is designed to make
the scheduling decision for each arrival task. However, such
method is well applied in the cloud environment in stead of
fog computing since it can induce considerable overheads. The
work presented in [72] reveals these aforementioned limita-
tions, and proposes a neural task scheduling (NTS) to release
them. In principle, NTS adopts the model of recurrent neural
network (RNN) based on the pointer network [73] to obtain
more flexible output sequences. In addition, the network is
integrated by the long short-term memory (LSTM) techniques,
and attention mechanism [74] to enhance the flexibility and
learning efficiency when handling long sequences of tasks.
From the RL design perspective, the space state S is modeled
as the system state in time slot t represented by all nt pending
tasks with their characteristics (i.e., resource demands of tasks,
and execution durations), and amount of remaining resources
in future M time slots. In mathematical form, S = {st},
where st is a matrix of size nt × (m + 1 + m · M), and
m is the number of resource types (e.g., CPU, storage, and
memory). Regarding the action space, the action at time slot
t is defined as at = {j1, j2, · · ·, jnt

}, which determines the
order of resource allocation for the nt pending tasks. The
reward function is defined as rt =

∑
j∈nt

1/lj , where lj is
the duration of task j execution. Thus, the average slowdown
of task is minimized as the agent is aimed at maximizing
the cumulative reward. Through the extensive simulation, the
algorithm is able to efficiently reduce the slowdown of an
average task slowdown while ensuring the best QoS.

Furthermore, a task scheduling issue is investigated in the
edge computing situation and various tasks are scheduled
to virtual machines for the maximization of the long-term
task satisfaction degree. The problem is expressed as MDP
for which the state, action, state transition, and reward are
created. For time scheduling and resource allocation, DRL
is implemented, recognizing the heterogeneity of the tasks
and the diversity of possible resources [75]. For the fairness
of multi-resource considering diverse tasks, an online task
scheduling system i.e., FairTS based on DRL techniques is
proposed. The systems learn undeviatingly from experience to
efficiently reduce the mean task slowdown while guarantee-
ing multi-resource fairness among the tasks [76]. Moreover
in industrial applications, network traffic and computational
offloading are explored using RL techniques for investigating
the tradeoff within service delay and energy consumption.
A cost minimization problem by employing the frame of
MDP is formulated followed by the proposal of dynamic RL
and scheduling algorithm algorithms to resolve the offloading
determination problem [77].

Even though Fog networking is an encouraging technology
to handle the limitations of the cloud and the current networks,
there are yet challenges that persist to be evaluated in the
future. Most significantly, there is a necessity for a distributed

intelligent platform at the edge that controls distributed com-
puting, networking, and storage resources. Optimal distri-
bution decision in Fog networks faces several challenges
because of contingencies linked with task requirements and
available resources at the Fog nodes and the extensive range
of computing power capabilities of nodes [78]. Moreover,
delay within nodes must be considered for the distribution
decision that can result in increased processing time. Hence,
the difficulties being encountered by the Fog computing model
are diverse and numerous; they include significant decisions
about i) whether offloading at Fog nodes should be done or
not, ii) offloading of the optimal number of tasks, and iii)
given the corresponding resource limits, mapping of incoming
tasks to possible Fog nodes [79]. Considering the above
challenges, the proposed algorithm expresses the offloading
problem as an MDP subject to the Fog node’s behavior and
dynamics of the system. MDP enables Fog nodes to offload
their computation-intensive tasks by choosing the most proper
adjacent Fog node in the presence of ambiguities on the task
requirements and availability of resources at the Fog nodes.
Nevertheless, the system is unable to accurately predict the
transition possibilities and rewards due to dynamically varying
incoming task requirements and resource states. To resolve
this dilemma, RL can be used to solve MDPs with unknown
reward and transition functions by making observations from
experience.

C. Task Offloading and Redistribution
The imbalance of workload among the fog resources mainly

caused by the heterogeneity of fog computing environment
can degrade the performance of computing systems in the
long-term operation. This urges the need to develop efficient
mechanisms to address the situation through offloading and
redistributing the load.

The task offloading problem considering the uncertainties
of mobility of end user (EU) devices, mobility of cloudlets,
and the resource availability of cloudlets is studied in [80]. A
deep Q-network (DQN) [81] is formulated to learn an efficient
solution and then deriving the optimal actions on how many
tasks will be processed locally by end-user devices and how
many task will be offloaded by the cloudlets. In this proposed
model, the state space is defined as a S = {s = (Qu, QC , D)},
where Qu, Qc, and D denote the queue state of EU device,
the queue state of cloudlets, and the distance state of cloudlets,
respectively. The mobility of devices and cloudlets affect the
performance of their communication, thus the distance state is
used to capture the change of computing system. To determine
the optimal offloading decision, the action space is defined
as A = {a = (a0, · · ·, ai, · · ·, aN)}, where a0 and ai is are
the number of tasks to be processed locally or by cloudlet
i, respectively. The immediate reward function is defined as
R(s, a) = U(s, a) − C(s, a), where U(s, a), and C(s, a) are
immediate utility and cost function, which are calculated as
following equations.

U(s, a) = ρ
N∑
i=0

log(1 + ai) (11)

92 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 1, FEBRUARY 2022

C(s, a) = ω1I(s, a) + ω2E(s, a) + ω3D(s, a) + ω4Γ(s, a)
(12)

Recall that ρ is a utility constant and N is number of
cloudlets deployed in the systems for assisting the offloading
processes. In addition, I(s, a), E(s, a), D(s, a), and Γ(s, a)
are immediate required payment, energy consumption, delay
and task loss probability, respectively. Therefore, by maximiz-
ing the cumulative reward the algorithm is enable to obtain the
maximized utility as well as minimized operation cost. The Q-
network can be considered as a neural network approximator
with an approximate action-value function Q(s, a; θ) with
weights θ. At each decision period, the user first takes the
state vector s = (Qu, Qc, D) as the input of the Q-network
and obtains the Q-values Q(s, .) for all possible action a as
outputs. Then, the user selects the action according to the
ε-greedy method. Furthermore, the Q-network is trained by
iteratively adjusting the weights θ to minimize a sequence of
the loss functions, where the loss function at time-step t is
defined as

Lt(θt) = E[(rt + γmax
a′

Q(st+1, a′; θt−1)−Q(st, at; θt))
2].

(13)
Although the DQN-based algorithms are able to achieve

the excellent performance in the high-dimensional decision-
making problems [81] the proposed algorithm is evaluated in
the simulation environment with only 4 cloudlets. The task
arrival rate is varied to analyze the impact on the queue
states of EU devices and cloudlets. In addition, no comparative
analysis is performed in the work to compare with baseline or
related works, thus the feasibility of performance improvement
is unexplored.

Balancing the workload among nodes and simultaneously
minimizing the task processing delay are studied in [26]. In
a SDN-based fog computing system, a SDN fog controller is
able to know the global information relating to the system
states (e.g., task profiles, and queue states of fog devices),
thus deriving the optimal task offloading. Using the DRL-
based approach, the fog controller serves as the agent to
make the decision. In this model, the state space is defined
as S = {s = (nl, w,Q)}, where nl is the fog node,
w is number of tasks to be allocated per unit time, and
Q = {(Q1, · · ·, QN)} is a vector indicating the number of
tasks currently remaining in the queues of N fog nodes. The
action space is in form A = {a = (n0, w0)}, in which
n0 is a neighbor node of nl, and w0 is number of tasks to
be offloaded by n0. Aiming at maximizing the utility and
simultaneously minimizing the task processing delay and over-
load probability, the immediate reward function is modeled as
R(s, a) = U(s, a)− (D(s, a) +O(s, a)), where U(s, a) is the
immediate utility, D(s, a) is immediate delay accounting for
waiting delay in queues, communication delay for offloading,
and execution delay at local device and offloading neighbor
node, and O(s, a) is overloaded probability averaging for n0,
and nl. Q-learning with ε-greedy algorithm is applied in the
Rl-based model to derive the optimal action selection.

The benefit of task offloading becomes prominent in the
case of fog nodes by the selection of the appropriate nodes

and suitable resource management while assuring the QoS
requirements of the users [82]. An attempt in the case of
heterogeneous service tasks within the multi-fog nodes where
both joint tasks offloading and resource allocation manage-
ment is considered. The problem formulation is based on
a partly visible stochastic game where cooperation of each
node is performed resulting in the maximization of combined
local rewards. A deep recurrent Q-network (DRQN) method
is applied to cope with partial visibility and to guarantee
the accuracy and convergence of NN, adaptive exploration-
exploitation approach is utilized [82]. Furthermore, for IoT
applications, sequential allocation of the fog nodes restricted
resources in the case of heterogeneous latency needs is consid-
ered. The problem formulation of the Fog radio access network
is made as MDP followed by different RL approaches such as
Q-learning, Monte Carlo, SARSA, and Expected SARSA to
make optimal decision-making policies [83].

In many of fog-enabled networks the task nodes which are
fog nodes having tasks in queues to be processed are unknown
about the resource information of their neighbors. Therefore,
offloading decisions require a trade-off between exploiting
the empirically best nodes and exploring other nodes to find
more beneficial actions, which is simply addressed by ε-
greedy algorithm [84], [85]. However, this low-complexity
solution is time-consuming for approaching the convergence
and non-optimal [86]. In this context, multi-armed bandit
(MAB)-based solutions are developed to address these kinds of
shortcomings [87]. In particular, the upper-confidence bound
(UCB) mechanism is integrated for obtaining the guaranteed
performance and low complexity [88], [89]. Accordingly,
the work [88] introduced BLOT (bandit learning-based of-
floading of tasks) algorithm to offloading non-splitable tasks.
Meanwhile, D2CIT- a decentralized computation offloading
is proposed in [89] to offloading the subtasks, which are
constitutes of a high-complexity tasks.

For the sake of clarity, Table III summarizes the notable
applications of RL in the fog computing resource allocations
proposed in the literature.

V. CHALLENGES AND OPEN ISSUES OF RL-BASED
ALGORITHMS IN FOG RESOURCE ALLOCATION

Although RL is a powerful approach to introduce intelli-
gence to fog computing-based systems, however, there are still
many challenges and open issues that need to be addressed
and overcome to fully exploit the potential of RL in assisting
the fog paradigm. This section enumerates key challenges
and correspondingly explores the open issues regarding the
utilization of RL-based approaches for solving the resource
allocation problems in the fog computing environment. We
identify and discuss them according to three key classes
relating to the RL, the fog computing environment, and the
computing tasks.

A. RL-related Challenges

1) Nature of RL-based Algorithms: Naturally, the RL-based
algorithms are time and resource consuming since they require

TRAN-DANG et al.: REINFORCEMENT LEARNING BASED RESOURCE ... 93

TABLE III
THE SUMMARY OF KEY RL-BASED ALGORITHMS IN THE RESOURCE ALLOCATION PROBLEMS.

Resource allocation problem Reference RL algorithms and features Objective

Resource sharing

[60] DRL
Integrating prioritized replay
Using transfer learning

Minimizing the energy consumption

[62] DRL
Integrating LSTm-based DNN to predict vehicle movements
Using procimal policy optimization

Minimizing the service latency

[63], [64] DRL
Soft actor-critic technique
Using the highest entropy frame

Maximizing the video bit rate
Reducing the bit-rate variance
Reducing the time delays of streaming services

[65] DRL
Soft actor-critic technique
Using dynamic pricing

Maximizing the resource utilization
Reducing the time delays of VFC services

[66] DQN
Adaptive switching policies

Minimizing the long-term cost
Ensuring the guaranteed latency
Guaranteed operation reliability

Task scheduling

[70] Double deep Q-Learning (DDQL)
Using multi-agent for multi-scheduler
Using double Q for action selection and evaluation
Integrating the target network & experience replay technique

Reducing the average delay
Minimizing the computation cost

[34] DRL
Modeling RNN with pointer network
Integrating LSTM & attention mechanism

Reducing average task slowdown
Ensuring the best QoS

[90] DRL Reduced average task slowdown
Multi-resource fairness

[75] DRL
Integrating policy-based REINFORCE algorithm
Using fully-connected NN (FCN) to extract the features

Average task satisfaction degree
Task success ratio

[77]
Dynamic RL scheduling (DRLS)
Deep dynamic scheduling (DDS) Saving energy consumption

Reducing task execution delay

Task offloading

[80] DQN Save energy consumption
Reduce task execution delay
Minimized task loss probability

[26] DRL
Q-learing
ε-greedy

Load balancing
Minimized computation cost

[82] Q-learning
SARSA and expected SARSA
Monte Carlo

Load balancing
Minimized computation cost

[83] DRQN
Q-learing
ε-greedy

Maximizing the total served utility
Minimizing the fog resource idle time

[88], [89] MBA
Using the bandit learning technique
Integrating upper confidence bound (UCB)

Reducing the task execution delay
Minimizing energy and computation cost

a large volume of data collected through exploration and
exploitation processes to derive the effectiveness of learning
model. Meanwhile, the fog computing resources are heteroge-
neous and limited in terms of computation, storage, and energy
compared to the cloud computing servers. Therefore, running
the RL-based algorithms on the fog devices in the long term
operation is an challenging job that calls for the appropriate
and lightweight algorithm designs to tackle this challenge.

2) Load Balancing in RL-enabled Fog Computing: The
RL approaches can be helpful for nodes to find the optimal
policies (i.e., the number of tasks and size of tasks, offloadees
in both the fog stratum and cloud stratum) to offload their
requested tasks. If the overload probability and processing time
in minimal the actions selection is considered optimal [91].
However, the action selection in the most of reviewed works
is mainly dependent on the exploration policy. This situation
probably leads to the greedy and optimistic decisions, which
choose the more powerful fog resources to offload the tasks,
thus resulting in the imbalance of workload consequently. To
strike the imbalance situation from RL perspective, merging
model-free RL learning with a model-based learning method
can provide bias-free results having less dependency on ex-

ploration policy.

3) Task Scheduling in RL-enabled Fog Computing: Even
though the fog node is equipped with better storage and com-
puting power, however, it still possesses resources much lesser
than cloud servers. Due to network heterogeneity, complexity,
and uncertainty of the wireless environment, task scheduling
in the fog computing environment has been categorized as a
complex problem [70]. The RL algorithm can model complex
problems, however by increasing the state and action space
dimensions the hardware requirements of the scheduler will
also need to increase. If we consider deep RL solutions
for multi-dimensional problems, we would require multiple
deep learning solutions that will add to computational power,
storage, and memory requirements. The RL should provide a
lightweight but efficient solution to a complex task scheduling
problem.

4) Energy Efficiency Trade-off in RL-enabled Fog Comput-
ing: In time-critical IoT applications, RL-assisted fog comput-
ing systems could bring intelligence features to utilize readily
available data and computing resources. Minimizing delay and
energy consumption simultaneously has been a key challenge
for RL algorithms [92]. First, the training of learning model

94 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 1, FEBRUARY 2022

requires high-energy consumption and similarly, fast learning
on time-critical systems given limited samples is a complex
problem for RL-enabled fog systems. Thus, there are many
open challenges in deploying large-scale state-action space RL
models for resource-constrained fog systems.

5) Real-time Responsiveness in RL-enabled Fog Comput-
ing: Ultra-reliable and low latency communication (URLLC)
and real-time interaction are one of the main enablers of
IoT and 5G communication [93]. Fog computing can support
the computation tasks with low latency, thus enabling to
provide some kinds of real-time applications. In the case of
a heterogeneous IoT network, some applications are delay
tolerant while others are delay sensitives. The RL algorithm
provides intelligent utilization of resources capability to fog
nodes, however, RL algorithms also consume time to pro-
cess large-scale state-action-reward tuple [94]. In the case of
multidimensional states and action space, the processing time
further increases. Therefore, one of the critical challenges of
the RL-enabled fog network is to intelligently satisfy time-
critical IoT applications. The deep RL system can learn more
quickly and efficiently through episodic memory and meta-
learning technique, which have been not explored in the
literature [94].

6) Security and Privacy in RL-enabled Fog Computing:
The RL algorithm in fog nodes collects and processes a large
amount of critical data from network devices. Fog devices are
distributed and contains limited resources. It is challenging for
RL-enabled fog devices to execute proper security solutions
in parallel to other learning mechanisms due to limited com-
puting power. Similarly, there is an absence of trust between
IoT devices and edge computing nodes [95], [96]. The RL
combined with Blockchain can solve the trust issue. In such
a solution, optimizing various Blockchain metrics using RL
technique is a critical decision that needs to be explored.

7) Advance of Optimization Algorithms: In fact, the rein-
forcement learning algorithms are kinds of time-consuming
works since it requires an extensive time dedicated for learn-
ing process. Therefore, the RL-based algorithms should be
advanced to reduce the convergence time, thus accelerating
the decision makings. In addition, the performance of RL-
based algorithms are dependent on the complexity of fog
networks, arrival rate of tasks. Thus for achieving a good
trade-off of the training time cost and the performance, it
is strongly recommended to prepare the sample data set to
a reasonable scale with sampling technology to reduce the
complexity of scheduling model. Advancing algorithms is
required to improve the speed and effectiveness of learning
process. How to reduce the dimension of problems (i.e., state
space and action space) to accelerate the learning process is
open issue.

B. Fog Computing Environment Related Challenges

The presence of fog computing tier is increasingly essen-
tial in the IoT-enabled systems to meet any application re-
quirement. However, the various applications require different

designs of fog computing architecture (i.e., either specific or
agnostic), which totally can contribute as a challenging factor
to use RL in this context. Because there is no common Rl-
based solutions which can be used for different fog computing
architectures and applications.

1) RL-based Resource Allocation in F-RAN: For densely
deployed IoT devices, cloud radio access network (C-RAN)
architecture is proposed. C-RAN improves spectral efficiency
and reduces energy consumption. However, the demand for
IoT devices and applications is increasing placing a high
burden on centralized cloud computing. Busy cloud servers,
limited fronthaul capacity causing large computation and trans-
mission delays. Some IoT applications are delay-sensitive and
cannot tolerate such delays. To handle this problem, F-RAN is
a critical solution for the Fifth-generation (5G) communication
systems to support the URLLC requirement for IoT devices
and applications [97]. The fog nodes are capable of performing
signal processing, computation, and RF functionalities. IoT
environment is heterogeneous in nature with various traffic
transmission rates and latency needs. The fog nodes are
expected to allocate resources in Fog-RAN efficiently. RL
method provides a solution for efficient resource utilization
along with satisfying low-latency requirements for various IoT
applications. Multi-agent RL is utilized to enhance network
resource utilization in heterogeneous environments. Similarly,
the model-free RL technique is used for user scheduling in
heterogeneous networks for network energy efficiency [98].
Various RL methods such as Q-learning, SARSA, Expected
SARSA (E-SARSA), and Monte Carlo (MC) are used for
resource allocation problems. However, there are still open
issues such as providing dynamic resource allocation frame-
work with heterogeneous service time. Similarly, collaborative
resource allocation mechanism with multiple fog nodes are one
of the future directions.

2) RL-based Power Consumption Optimization for F-RAN:
F-RAN with 5G support is well suited to provide various IoT
services including healthcare, IIoT, and autonomous vehicles.
In F-RAN, each device can operate in different communication
modes including D2D, C-RAN, or FAP. In resource man-
agement mechanism, communication mode selection prob-
lem is considered as NP-hard due to network dynamics and
continuously changing environment. Nevertheless, applying
deep reinforcement learning (DRL) has shown considerable
benefits for complex environment with high dimensional raw
input data. The devices can obtain the desired information
locally without accessing base station due to the caching
capabilities of D2D transmitters. In this way, the burden on
fronthaul can be reduced by traffic offloading and turning off
some processors in the cloud for energy optimization. The
dynamics of cache state of D2D transmitter can be modeled
as MDP [99]. In such MDP problem, the network controller
learns to minimize the system power consumption by adjusting
devices communication modes and processors on-off states
at each learning step. However, in the DRL-based resource
allocation mechanism, further research is required to utilize
power control of D2D communicating devices, sub-channel
allocation and fronthaul resource allocation for improving the

TRAN-DANG et al.: REINFORCEMENT LEARNING BASED RESOURCE ... 95

F-RAN performance.

3) RL for Ultra-dense Fog Network: An ultra-dense net-
work with an assistant of fog computing is a promising
solution to sustain the increasing traffic demand in wireless
networks. Network densification brings a number of challenges
including resource management [100]. Machine learning par-
ticularly RL has been proven to solve resource management
challenges effectively. In an ultra-dense fog network scenario,
RL algorithms need to enable the parallelism and partition of
large-scale networks to manage the computational load of fog
devices. Similarly, in the case of wired and wireless backhaul
networks, bandwidth allocation must be considered since it is
an important factor affecting on the performance. The powerful
capability of deep learning and neural networks can enhance
the performance of resulting DRL-based methods to solve high
dimension problems. Many proposed models have reduced
the dimension by efficiently configuring the state and action
spaces. However, none of existing works has been investigated
and developed the RL-based algorithms for the large scale fog
computing systems, which basically contain a large number of
fog nodes. Practically, this is open issue.

4) Reliability of Fog Networks: The complex nature of fog
computing environment may cause the reliability problem for
the fog network. For example, the dynamic mobility of fog
nodes which strongly impacts on the fog resource status must
be taken into account in designing the algorithms. In addition,
the outdated channel probably blocks the communication
between the fog nodes [101]. Moreover, VMs in the both fog
stratum and cloud may fail and lead to QoS degradation [102].
Hence, reliability of VMs should also be considered when
addressing the fog resource provisioning problem. None of
reviewed algorithms covers and consider the reliability of fog
network, thus opening the issue for future studies.

5) Security and Trust in Fog Network: A fog node is
responsible to ensure the security and trust for other devices.
Fog node must ensure the global concealing process on the
released data. Fog nodes must ensure a mechanism for all
nodes to have a certain level of trust in each other. The
fog node handles the workload for other nodes in real-time.
Protecting the integrity in case of a malicious attack is one
of the challenges of fog computing. Similarly, authentication
is essential to provide a secure connection between the fog
node and other devices. Authentication is needed to provide in
real-time data communication particularly in a scenario where
nodes are moving from one coverage area to another. The
user must experience a minimum delay in real-time services
while traveling. The latency is caused by the authentication
process performed in the fog node. During the authentication
process, there is a possibility of user identity exposure to
attackers. Authorization and authentication in fog networks
are one of the major concerns. Providing real-time services
in a fog computing environment with secure authentication is
one of the priority research areas.

C. Computing Task Related Challenges

In the IoT-based context, requesting computing tasks are
varied in wide range in terms of profiles, complexity levels,
and resource requirements for computation. These property
variations serve as a challenging factor to apply RL-based
algorithms.

1) Big Data Analytics: The IoT and end user devices
increasingly produce a huge amount of high-dimensional big
data to be processed at the fog nodes [103]. A selection of
appropriate prediction model and RL parameters, e.g., learning
rate and discount factor are needed to considered carefully to
obtain an optimized model for big data analytics. A proper
analytic model can produce accurate results and can learn from
heterogeneous data sources. In big data analytics, one of the
challenges a learning algorithm faces is how to distribute big
data among resources constrained fog devices fairly.

2) Data Fragmentation for Parallel Computing Exploita-
tion: Besides the Big data analytics related tasks, many of
tasks in the IoT-enabled systems can be complex in terms
of size, data structure. For example, the input data of a ML
computing task can contain four types of data: text, image,
video, and audio, which requires many kinds of resources to
process. However, the limitation of fog computing resource
causes imbalance of workload among the fog nodes since
many of them with insufficient available resources is unable
to process a single task. The data division is a key approach to
solve this issues in the complicated heterogeneous fog envi-
ronment [27]. However, the diversity of input data structure in
practical application requires alternative division solutions for
improving or optimizing the system performance. For instance,
as the data dependency constraints among the substasks are
taken into account in the associated workflow model and the
collaborative task offloading mechanism must be adapted to
such a change accordingly. In addition, the data can be divided
according to different features such as by size explicitly. In this
way, an optimization can be formulated to find the optimal
number of data subsets and associated sizes of data subset for
optimizing the system performance. Although the input data of
tasks can be divided to take the benefit of parallel computing
it may raise the large space as applying RL models. Therefore,
to achieve the efficient trade-off between the performance and
time-consuming training it requires to search for an optimal
number of data subsets divided from the input data.

VI. CONCLUSIONS

The fog computing has been integrated in a wide range
of IoT-enabled systems as a support computing resources
to cure the pressure of cloud computing resources, thus
improving the operation performance of systems. However,
the fog computing environment is a complex resource pool in
terms of heterogeneity, mobility, and dynamic change, which
serve as critical barriers for achieving efficient and effec-
tive resource allocation strategy. In addition, the computing
tasks are varied with respective to task characteristics and
resource demands. Moreover, the most of efficient heuristics
algorithms in the literature lack the adaptivity and flexibility

96 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 1, FEBRUARY 2022

to respond to the uncertainties of fog computing environment.
These aforementioned challenges stress a need to develop an
alternative for resource allocation solutions to flexibly deal
with the complexity of fog computing environment.

This paper surveys the literature on the applications of RL
in the fog computing environment to allocate the computing
resources for task computation and execution. The concept
of RL is briefly introduced to highlight accordingly the role
and algorithmic model to support deriving the optimal de-
cision makings in many practical applications (e.g., game,
robotics, and finance). The start-of-the art literature review is
conducted to describe intensively the key RL-based solutions
for the resource allocation problems in the fog computing
environment. We identify and analyze these algorithms ac-
cording to three major problems, namely, resource sharing,
task scheduling, and task offloading. Finally, the work also
explored and discussed the key challenges faced by the nature
of RL-based algorithms, the fog computing environment, and
the computing tasks in the variety of practical applications.
The corresponding open issues are also presented for further
studies.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet Things J., vol. 1, no. 1,
pp. 22–32, Feb. 2014.

[2] Y. Saleem, N. Crespi, M. H. Rehmani, and R. Copeland, “Inter-
net of things-aided smart grid: Technologies, architectures, applica-
tions, prototypes, and future research directions,” IEEE Access, vol. 7,
pp. 62 962–63 003, 2019.

[3] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Industrial iot
data scheduling based on hierarchical fog computing: A key for en-
abling smart factory,” IEEE Trans. Ind. Informat., vol. 14, no. 10,
pp. 4590–4602, Oct. 2018.

[4] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information
framework for creating a smart city through internet of things,” IEEE
Internet Things J., vol. 1, no. 2, pp. 112–121, Apr. 2014.

[5] H. Tran-Dang and D. Kim, “An information framework for inter-
net of things services in physical internet,” IEEE Access, vol. 6,
pp. 43 967–43 977, 2018.

[6] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of
cloud computing and internet of things: A survey,” Future Generation
Comput. Syst., vol. 56, pp. 684–700, Mar. 2016.

[7] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet
of things realize its potential,” Computer, vol. 49, no. 8, pp. 112–116,
2016.

[8] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of
fog computing in the context of internet of things,” IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 46–59, Jan. 2018.

[9] M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing
for IoT: Review, enabling technologies, and research opportunities,”
Future Generation Comput. Syst., vol. 87, pp. 278–289, Oct. 2018.

[10] S. Patil-Karpe, S. H. Brahmananda, and S. Karpe, “Review of resource
allocation in fog computing,” in Smart Intelligent Comput. Applicat..
Springer Singapore, pp. 327–334. [Online]. Available: https://doi.org/
10.1007/978-981-13-9282-5 30.

[11] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation
in fog computing based on containers for smart manufacturing,” IEEE
Trans. Ind. Informat., vol. 14, no. 10, pp. 4712–4721, Oct, 2018.

[12] C. Mouradian, et al., “A comprehensive survey on fog computing:
State-of-the-art and research challenges,” IEEE Commun. Surveys Tuts.
vol. 20, no. 1, pp. 416–464, 2018.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press.

[14] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lec-
tures artificial intelligence machine learning, vol. 4, no. 1, pp. 1–103,
2010.

[15] J. Gedeon, F. Brandherm, R. Egert, T. Grube, and M. Mühlhäuser, “What
the fog? edge computing revisited: Promises, applications and future
challenges,” IEEE ACCESS, vol. 7, pp. 152 847–152 878, 2019.

[16] X. Liu, Z. Qin, and Y. Gao, “Resource allocation for edge computing
in iot networks via reinforcement learning,” in Proc. IEEE ICC, 2019.

[17] X. Dutreilh, et al., “Using reinforcement learning for autonomic resource
allocation in clouds: towards a fully automated workflow,” in Proc. ICAS,
2011.

[18] X. Lin, Y. Wang, and M. Pedram, “A reinforcement learning-based
power management framework for green computing data centers,” in
Proc. IEEE IC2E, 2016.

[19] J. Yuan, X. Jiang, L. Zhong, and H. Yu, “Energy aware resource
scheduling algorithm for data center using reinforcement learning,” in
Proc. ICICTA, 2012.

[20] Y. Li, Y. Wen, D. Tao, and K. Guan, “Transforming cooling optimization
for green data center via deep reinforcement learning,” IEEE Trans.
Cybern., vol. 50, no. 5, pp. 2002–2013, 2020.

[21] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process.
Mag. vol. 34, no. 6, pp. 26–38, Nov. 2017.

[22] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-
ment with deep reinforcement learning,” in Proc. ACM HotNets, 2016.

[23] H. Che, Z. Bai, R. Zuo, and H. Li, “A deep reinforcement learning
approach to the optimization of data center task scheduling,” vol. 2020,
pp. 1–12. [Online]. Available: https://doi.org/10.1155/2020/3046769.

[24] Y. Wei, L. Pan, S. Liu, L. Wu, and X. Meng, “Drl-scheduling: An
intelligent qos-aware job scheduling framework for applications in
clouds,” IEEE ACCESS, Sep. 2018.

[25] C. Shyalika, T. Silva, and A. Karunananda, “Reinforcement learning in
dynamic task scheduling: A review,” SN COMPUT. SCI., vol. 1, no. 6,
Sep. 2020.

[26] J.-y. Baek, G. Kaddoum, S. Garg, K. Kaur, and V. Gravel, “Managing fog
networks using reinforcement learning based load balancing algorithm,”
in Proc. IEEE WCNC, 2019.

[27] H. Tran-Dang and D.-S. Kim, “Task priority-based resource allocation
algorithm for task offloading in fog-enabled IoT systems,” in Proc. IEEE
ICOIN, 2021.

[28] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot
service delay via fog offloading,” IEEE Internet Things J., vol. 5, no. 2,
pp. 998–1010, Apr. 2018.

[29] A. Ahmed, et al., “Fog computing applications: Taxonomy and require-
ments.”, arXiv preprint arXiv:1907.11621, 2019.

[30] Z. Liu, X. Yang, Y. Yang, K. Wang, and G. Mao, “Dats: Dispersive
stable task scheduling in heterogeneous fog networks,” IEEE Internet
Things J., vol. 6, no. 2, pp. 3423–3436, Apr. 2019.

[31] Z. Liu, Y. Yang, K. Wang, Z. Shao, and J. Zhang, “Post: Parallel
offloading of splittable tasks in heterogeneous fog networks,” IEEE
Internet Things J., vol. 7, no. 4, pp. 3170–3183, 2020.

[32] H. Tran-Dang and D.-S. Kim, “Frato: Fog resource based adaptive task
offloading for delay-minimizing iot service provisioning,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 10, pp. 2491–2508, 2021.

[33] K. Guo, M. Sheng, T. Q. Quek, and Z. Qiu, “Task offloading and
scheduling in fog ran: A parallel communication and computation
perspective,” IEEE Wireless Commun. Lett., vol. 9, no. 2, pp. 215–218,
2019.

[34] S. Bian, X. Huang, Z. Shao, and Y. Yang, “Neural task scheduling
with reinforcement learning for fog computing systems,” in Proc. IEEE
GLOBECOM, 2019.

[35] N. Fernando, et al., “Opportunistic fog for iot: Challenges and oppor-
tunities,” IEEE Internet Things J., vol. 6, no. 5, pp. 8897–8910, 2019.

[36] Y. Xiao and C. Zhu, “Vehicular fog computing: Vision and challenges,”
in Proc. IEEE PerCom Workshops, 2017.

[37] H. A. Khattak, S. U. Islam, I. U. Din, and M. Guizani, “Integrating
fog computing with vanets: A consumer perspective,” IEEE Commun.
Standards Mag. vol. 3, no. 1, pp. 19–25, 2019.

[38] T. Nishio, R. Shinkuma, T. Takahashi, and N. B. Mandayam, “Service-
oriented heterogeneous resource sharing for optimizing service latency
in mobile cloud,” in Proc. ACM MobiHoc, 2013.

[39] J. Oueis, E. C. Strinati, S. Sardellitti, and S. Barbarossa, “Small cell
clustering for efficient distributed fog computing: A multi-user case,” in
Proc. IEEE VTC-Fall, 2015.

[40] W. Masri, I. A. Ridhawi, N. Mostafa, and P. Pourghomi, “Minimizing
delay in iot systems through collaborative fog-to-fog (f2f) communica-
tion,” in Proc. ICUFN, 2017.

[41] R. Lindelauf, “Nuclear Deterrence in the Algorithmic Age: Game
Theory Revisited,” NL ARMS, p. 421, 2021.

TRAN-DANG et al.: REINFORCEMENT LEARNING BASED RESOURCE ... 97

[42] C. Kim, “Deep reinforcement learning by balancing offline Monte Carlo
and online temporal difference use based on environment experiences,”
Symmetry, vol. 12, no. 10, p. 1685, 2020.

[43] B. Kővári, F. Hegedüs, and T. Bécsi, “Design of a reinforcement
learning-based lane keeping planning agent for automated vehicles,”
Applied Sciences, vol. 10, no. 20, p. 7171, 2020.

[44] S. S. Mousavi, M. Schukat, and E. Howley, “Deep reinforcement
learning: An overview,” in Proc. IntelliSys, pp. 426–440, 2016.

[45] O. L. V. Costa, E. Assumpção Filho, E. Boukas, and R. Marques,
“Constrained quadratic state feedback control of discrete-time markovian
jump linear systems,” Automatica, vol. 35, no. 4, pp. 617–626, 1999.

[46] S. Mahadevan, “Average reward reinforcement learning: Foundations,
algorithms, and empirical results,” Machine learning, vol. 22, no. 1, pp.
159–195, 1996.

[47] Y. Chandak, G. Theocharous, J. Kostas, S. Jordan, and P. Thomas,
“Learning action representations for reinforcement learning,” in Proc.
ICML, 2019.

[48] A. Kanervisto, C. Scheller, and V. Hautamäki, “Action space shaping in
deep reinforcement learning,” in Proc. IEEE CoG, 2020.

[49] A. Kumar, T. Buckley, J. B. Lanier, Q. Wang, A. Kavelaars, and I. Ku-
zovkin, “OffWorld gym: Open-access physical robotics environment
for real-world reinforcement learning benchmark and research.” arXiv
preprint arXiv:1910.08639, 2019.

[50] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based rein-
forcement learning: A survey.” arXiv preprint arXiv:2006.16712, 2020.

[51] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[52] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proc. ICML, 2016.

[53] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms.” arXiv preprint arXiv:1707.06347,
2017.

[54] J. B. Serrano, S. Curi, A. Krause, and G. Neu, “Logistic Q-learning,”
in Proc. AISTATS, 2021.

[55] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[56] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspec-
tive on reinforcement learning,” in Proc. ICML, 2017.

[57] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[58] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. ICML, 2018.

[59] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in Proc, IEEE ICRA, 2018.

[60] Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning-based mode
selection and resource management for green fog radio access networks,”
IEEE Internet Things J., vol. 6, no. 2, pp. 1960–1971, 2019.

[61] Y. He, N. Zhao, and H. Yin, “Integrated networking, caching, and com-
puting for connected vehicles: A deep reinforcement learning approach,”
IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 44–55, 2017.

[62] S.-s. Lee and S. Lee, “Resource allocation for vehicular fog computing
using reinforcement learning combined with heuristic information,”
IEEE Internet Things J., vol. 7, no. 10, pp. 10 450–10 464, 2020.

[63] F. Fu, Y. Kang, Z. Zhang, F. R. Yu, and T. Wu, “Soft actor-critic drl
for live transcoding and streaming in vehicular fog computing-enabled
iov,” IEEE Internet Things J., vol. 8, no. 3, pp. 1308–1321, 2020.

[64] J. Feng, F. R. Yu, Q. Pei, X. Chu, J. Du, and L. Zhu, “Cooperative
computation offloading and resource allocation for blockchain-enabled
mobile-edge computing: A deep reinforcement learning approach,” IEEE
Internet Things J., vol. 7, no. 7, pp. 6214–6228, 2019.

[65] J. Shi, J. Du, J. Wang, J. Wang, and J. Yuan, “Priority-aware task
offloading in vehicular fog computing based on deep reinforcement
learning.” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 16067–16081,
2020.

[66] X. Zhang, Y. Xiao, Q. Li, and W. Saad, “Deep reinforcement learning
for fog computing-based vehicular system with multi-operator support,”
in Proc. IEEE ICC, 2020, pp. 1–6.

[67] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Perfor-
mance optimization in mobile-edge computing via deep reinforcement
learning,” in Proc. IEEE VTC-Fall, 2018, pp. 1–6.

[68] N. Van Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “Optimal
and fast real-time resource slicing with deep dueling neural networks,”
IEEE J. Selected Areas Commun., vol. 37, no. 6, pp. 1455–1470, 2019.

[69] J. C. Guevara and N. L. S. da Fonseca, “Task scheduling in cloud-
fog computing systems,” Peer-to-Peer Netw. Applicat., vol. 14, no. 2,
pp. 962–977, Jan. 2021. [Online]. Available: https://doi.org/10.1007/
s12083-020-01051-9

[70] P. Gazori, D. Rahbari, and M. Nickray, “Saving time and cost on
the scheduling of fog-based IoT applications using deep reinforcement
learning approach,” Future Generation Comput. Syst., vol. 110, pp.
1098–1115, 2020.

[71] Y. Wei, L. Pan, S. Liu, L. Wu, and X. Meng, “Drl-scheduling: An
intelligent qos-aware job scheduling framework for applications in
clouds,” IEEE ACCESS, vol. 6, pp. 55 112–55 125, 2018.

[72] S. Bian, X. Huang, Z. Shao, and Y. Yang, “Neural task scheduling
with reinforcement learning for fog computing systems,” in Proc. IEEE
GLOBECOM, 2019.

[73] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc.
NIPS, 2015, pp. 2692–2700. [Online]. Available: https://arxiv.org/pdf/
1506.03134.pdf

[74] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. NIPS, 2014.

[75] S. Sheng, P. Chen, Z. Chen, L. Wu, and Y. Yao, “Deep reinforcement
learning-based task scheduling in iot edge computing,” Sensors, vol. 21,
no. 5, p. 1666, 2021.

[76] S. Bian, X. Huang, and Z. Shao, “Online task scheduling for fog
computing with multi-resource fairness,” in Proc. IEEE VTC-Fall, 2019.

[77] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “Traffic and
computation co-offloading with reinforcement learning in fog computing
for industrial applications,” IEEE Trans. Ind. Informat., vol. 15, no. 2,
pp. 976–986, 2018.

[78] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, and Y. Pan, “Stochastic load
balancing for virtual resource management in datacenters,” IEEE Trans.
Cloud Comput., vol. 8, no. 2, pp. 459–472, 2016.

[79] G. Lee, W. Saad, and M. Bennis, “An online optimization framework
for distributed fog network formation with minimal latency,” IEEE Trans
Wireless Commun., vol. 18, no. 4, pp. 2244–2258, 2019.

[80] D. Van Le and C.-K. Tham, “A deep reinforcement learning based
offloading scheme in ad-hoc mobile clouds,” in Proc. IEEE INFOCOM
WKSHPS, 2018.

[81] V. Mnih, et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[82] J. Baek and G. Kaddoum, “Heterogeneous task offloading and resource
allocations via deep recurrent reinforcement learning in partial observ-
able multifog networks,” IEEE Internet Things J., vol. 8, no. 2, pp.
1041–1056, 2020.

[83] A. Nassar and Y. Yilmaz, “Reinforcement learning for adaptive resource
allocation in fog ran for IoT with heterogeneous latency requirements,”
IEEE Access, vol. 7, pp. 128 014–128 025, 2019.

[84] M. Min, et al., “Learning-based privacy-aware offloading for healthcare
iot with energy harvesting,” IEEE Access, vol. 6, no. 3, pp. 4307–4316,
2018.

[85] M. Min, et al., “Learning-based computation offloading for iot devices
with energy harvesting,” IEEE Trans Veh. Technol., vol. 68, no. 2, pp.
1930–1941, 2019.

[86] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256, 2020.

[87] D. A. Berry and B. Fristedt, “Bandit problems: sequential allocation
of experiments (monographs on statistics and applied probability),”
London: Chapman and Hall, vol. 5, no. 71–87, p. 7, 1985.

[88] Z. Zhu, T. Liu, Y. Yang, and X. Luo, “Blot: Bandit learning-based
offloading of tasks in fog-enabled networks,” IEEE Trans Parallel
Distrib. Syst., vol. 30, no. 12, pp. 2636–2649, 2019.

[89] S. Misra, S. P. Rachuri, P. K. Deb, and A. Mukherjee, “Multi-armed
bandit-based decentralized computation offloading in fog-enabled IoT,”
IEEE Internet Things J., vol. 8, no. 12, pp. 10010–10017, 2021.

[90] S. Bian, X. Huang, and Z. Shao, “Online task scheduling for fog
computing with multi-resource fairness,” in Proc. IEEE VTC-Fall, 2019,
pp. 1–5.

[91] F. M. Talaat, M. S. Saraya, A. I. Saleh, H. A. Ali, and S. H. Ali, “A
load balancing and optimization strategy (LBOS) using reinforcement
learning in fog computing environment,” J. Ambient Intell. Humanized
Comput., pp. 4951–4966, 2020.

[92] Q. D. La, M. V. Ngo, T. Q. Dinh, T. Q. Quek, and H. Shin, “Enabling
intelligence in fog computing to achieve energy and latency reduction,”
Digital Commun. Netw., vol. 5, no. 1, pp. 3–9, 2019.

98 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 1, FEBRUARY 2022

[93] R. K. Naha, et al., “Fog computing: Survey of trends, architectures,
requirements, and research directions,” IEEE ACCESS, vol. 6, pp.
47 980–48 009, 2018.

[94] M. Botvinick, et al., “Reinforcement learning, fast and slow,” Trends
Cognitive Sci., vol. 23, no. 5, pp. 408–422, 2019.

[95] P. Illy, G. Kaddoum, C. M. Moreira, K. Kaur, and S. Garg, “Securing
fog-to-things environment using intrusion detection system based on
ensemble learning,” in Proc. IEEE WCNC, 2019.

[96] A. Abeshu and N. Chilamkurti, “Deep learning: The frontier for dis-
tributed attack detection in fog-to-things computing,” IEEE Commun.
Mag., vol. 56, no. 2, pp. 169–175, 2018.

[97] N. N. Khumalo, O. O. Oyerinde, and L. Mfupe, “Reinforcement
learning-based resource management model for fog radio access network
architectures in 5g,” IEEE ACCESS, vol. 9, pp. 12 706–12 716, 2021.

[98] A. Nassar and Y. Yilmaz, “Resource allocation in fog ran for heteroge-
neous iot environments based on reinforcement learning,” in Proc. IEEE
ICC, 2019, pp. 1–6.

[99] Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning-based mode
selection and resource management for green fog radio access networks,”
IEEE Internet Things J., vol. 6, no. 2, pp. 1960–1971, 2018.

[100] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Commun. Surveys Tuts, vol. 20, no. 3, pp. 1826–1857, 2018.

[101] T. H. L. Dinh, M. Kaneko, E. H. Fukuda, and L. Boukhatem, “Energy
efficient resource allocation optimization in fog radio access networks
with outdated channel knowledge,” IEEE Trans Green Commun. Netw.,
vol. 5, no. 1, pp. 146–159, 2021.

[102] J. Yao and N. Ansari, “Fog resource provisioning in reliability-aware
iot networks,” IEEE Internet Things J., vol. 6, no. 5, pp. 8262–8269,
2019.

[103] C. Prabhu, Fog Computing, Deep Learning and Big Data Analytics-
Research Directions. Springer, 2019.

Hoa Tran-Dang (M’17) received the B.E. degree in
Electrical and Electronics Engineering from Hanoi
University of Science and Technology (HUST), Viet-
nam and the M.S. degree in Electronics Engineering
from Kumoh National Institute of Technology (KIT),
South of Korea in 2010 and 2012, respectively.
He pursued the Ph.D. degree with University of
Lorraine, France during 2013-2017. He currently
works in NSL laboratory, department of ICT con-
vergence engineering at Kumoh National Institute of
Technology, South of Korea as a research professor.

His research interests include wireless sensor networks, Internet of things
(IoT), physical Internet, and radio resource management in wireless industrial
networks.

Sanjay Bhardwaj (M’17) received his Ph.D. degree
from the Department of IT convergence Engineer-
ing, Kumoh National Institute of Technology, Gumi,
South Korea in 2020. From 2012 to 2018 he worked
as Assistant Professor in the Department of Elec-
tronics and Communication at Shoolini University,
India. He is currently Postdoctoral Researcher at
ICT Convergence Research Center, Kumoh National
Institute of Technology, Gumi, South Korea. His
research areas of interest are bio-inspired CRNs, IoT,
IIoT and URLLC in the industrial wireless network.

Tariq Rahim (M’21) has completed his Ph.D.
degree in IT Convergence Engineering from the
Wireless and Emerging Network System Labora-
tory (WENS Lab), at Kumoh National Institute of
Technology (KIT), South Korea. Currently, he is
working as a Postdoctoral Fellow and Researcher at
the ICT-CRC, KIT, South Korea. Earlier, he received
his MS. and B.Sc. degree from Beijing Institute of
Technology, China and COMSAT Institute of Infor-
mation and Technology, Pakistan, respectively. His
research interests mainly include signal processing,

image processing, medical image analysis, deep learning, video processing,
and quality of services of high frame rate videos.

Arslan Musaddiq (M’21) received his Ph.D. de-
gree from the Department of Information and Com-
munication Engineering, College of Engineering,
Yeungnam University, Gyeongsan-Si, South Korea.
He is currently associated with the ICT Conver-
gence Research Center, Kumoh National Institute of
Technology, South Korea as a Postdoctoral fellow.
His research interests are primarily in the areas of
wireless networking, Internet of Things, wireless
resource management, routing protocols, and ad hoc
networks.

Dong-Seong Kim (S’98-M’03-SM’14) received his
Ph.D. degree in Electrical and Computer Engineer-
ing from the Seoul National University, Seoul, Ko-
rea, in 2003. From 1994 to 2003, he worked as
a full-time researcher in ERC-ACI at Seoul Na-
tional University, Seoul, Korea. From March 2003
to February 2005, he worked as a Postdoctoral Re-
searcher at the Wireless Network Laboratory in the
School of Electrical and Computer Engineering at
Cornell University, NY. From 2007 to 2009, he was
a Vistiting Professor with Department of Computer

Science, University of California, Davis, CA. He is currently a Director of KIT
Convergence Research Institute and ICT Convergence Research Center (ITRC
program) supported by Korean government at Kumoh National Institute of
Technology. He is IEEE and ACM Senior Member. His current main research
interests are real-time IoT, industrial wireless control network, networked
embedded system and fieldbus.

