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Abstract—The radio frequency (RF) spectrum is crucial for
effective deployment of unmanned aerial vehicle (UAV). The
unpredictability of the communication channel restricts link
reliability and quality of service (QoS) of the UAV’s deployment.
Though several approaches have already been reported to model
the communication channel of the UAV, the necessity of optimal
spectrum utilization, better link reliability and QoS requires
that new methods be explored for effective representations of
propagation variations and path gains present in the UAV
flight profile. Here, we report the design of a learning aided
model of the UAV communication channel. We use a deep
learning (DL) based method which relies upon different taped
delay line (TDL) driven layers of gated functions implanted as
part of specifically designed networks for capturing the channel
state information (CSI) of the propagation medium. The key
part is the use of context processing and recovery layers formed
by these TDL driven gated function structures which provide
performance enhancements. The proposed model is trained and
tested with synthetic and actual data and is supported by energy
harvesting attributes. It has been found to be effective in modeling
UAV channels while deployed with multi input multi output
(MIMO) and non-orthogonal multi access (NOMA) set-up in
urban areas and in platforms moving with a maximum velocity
of 60 kmph.

Index Terms—AR, ARMA, artificial neural network, chan-
nel modeling, deep learning, energy harvesting, LSTM, NAR,
NARMA, UAV.

I. INTRODUCTION

THE application of the unmanned aerial vehicle (UAV),
popularly called drone, has been increasing at unprece-

dented scale and has been adopted as a tool in many domains
of human activity [1], [2]. More commonly UAVs are being
applied for agriculture [3], [4], a range of surveillance activ-
ities, extension of range of wireless communication systems,
delivery of items [1]–[4] and more lately to assist people en-
gaged in fighting pandemic situations due to COVID-19. These
programmable platforms can assist medical professionals by
providing preliminary diagnostics, drug and food delivery in
quarantine centers, hospitals to name a few and can also be
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used for sterilization, de-contamination and cleanliness drives
in hospitals, residential blocks, neighborhoods etc. Further,
drones are readily available aids for support staff and security
agencies in large scale screening and monitoring, ensuring
social distancing, quarantining and treatment of the patients,
traffic monitoring etc. The ability of a UAV to supply essential
aid and support in out-of-the-reach locations at crucial times
have given birth to delivery drones. This is very much relevant
to fight epidemics and prevent large scale fatality. Especially
in cases of virus related medical emergencies, people at quar-
antine centers may receive food and medicine through drones.
Robots and UAVs provide a layer of safety, greater reach and
efficiency in crisis situations which make them ideal to play a
complementary supplementary role to the medical fraternity.
UAVs are vital for risk assessment, developing contingency
plans, initiating response where human help is less likely and
provide initial support.

The control of the drone is carried out using specified slots
in the radio frequency (RF) spectrum around 840.5–845 MHz,
1430–1444 MHz, and 2408–2440 MHz [5]. Due to the un-
precedented growth in mobile and wireless communication
technologies in recent times, the RF spectrum has already
become overcrowded which threatens the UAV control and
link channels. It makes imperative to have resilient means of
ensuring link reliability and quality of service (QoS). Lately
it has become a norm to accept that a crucial aspect related to
link reliability and QoS is associated with the development of
methods that have certain situational awareness and are adap-
tive with the variations of the surrounding environment [6].
Attributes like adaptive processing and situation awareness
are best exemplified by artificial intelligence (AI) [7] and
learning based tools. These have the ability to learn from
the surroundings, track the variations in the environment and
make sufficient adjustments in the process flow so that proper
recovery of data and generation of relevant response becomes
efficient [8].

The UAV channel model provides ample of scope of appli-
cation of AI due to its inherent uncertainty. Similarly, learning
aided (LA) approaches enhance the quality of estimation
and contribute towards better link reliability. In terms of
tools, several data driven (DD) and machine learning (ML)
techniques are available to make UAV channel model more
suitable for real time conditions and achieve optimal pro-
cessing. Traditionally, UAV models fall in two categories.
The first is the deterministic model and the second category
is the statistical model. Deterministic models are known for
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their accuracy which is derived from a strong dependence
on actual data. Actual data from field conditions are col-
lected but require extensive experimental work and tedious
analysis. In the deterministic model, environmental objects
are assigned larger dimensions compared to the wavelength.
The clutter generated from environmental objects are placed
in the certain layouts. There is no scope for compensating
the scattering due to diffusion. The database of the details
related to terrain topography, electrical parameters of natural
and human created obstructions etc determine the accuracy of
the model. This makes the deterministic models less popular.
The ray-tracing model [9], [10] and finite-difference time
domain method (FDTD) [11] model are examples of UAV
deterministic model. Elements of non-geometrical statistical
model (NGSM) and geometry-based statistical model (GBSM)
formulate the statistical model [12]. Commonly used tapped
delay line (TDL) model and multipath models with line
of sight (LOS) and non-LOS (NLOS) components covering
ground reflection, multi-path elements etc constitute the vital
organs of the UAV statistical model. These are not dependent
much on actual data, work with synthetic content and can be
created using computational approaches.

Despite the time-tested virtues of the traditional models, cer-
tain aspects like traffic congestion, location specific services,
dynamic positioning, interference management, fading due to
Doppler effect, shadowing etc require that ML be integrated
to the UAV channel modeling [13]. These issues have been in-
strumental in the execution of a number of studies which have
reported the use of a host of ML and data driven approaches
for UAV communication channel modeling [14]–[22]. The
key consideration of these works have been the use of ML
and deep learning (DL) based approaches which are known
for their ability to adapt and optimize as per the surrounding
wireless profile and requirements, learn from the surroundings,
retain the learning and use it subsequently. Such aspects have
made ML/DL approaches popular and have become integral
elements of 5G wireless communication. ML/DL tools are
able to extract relevant information for continuous flow of
data and provide relevant decision making support to facilitate
effective use of UAVs for a range of applications. A key factor
related to the generation of better reliability using the ML/DL
approaches is linked to their ability to capture the time-
dependent variations in the signal and account for all states of
the channel state information (CSI). For that subtle changes in
the architecture are required because traditional ML systems
are not intended to perform such tasks. Earlier, among the ML
tools, artificial neural networks (ANN) like time delay neural
network (TDNN), recurrent neural network (RNN) etc have
been preferred though they continue to be used as benchmark
techniques. Lately, gated function based DL methods have
started to gain popularity in UAV channel modeling. These
techniques have been designed to develop approaches as part
of DL techniques enabling them to capture the context and
different dependencies. Two fundamental factors are behind
the shift of preference towards these architectures. First, is
the ability of these learning based gated functions to execute
dynamic control while associating past content with the current
state at each instant of time. The second factor is the ability of

these gated functions to prevent disruption in learning which
is caused by the vanishing or exploding gradient problem
observed in traditional dynamic ANN [23]. These two factors
are also vital in the proper modeling of the UAV channel.

A. Related Work

Some of the relevant literature are as in [24]–[30]. In [24],
an approach of short-term traffic forecasting with spatial
temporal correlation in a hybrid deep learning framework is
discussed. Extreme traffic conditions using DL methods are
discussed in [25]. A gated approach based on long short
term memory (LSTM) cells for short term traffic prediction
is discussed in [26]. In [27], authors report the use of a
bidirectional and unidirectional LSTM RNNs for traffic speed
prediction. High order graph convolutional RNNs have been
applied for network scale traffic prediction in [28]. Mobility
predictions for IoT devices using gated functions have been
discussed in [29]. Prediction of user mobility has been a
topic of a thesis as reported in [30]. In all these cases, the
gated functions have shown appreciable performance while
dealing with a diverse range of predictions involving mo-
bility. Use of a host of ML and data driven approaches for
UAV communication channel modeling have been reported
in [14]–[22]. In [37], authors have reported the application
of a deep learning based approach to model path loss on
fixed wireless access techniques in suburban scenarios. In [38]
and [39], learning aided approaches for proper utilization of
the UAV channel have been reported. Despite the reported
use of several learning based approaches for UAV channel
modeling, there are opportunities for obtaining performance
improvements and optimal computation if the input feed
mechanisms are expanded with tapped delay line (TDL) [31],
[32] blocks and configuring gated functions in innovative com-
binations to facilitate detailed feature learning, missing content
recovery, tracking time variations and preserving context of the
processed content. The resultant signal becomes context and
content rich and contributes towards better reliability while
applied for UAV channel modeling.

B. Contribution

In the backdrop of evolving capabilities of the innovative
combinations of gated functions with a few known DL/ML
architectures here we discuss the design of a learning based
mechanism designed specifically for the UAV communica-
tion channel modeling. The approach is based on two gated
functions namely vanilla recurrent cell (VRC) and LSTM
integrated with TDL blocks in the input feed line. These are
called TDL-VRC and TDL-LSTM. Together with an auto-
encoder, the TDL-VRC and TDL-LSTM blocks are used
to formulate separate layers for processing and tracking the
variations of the UAV communication channel. Specifically,
these innovative gated functions are used to formulate con-
textual processing and denoising layer (L1), feature learning
layer (L2), recovery layer (L3) and discrimination layer (L4).
Each of these layers have specific roles to play and are held at
pre-trained levels using supervised gradient descent (SGD) BP
algorithm. The training is carried out using data accumulated
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from Jakes [32] wireless multipath fading model and actual
measurements in situations with NLOS and LOS components.
The performance of the proposed approach has been judged
in terms of signal to noise (SNR) gain, capacity generated,
bit error rate (BER), channel tracking etc and compared
with traditional ANN and statistical methods like decision
feedback equalizer (DFE) [36], delayed decision feedback
estimator (DDFE) [36] (in least square (LS) and minimum
mean square error (MMSE) senses). The experimental samples
include NLOS and LOS conditions with Doppler shift upto
60 Kmph. Antenna diversity achieved with 2 × 2 structures
are used to ascertain the benefits of such a system to provide
high data rate connectivity. Further, the work considers energy
harvesting (EH) as an attribute for range and battery life ex-
tension of the UAV Specific channel considerations and device
level implementation have been carried out and experimentally
verified. The work has been tested in multi input multi
output (MIMO) and non-orthogonal multi access (NOMA) set-
ups which are commonly observed in urban areas. Experimen-
tal results demonstrate significant performance improvements
in terms of SNR path gain and capacity (bit/s/Hz) compared
to certain benchmark techniques.

The novelty of the work is the use of TDL-VRC and TDL-
LSTM cells along with an auto-encoder to an innovative DL
structure constituted by contextual processing and denoising
layer (L1), feature learning layer (L2), recovery layer (L3) and
discrimination layer (L4) to track variations of the UAV com-
munication channel, estimate path gains while using MIMO
diversity and NOMA for capacity and coverage improvements
and demonstration of extension of the UAV battery life with
the use of an energy harvesting mechanism.

The rest of the paper is organized as follows. Section II
describes the proposed model in details. Experimental results
and related discussion have been covered in Section III. The
work and the outcomes are summarized in Section IV.

II. PROPOSED APPROACH

Here we discuss the proposed approach. First, we describe
in brief the basic concepts of TDL-VRC, TDL-LSTM and
the composition of different layers. We provide the basic
mathematical approaches related to the responses generated by
these blocks and outline the key features of the UAV channel.

A. TDL-VRC

The vanilla recurrent cell (VRC) is a type of recurrent pro-
cessing block which generates the output using present input
and past or hidden states to show time-dependent behavior.
It is able to track variations in time. Our proposed TDL-
VRC has a delayed feed mechanism in the input. It helps
to retain the context, temporal attributes and facilitate content
rich processing. Fig. 1 shows a TDL-VRC.

Let X(t) be the applied signal and h(t − 1) be the state
vector of previous stage. With tapped delays, the signal at the
input stage is X(t)W1 +X(t)W2 with W1 and W2 being the
weights with the input and delayed feed lines, respectively.

Fig. 1. TDL-VRC.

At point A, the signal shall be:

X1(t) = Concat.{(X(t)W1 +X(t)W2, h(t− 1))}, (1)

where Concat.(.) is a function that concatenates h(t−1) after
X(t).

At point B, the sequence shall be:

X2(t) = W × {X1(t) +X1(t− 1)}, (2)

where W is a weight term. The output of the system shall be

h(t) = tanh {X2(t) + b}, (3)

where b is a bias term.

B. TDL-LSTM
The LSTM is one of the popular gated functions which has

received considerable attention in recent times due to its ability
to deal with time series, sequencing and related domains. With
known time gaps or lags in the input, the LSTM is able to do
classification, prediction, and process time series sequences.
Despite sampled feed, the output shows no influence of the left
portions of the patterns on the LSTM’s response and is able
to capture long term dependencies and the context. Further,
it is free from the vanishing gradient problem and training is
sustained without getting stuck in the local minima problem
as observed in TDNN or RNN [8]. In the present case, we
integrate a TDL in the input feed line of the LSTM to enhance
it ability to retain time dependent relevant segments and
process temporal content of the patterns. The TDL expands
the LSTM’s ability to capture the contextual portion more
effectively which is essential for a time varying phenomenon
like the UAV wireless communication channel. Fig. 2 shows
the diagram of the TDL-LSTM unit which is used to build the
proposed DL based UAV model.

Let X(t) be the input, C(t − 1) is inclusion in memory
cell from previous state and h(t− 1) be the past state of the
context vector. At A, the signal shall be:

X1(t) = {X(t)W01 +X(t− 1)W02} × W1, (4)

where W01 and W02 are weights with the input and delayed
feed lines, respectively, and W1 is the connectionist weight.
Similarly,

f1(t) = sign. [{X1(t) + U1h(t− 1)} × W2 + b1], (5)
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Fig. 2. LSTM unit with TDL in the input.

where U1 is the weight associated with the feed of the previous
state vector h(t − 1), b1 is a bias and W2 is a connectionist
weight. Further,

f2(t) = sign. [{X1(t) + U1h(t− 1)} × W3 + b2], (6)

where b2 is a bias and W3 is a connectionist weight. Also,

f3(t) = tanh [{X1(t) + U1h(t− 1)} × W4 + b3], (7)

where b3 is a bias and W4 is a connectionist weight. Again,

f4(t) = sign. [{X1(t) + U1h(t− 1)} × W5 + b4], (8)

where b4 is a bias and W5 is a connectionist weight. This
gives

f5(t) = f1(t) ∗ C(t− 1), (9)

such that
C(t) = f5(t) + f2(t) ∗ f3(t), (10)

and
h(t) = f4(t) ∗ tanh C(t)), (11)

where sign.(.) and tanh(.) are signum and tanh activation
functions, respectively.

C. UAV Channel

The UAV channel has both LOS and NLOS components
and suffers extensive multipath fading. Further, the channel
generates Doppler related fluctuations due to variations in
position and movement at certain speeds. The multipath fading
characteristics observed in a UAV wireless channel with NLOS
elements are represented by Rayleigh statistics and the LOS
elements are accounted by the Rician distribution. Fig. 3
depicts a UAV channel. It has multiple segments namely from
the source to the UAV and from the UAV to the destination. In
both these two segments, there are large and small scale fading.
The UAV channel can be described using large scale path gain
(hLS(, )) and small scale channel components (hSS(, )) [33].
Using a truncated discrete filter block, these two components
are described as below:

hLS(τ, t) =

NLS(t)∑
k=1

αLS
k (t)δ(τ − τLS

k (t)), (12)

and

hSS(τ, t) =

NSS(t)∑
k=1

αSS
k (t)δ(τ − τSS

k (t)), (13)

such that
h(τ, t) = hLS(τ, t) + hSS(τ, t), (14)

where αk is the magnitude of the signal attenuation, NLS

and NSS are the length of the linear filters used for defining
large and small scale effects respectively and τk is the delay
suffered by the signal during transmission. So if two channel
elements of h(τ, t) are considered between the source and the
UAV (hSU (.)) and the UAV and destination (hUD(.)), for a
transmitted signal XT (t), the received signal shall be

XR(t) = {hSU (t) ∗ XT (t)} ∗ hUD(t) + no, (15)

where no is additive white Gaussian noise (AWGN). In this
work we have concentrated on the multi input multi output
(MIMO) channel of which a 2 × 2 set-up for UAV com-
munication is considered. Further, the work is extended to
a NOMA situation where the MIMO contributes to enhance
diversity gain. The MIMO-NOMA set-up helps to maintain
the link reliability, prevent outage in low coverage regions and
is experimented with both LOS and NLOS components. The
path gains are estimated using the proposed approach. Fig. 4
shows the path gain of 2 × 2 MIMO channel considered for
the work.

D. Design of a Recovery Layer (L3)

An important portion of the work is the design of a novel
recovery layer which uses a combination of TDL-VRC and
TDL-LSTM blocks to deal with sparse values. The recovery
layer substitutes values of channel gains lost while passing
through edge of the coverage regions, temporary and sudden
lost of link, excessive fading, power fluctuations in base
stations, sudden breakdown, system reset, service breaks etc.
These breaks generate lost states in the input sequence. With
lost states, the output generated will also contain certain
missing values. Further, if the missing states remain as nulls,
it will contribute to the generation of more null states. Also, if
these missing states are replaced by other predefined values,
unreliable outputs will be generated. Further, if pre-defined
values are applied as substitutes, it will result in biased output.
Hence, regeneration of missing values using sparse inputs
through a sequence of adaptive iterations carried out by the
recovery layer is essential to ensure reliable substitution of
the missing states. During modeling and estimation, the lost
values are recovered by this layer. It carries out a series of
iterations based on (error) back propagation (BP) algorithm
and regenerates the missing or sparse samples. These samples
ensure that the continuity of the CSI values are not lost so that
the link reliability improves. It contributes towards better CSI
estimation which is crucial for achieving higher throughput
and better QoS. The key aspect of the working of the recovery
layer is the fact that hybrid cells formed by TDL-VRC and
TDL-LSTM in a sequence use past values of the context
vector h(t) and input X(t) to generate present and future
values of the output. The combined working of the TDL-VRC
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Fig. 3. UAV wireless communication channel.

Fig. 4. Path gains of a 2 × 2 MIMO UAV channel.

and TDL-LSTM cells enable generation of lost values of the
CSI. It prevents sparsity from disrupting the training of the
network blocks and the complete system. The ability of the
LSTM to retain long term dependencies and process time-
dependent samples effectively is crucial in this case. RNNs
have the ability of modeling non-linearities in input patters.
In that same line, the VRC is effective in capturing the non-
linear elements in the input feed. But the difficulties of the
RNN related to its vanishing or expanding gradient problem
puts restrains on its ability to deal with time varying patterns.
This is also relevant with a layer of VRC. The LSTMs are
effective in dealing with the vanishing or expanding gradient
problem [8]. Therefore a combination of VRC and LSTM
shall enable modeling of non-linearities present in the input
and effectively deal with the vanishing or expanding gradient
problem while efficiently processing the normal elements of
the wave. The resultant training or learning is fast and efficient.
Also, the presence of VRC and LSTM guarantee that no null
states or zero values are generated and the training attains
the destined target. Further, the presence of the TDL block
reinforces the temporal processing capabilities.

Fig. 5 shows the layout of the recovery layer where h(.) is a
state vector and X(.) is an input. The expressions of responses

generated by this recovery layer are as outlined below: At point
A:

Y (t− 1)11(t)=TDL V RC{X(t− 1) + h(t− 1)}, (16)
Y (t− 1)12(t)=TDL LSTM{X(t− 1) + h(t− 1)},(17)

Y (t− 1)=Y (t− 1)11(t) + Y (t− 1)12(t). (18)

At point B:

Y (t)11(t)=TDL V RC{Y (t− 1) + x(t)}, (19)
Y (t)12(t)=TDL LSTM{Y (t− 1) +X(t)}, (20)

Y (t)=Y (t)11(t) + Y (t)12(t). (21)

At point C:

Y (t+ 1)11(t)=TDL V RC{Y (t) +X(t+ 1)}, (22)
Y (t+ 1)12(t)=TDL LSTM{Y (t) +X(t+ 1)}, (23)

Y (t+ 1)=Y (t+ 1)11(t) + Y (t+ 1)12(t). (24)

For the working of the L1 layer, peak value of the input
signal is detected. A threshold fixed at 5% of the peak value
is used to determine the sparse or missing states of the CSI.
Under slow fading conditions, at the input of the L1 layer,
from a P sized sequence, if k values are found to be sparse
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Fig. 5. Recovery layer using a combination of TDL-VRC and TDL-LSTM blocks.

Fig. 6. Working of the recovery layer.

or with missing states, these are passed through the recovery
layer, processed and added along with the output of the L1
layer. Under fast fading conditions, two halfs of the P sized
sequences are made. One segment is passed through the L1
layer and the other half passed through the L3 layer. After
processing both segments are combined and held in a buffer
of size P . The above is repeated with the other sequence and
the resultant segments are combined and stored in a buffer.
An average of the sequences in the buffer are obtained and
passed on to the next layer. This is summarized in Fig. 6.

E. Contextual Processing using Auto-Encoder Layer (L1)

This layer performs de-noising, feature learning, encoding-
decoding and context capturing. These processes are impor-
tant to capture the fast changing patterns observed in the
UAV channel. Also the relevant features necessary for proper
modeling of the UAV channel are also learnt by this layer.
Further, channel noise is a detrimental effect observed in
all communication signals. Auto-encoders are excellent de-
noising systems [8]. Hence, removal of unwanted components
from the signal and retaining the contributing aspects of the
feed is ensured by this layer. It is formed by conventional
VRCs and has a delayed feed line along with the present
input. Further, this delayed feed of the inputs enables the
front end of the block to process the temporal attributes of
the signal. Simultaneously, as preceding cells feed the subse-
quent cell and circulate the contextual and related content, it
generates a sequence of related samples from initial feeds from

which noise and common mode components are removed.
This sequence is rich in features of the UAV channel and
encapsulates the content richness necessary for efficient pro-
cessing in the subsequent stages. In a communication medium,
the samples are intricately related. These intricate associations
are needed to be captured and related with subsequent stages
of processing. This sequential feed of the processing block
generated by preceding unit and passing it on to the next cell
ensures the learning of the intricate associations between the
signal samples. It facilitates fast and correct learning. Here,
only VRC cells are used to lower computational and design
complexities. Moreover, the vanishing or expanding gradient
problem is not observed primarily for the fact that training is
short and the TDL stage only allows the temporal components
to be flow through both of which ensure that the learning
objective is achieved within a few epochs.

Let X(t) be the input. It is passed through two delayed
feeds. Also each of the VRC cell feeds the subsequent cells
in each of the layers. As a result capturing of long-term
dependencies, tracking time dependent variations etc take
place within the auto-encoder. The auto-encoder generates a
coded representation of the input patterns which during the
decode phase is expanded for use by subsequent layers. Much
of the redundancies are discarded in this process. This enables
a fast capture of the attributes of the signal and a fine tracking
of the variations in the CSI. The auto-encoder layer is shown
in Fig. 7. It shows the different constituents and process flow.

At point A, the output is

Fig. 7. Different layers of the auto-encoder.
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f11(t) = F11{X1(t)W11}, (25)
f12(t) = F12{X1(t− 1)W12 + f11(t)}, (26)
f13(t) = F13{X2(t)W13 + f12(t)}, (27)
f14(t) = F14{X2(t− 1)W14 + f13(t)}, (28)

where Σ4
p=1F1ps are a sequence of VRCs used for processing

externally fed X(t) and X(t − 1) patterns and Σ4
j=1f1j(t)

internally generated signals scaled by weights W1j .
At point B, the output is

f21(t) = F21

∑
{f11(t)W21i}, (29)

f22(t) = F22

∑
{f12(t)W22i + f21(t)}, (30)

f23(t) = F23

∑
{f13(t)W23i + f22(t)}, (31)

f24(t) = F24

∑
{f14(t)W24i + f23(t)}, (32)

where ΣN
p=1F2p are a sequence of VRCs used for process-

ing f2j(t) internally generated signals scaled by weights
ΣN

p=1W2pi for the second layer. Similarly, at point C, the
outputs are:

f31(t) = F31

∑
{f21(t)W31i}, (33)

f32(t) = F32

∑
{f22(t)W32i + f31(t)}, (34)

f33(t) = F33

∑
{f23(t)W33i + f32(t)}, (35)

f34(t) = F34

∑
{f24(t)W34i + f33(t)}, (36)

where ΣN
p=1F3p are a sequence of VRCs used for process-

ing f3j(t) internally generated signals scaled by weights
ΣN

p=1W3pi for the third layer. The output of the third layer
Y (t) shall take the values of Σ4

p=1f3p(t).

F. System Model

The system model is constituted by several layers and is
applied for generating a close replica of the UAV communica-
tion channel. As already discussed, pre-trained layer blocks are
added and a number of sets of signals are applied to the system
which during the first few cycles only receive an apriori
reference for carrying a supervised learning. Subsequently the
entire process converts to a sequence prediction with the aim
of achieving a global objective. The system model of the work
is shown in Fig. 8.

The inputs are first applied to the auto-encoder layer. As
already discussed, the feature learning, de-noising and context
capturing operations are performed by this layer. Simultane-
ously, the signal is also fed into the recovery layer which
uses a combination of TDL-VRC and TDL-LSTM blocks to
deal with sparse values and regenerate the lost states of the
signal. Such values are received due to high margins of fading
or due to poor coverage from the base station. The recovery
layer enhances the content richness of the signal. It is mixed
with the signal obtained from the auto-encoder layer and is
passed on to the temporal modeling layer formed by either
TDL-VRC or TDL-LSTM cells. These two different cell types
are used to ascertain the effectiveness of the combination. Both
have temporal ability and have been found to be effective in
capturing long term dependencies present in a signal which

Fig. 8. System model showing different layers.

is essential in modeling UAV channel. The recovery of the
missing components of the signal is done by using a past value
of the signal combined with the present state which generates
the subsequent version of the input. The combination of TDL-
VRC and TDL-LSTM cells in a pack of three compensates
nearly all elements of the patterns and regenerates the lost
segments of the signal. It ensures that no portion of the input
remains unprocessed and extracts a trace which through a
regenerative mechanism is expanded into a more effective
variant of the signal. The regeneration also restores the char-
acteristics of the patterns which later on contributes towards
effective modeling of the UAV channel. The restoration work
done by this recovery layer improves after each iteration.
During the first iteration the recovery begins with a little
gain. As the mechanism sustains, the process exploits the
capabilities of the TDL-VRC and TDL-LSTM cells which help
the minor trace of the samples to expand.

The layer formed by TDL-VRC and TDL-LSTM cells is
called feature learning layer. Two layers are used for the
purpose. One layer feeds the other. Both are of similar length.
The two layers help to achieve better learning. Much of the
signal reaching this layer is rich in content and free from
channel noise to a large extent. Also sparse values are less
so nearly no null states of the CSI reaches these two layers.
As a result, the learning run is fast and short which is
essential for real time situation. The content richness allow
the features of the patterns to be learnt appropriately so that
the subsequent layer is able to generate the representation of
the UAV channel. This section is formed by two layers of the
TDL-LSTM cells and is responsible for doing discrimination
of different variations of the path-gains of the UAV chan-
nel. Here the use of the TDL-LSTM cells ensure that different
dependencies of the applied signals are retained, combined
with past and present versions of the samples to produce the
most relevant variants of the UAV channels CSI states. The
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Fig. 9. A generic MIMO block with receivers at different distances.

TDL-LSTM layers ensure that the complex attributes of all the
patterns including temporal, contextual, spatial and historical
variations are taken into account while generating the UAV
CSI states. The comprehensive learning taking place in this
layer is critical not only for the UAV channel path modeling
but also for predicting a future version of the CSIs. For a given
training window, the system is able to generate an appropriate
representation of the UAV channel path gains during each
instant of time which is very essential for increasing link
reliability and QoS. Initially each of the blocks of the system
needs to be trained in a comprehensive manner. The complete
system is also trained to achieve the stated objective with
prior knowledge applied only during the first few cycles of
the training with no pilot carriers required later which provides
significant saving of bandwidth under severe fading conditions.

G. Application in a MIMO-NOMA Set-up

The proposed system is configured for application in a
NOMA set-up with 2 × 2 MIMO diversity constituting a
MIMO-NOMA arrangement as shown in Fig. 9. Assuming
x1(i, j) and x2(i, j) be the signals to be transmitted to
receivers R1 and R2 in a MIMO-NOMA set-up with NLOS
channel state. Let R1 be weak and R2 be in a strong signal
state due to the proximity to the transmitter. Assuming in-
dices i and j related to antenna selection to be known, the
transmitted signal is given by

yT (i, j) = P (
√
c1x1(i, j) +

√
c2x2(i, j)), (37)

where c1 and c2 are power allocation coefficients of the
NOMA set-up. As R1 is at greater distance from the transmit-
ter, c1 > c2.

At the receiver side, R1 and R2 picks up the signal yT (i, j).
The received signals become

yR1
(i, j) = yT (i, j)(h11 + h12) +N, (38)

yR2
(i, j) = yT (i, j)(h21 + h22) +N, (39)

with AWGN N .
Assuming MIMO attributes to be incorporated in the defi-

nitions (37)–(39), the recovery of x1(i, j) and x2(i, j) is done
at the receivers. First, R1 recovers x1 from yR1

. Due to the
far off location of R1, its power allocation is more as has been

already stated. So the recovery of x1 from yR1 is related to
the consideration of x2 as an interference signal. Using (37)
and (38),

yR1
= P (

√
c1x1 +

√
c2x2(h11 + h12) +N, (40)

which after rearranging is written as

yR1
= P

√
c1x1(h11 + h12)

+P
√
c2x2(h11 + h12) +N. (41)

The second term of (41) is considered to be an interference.
At R2, successive interference cancelation (SIC) is used to

directly recover x2(i, j). The received signal can be expressed
as

yR2 = P
√
c1x1(h21 + h22)

+P
√
c2x2(h21 + h22) +N. (42)

For both R1 and R2, the signal to interference noise ra-
tio (SINR) is expressed as

SINR1 = Pc1|h11+h12|2
Pc1|h11+h12|2+σ2 , (43)

SINR2 = Pc2|h21+h22|2
Pc2|h21+h22|2+σ2 , (44)

where σ2 represents noise power. Due to SIC, the x1 signal
is left out making the received signal

y
′

R2
= P

√
c2x2(h21 + h22) +N. (45)

The received SINR shall be

SINR2N = Pc2|h21+h22|2
σ2 . (46)

The data rates achievable at R1 and R2 are

DR1 = log2(1 + SINR1), (47)
DR2 = log2(1 + SINR2), (48)

DR2N = log2(1 + SINR2N ). (49)

Here, the channel path gains h11, h12, h21, and h22 are
determined by the proposed approach discussed above in
Section II-F.

H. Application in a MIMO-NOMA Set-up with Energy Har-
vesting

For efficient operation, drones or UAVs are expected to be
of lighter mass so that the power consumption is minimized
and as such there is a strict limitation on the battery size or fuel
carrying capacity of such vehicles. This in turn limits the range
and duration of flight of the aerial vehicle. Small UAVs are
practically limited to a flight duration of 20 to 40 minutes [34],
on an average. This obstacle can be overcome, if the power
supply to the UAV can be taken care of from a remote source
through RF EH. With proper EH circuitry, the UAV can
gather energy from ambient RF sources or from the signal
transmitted to the UAV as part of the communication process
by virtue of simultaneous wireless information and power
transmission (SWIPT) technology. The harvested energy is
essentially consumed for information transmission from the
UAV and the residual energy if any may be stored in some
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Fig. 10. System set-up with UAV relay node.

energy storage device for future usage. This technique of
harvesting the energy required for information transmission
can prolong the battery life of the UAV as the stored energy
can be completely used for the UAV circuit operation. Most
UAVs find application in the form of relay nodes which relays
information from a source node to multiple receiver nodes.
Once such set up where the UAV acts as a relay node between
the base station and the two destination nodes R1 and R2,
based on the principle of NOMA transmission with a 2 × 2
MIMO configuration is shown in Fig 10. The base station BS
transmits a composite signal xB , which is a combination of
two signals x1 and x2, based on the NOMA principle, to the
UAV. The signal xB is given by,

xB(i, j) =
√
PB(

√
a1x1 +

√
a2x2). (50)

Here x1(i, j) and x2(i, j) are the candidate signals for the
receivers R1 and R1 respectively and a1 and a2 are the power
allocation coefficients such that a1 > a2 and a1 + a2 = 1.
The UAV harvests energy from the received signal using time
switching protocol. Energy is harvested for a duration of αT
with (0 < α < 1) while information processing takes place
for the rest of the time frame T i.e., for duration (1 − α)T .
With multiple antenna configuration at the UAV, it is assumed
that the UAV considers antenna selection technique to receive
the best signal so as to maximize the harvested energy. The
signal received at antenna ‘n’ of the UAV which has channel
gain hbun

with the base station is given by

yB(i, j) =
√
PB(

√
a1x1(i, j) +

√
a2x2(i, j))hbun

+N, (51)

where N is AWGN. The energy harvested at the UAV during
the first time phase αT is

Eh = ηαTPB ∥ hbun
∥2, (52)

where η refers to the energy harvesting efficiency and is
subjected to the condition that 0 < η < 1. The transmit power
available for information transmission over the next phase of
time (1− α)T is

Ph = η
α

(1− α)
PB ∥ hbun ∥2 . (53)

Considering decode and forward relaying strategy at the UAV,
the UAV decodes the signals x1 and x2 from yB using SIC
with the SINR given by γU

x1
and γU

x2
respectively.

γU
x1

=
PBa1 ∥ hbun

∥2

PBa2 ∥ hbun
∥2 +σ2

0

, (54)

γU
x2

=
PBa2 ∥ hbun

∥2

σ2
0

, (55)

where σ2
0 is the noise power.

After successful decoding of x1(i, j) and x2(i, j), the UAV
again forms a composite signal yT (i, j) to be transmitted to
the destinations as a NOMA signal over a MIMO channel as
discussed in previous subsection. The SINR available at the
receivers R1 and R2 to decode x1(i, j) and x2(i, j) using
SIC can be represented with (43) to (45). The outage of
the receivers depends on the successful SIC and decoding of
x1(i, j) and x2(i, j) at both the UAV and the destinations.
Hence the outage probability of signals x1(i, j) and x2(i, j)
can be written as O1 and O2 respectively as

O1=1−Pr{γU
x1

> γth, γ
U
x2

> γth}, (56)

O2=1−Pr{γU
x1

> γth, γ
U
x2

> γth, γ
R2
x1

>γth, γ
R2
x2

>γth}. (57)

Here, γth is the threshold SNR to declare outage condition.

I. Energy Harvesting Power Management Unit (PMU) for
UAV Performance Sustainability

Providing self-sustainability to the UAV communication
node is a significant task. For doing so we have designed
a highly efficient energy harvesting rectifier and followed
by a power management unit (PMU). The rectification unit
is responsible to convert the input RF energy into a DC
voltage [35] and this DC voltage next passes through the PMU
which provides a desired level to the DC voltage and paves
the way for its proper storage or direct utilization.

The rectifier designed is derived from the basic idea of a
Dickson charge pump. Dickson charge pump is a circuit which
is based on the principle of charge multiplication. This simple
configuration also works well but when the circuit needs to be
modeled in smaller resolution technology, nodes limitation is
offered by the drain current as all the dimensions of the device
as well as the supply voltage value needs to be scaled to lower
values. This has a direct impact on the output current which
degrades and as a consequence the power conversion efficiency
(PCE) falls. Since transmission gate (TG) can offer a higher
current drive and can efficiently transfer both the logic states,
the conventional Dickson charge pump is re-configured with
TG. For a negative cycle the input capacitor will get charged
by finding the path through the left side TG (M1-M2) while
in the positive cycle the charge in the input capacitor gets
transferred to the output capacitor through the TG in the right
side (M3-M4) of the schematic. As the current through the
TG is high, hence the output power is also high.

In line with the rectifier, to facilitate proper DC output as
desired by the specific application we have proposed a simple
and modular single stage DC-DC boost converter to achieve
desired voltage level to charge a battery. This design is flexible
to be operated in multiple ranges of sources from nW to
microwatt with a single shared inductor. The proposed power
stage has two major features. First, the switching frequency is
high because of the adoption of 45 nm technology node. Sec-
ond, the ripples associated with the inductor current is reduced
by more than 80%. The discontinuous mode of operation is
performed without having any current sensing mechanism.
Fig. 11 shows the basic configuration of a boost converter in
line with a RF rectifier where the switch integrated is a metal
oxide semiconductor field effect transistor (MOSFET). In our
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Fig. 11. RF-EH rectifier and PMU.

TABLE I
PARAMETERS OF COMBINATIONS USED FOR GENERATION OF DATA FOR

TRAINING AND TESTING.

Sl. no. Item Parameters

1
Channels
types and
parameters

Rayleigh
and Rician

Doppler shift-
30 to 100 Hz
SNR- ±10 dB

2
Data 1000 to 10,000
block chips of 16, 32,
size 64 bits as inputs

3

OFDM + 16/32-QAM
256-OFDM, CP of 30

10 OFDM symbols
Waveform per OFDM frame (USRP)
variations Sampling rate-

4 to 8 Mbps
Word size-

14 bits per sample

4
Pulse

shaping
(USRP)

up/ down
sampling with RRC

factor of 16
256 FFT, CP of 30

5

USRP- 1 GHz
Carrier Training/ testing

frequency data- 845, 1400
and 2400 MHz

6 Window 60 to 300 ssize timings

7 Antenna 1× 1, 1× 2
diversity 2× 1, 2× 2

case, the diode has been replaced by a second MOS switch
that is essentially used in most of the lower power converters.
This implementation helps in extending the battery life of the
UAV operations. The experimental details of the design and
the output response is discussed below in Section III.

III. EXPERIMENTAL DETAILS AND RESULTS

In this section, we discuss the details of the experiments
carried out and the results derived.

A. Data

The details of the parameters used for generation of the
waveforms is shown in Table I.

The experiments are repeated in a 2 × 2 MIMO set-up
with flat fading and time varying Rayleigh and Rician channel
coefficients which are generated using the Jakes model. For 15
numbers of random trials for several cases of Doppler shift, be-
tween −10 to 10 dB SNR variations are taken. With both LOS

Fig. 12. Waveforms generated for experimental data used during training.

and NLOS components, data block variations between 1000
and 10000, in certain fixed window of timing (60 to 300 s) are
taken to produce significant variations in the learning environ-
ment. Antenna diversity of all four possible states of the 2×2
MIMO are also taken into account. Further, there is a hardware
section consisting of signal generation and testing based on
universal software radio peripheral (USRP) sets, spectrum
analyzer for viewing and comparing the results, antennas at
transmitter and receiver sides (appropriately configured and
synchronized). Waveforms of orthogonal frequency division
multiplexing (OFDM), 16-quadrature amplitude modulation
(QAM) and 64-QAM transmitted in actual field conditions
using static and mobile state (using a vehicle with speeds upto
60 Kmph) and received with channel impairments are used to
train the system for UAV channel modeling. Using the USRP
sets, waveforms are generated with sampling rate of 4 and
8 Mbps, word size of 14 bits per sample, up sampling/ down
sampling factor for root raised cosine (RRC) pulse shaping
taken to be 16, fast Fourier transform (FFT) size of 256
and cyclic prefix (CP) length of 30. Each transmit frame can
carry variable number of OFDM symbols depending on the
configuration. Results are obtained using 10 OFDM symbols
per OFDM frame. Carrier frequencies considered is 1 GHz.
Further, USRP sets (N201 Ettus Research) are placed on top
of building structures at around 60 feet above the ground
to simulate the height of the UAV while the data recording
vehicle is moved at around 60kmph to put the effect of Doppler
shift. At one time, either the transmitter or the receiver is
mobile as is the case with a UAV. The set-up is used to
transmit a 2 s HD video. This segment of the data is used
for testing. Using the Jakes model, another set of data have
been created for carrier frequencies of 845 MHz, 1.4 GHz, and
2.4 GHz. However, the testing is instantaneous and no timing
windows are required. A replica of the waveforms generated
for experimental capture of data for training and testing is
shown in Fig. 12.

B. Details of Training and Outcomes

Training is the most vital component of the system. A
summary of the different parameters related to the proposed
model is shown in Table II.
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TABLE II
PARAMETERS OF DIFFERENT LAYERS OF THE COMPLETE SYSTEM.

Sl. no. Item Parameters

1

Overall
layers

(proposed)
Benchmark

TDL-AE- 1
TDL-LSTM- 2
TDL-VRC- 2
Recovery- 1

Input- 1
RNN/ NARX- 1 input (Ip),

1 hidden (Hd)
1 output (Op) layers
TDNN- 1 Ip, 1 hd,

1 Op layers;
two structures

one for real and
other for imaginary

components

2
Max. TDL-AE =100

epochs TDL-LSTM = 100
(pre-train) Overall = 500

3
Hidden
layer

length

TDL- AE- Hiden layer length
1.5N, 0.8N, 1.3N

TDL-LSTM/VRC- 2
numbers of N length
TDL-LSTM- 2 layers

of N length;
N, input length

16, 32, 64 blocks

4
Criteria MSE convergence and

for fixing computational
hidden layer time

5 Weight regularization 0.005
6 Sparsity regularization 2
7 Sparsity proportion 0.05
8 Decoder activation Purely linear

9 Training

AE- Unsupervised
TDL-VRC- SGD BP

TDL-LSTM- SGD BP
LSTM- SGD BP

RNN- BPT
TDNN-SGD BP

10

CSI
reference

block
(training)

64, 32, and 16
bit sized

repetitions
of 10, 8, 6,

4, and 2 blocks

The experimental setup showing decoupled DNN blocks for
processing real and imaginary components of the waveforms is
shown in Fig. 13. The decoupled blocks adds to the computing
cycles but helps in proper recovery of the required contents
from the input. Each of the block of the DNN (Fig. 13) has
the processing elements of the system as shown in Fig. 8.
Each of the layer block (contextual process and de-noising
layer, feature learning layer, recovery layer and discrimination
layer) are initially trained with supervised SGD BP algorithm.
This initial training helps to speed up the learning process
of the complete system. In case of the recovery layer, the
training of the TDL-VRC and TDL-LSTM layers take place by
considering the mean square error (MSE) of each of the cells
separately and then taking out an average. The average MSE
between the present output (estimate of the pathgain) and the
target (reference symbols) is taken as the learning objective.
This is because the recovery layer has cells formed by TDL-
VRC and TDL-LSTM units. All these layers are initially
trained for 100 epochs with apriori target feeds incorporated.
Except for the recovery layer, the other layers have a size of

Fig. 13. Experimental set-up showing decoupled DNN blocks for processing
real and imaginary components of the waveforms.

N (= 16, 32, and 64 depending upon the size of the input).
This turnouts to be the size of the received signal block and
that way the length of the specific layer is fixed. For the initial
cycles, pilot CSI states are applied enabling the system to track
a global objective. The prior reference given at the beginning
helps to acclimatize the blocks of the system with the expected
output. After the acclimatization is over, the system works
without reference symbols. The received signal is used as the
input to the system while channel path gains are obtained as
outputs with the pilot CSIs used as targets. The system is
designed and estimate the UAV communications channel path
gains.

For each of the blocks, expected output sequences represent-
ing the UAV CSI generated using Jakes model and that taken
from actual measurements (as discussed in Section III-C),
are available for use in the start-up mode and later during
testing. Subsequently, a combination of past and present values
produce the future state of the system which in a supervisory
learning approach track the changes to reach the desired
output. This effort is continued and the complete system is
trained with all the available data so that the learning is
comprehensive. The diversity in the data helps the learning and
also prevents bias states from getting generated. Further, the
training cycles are short so that over-training and memoriza-
tion don’t develop and the system strictly executes the action
with priority to generalization. The output is a combination
of current input and also or previous values, outputs, or states
applied and generated from different blocks of the system and
finally tracking a global optimal state in which the network
attempts to reach the closest to the desired target. After the first
cycles of learning, the network reaches a trained state enabling
it to generate a sequence like that of a time series which
is somewhat similar to that desired from channel modeling.
Initially, the system in a training mode tracks the CSI for N
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Fig. 14. MSE convergence of LSTM and VRC based layers upto 1000 epochs.

TABLE III
MSE CONVERGENCE FOR DIFFERENT EPOCHS WITH SNR VARIATION IN

THE INPUT DATA DEMONSTRATED BY EACH CONSTITUENT BLOCK.

epochs→
SNR ↓ Layer 20 40 60 80 100

-5

L1 0.081 0.073 0.067 0.056 0.031
L2 0.072 0.061 0.052 0.031 0.02
L3 0.062 0.053 0.041 0.025 0.018
L4 0.06 0.047 0.038 0.027 0.017

-3

L1 0.071 0.064 0.051 0.042 0.023
L2 0.058 0.041 0.032 0.021 0.017
L3 0.057 0.043 0.028 0.02 0.013
L4 0.055 0.041 0.018 0.012 0.01

-1

L1 0.061 0.053 0.047 0.036 0.021
L2 0.052 0.038 0.032 0.018 0.013
L3 0.05 0.03 0.028 0.021 0.011
L4 0.047 0.027 0.025 0.021 0.010

0

L1 0.041 0.033 0.027 0.016 0.005
L2 0.042 0.031 0.026 0.015 0.004
L3 0.04 0.027 0.021 0.016 0.003
L4 0.037 0.025 0.021 0.015 0.002

1

L1 0.037 0.032 0.025 0.015 0.004
L2 0.032 0.028 0.024 0.011 0.003
L3 0.029 0.026 0.02 0.011 0.002
L4 0.027 0.022 0.019 0.010 0.001

3

L1 0.029 0.022 0.015 0.011 0.001
L2 0.022 0.021 0.020 0.001 0.0008
L3 0.021 0.016 0.007 0.006 0.001
L4 0.02 0.012 0.006 0.004 0.0007

5

L1 0.018 0.013 0.011 0.009 0.007
L2 0.012 0.011 0.009 0.006 0.0002
L3 0.011 0.008 0.005 0.003 0.0009
L4 0.009 0.007 0.002 0.001 0.0004

time steps which is driven by a least squares (LS) estimation.
The system learns CSI of k time steps out of the total acquired
N CSI time steps to predict (k + 1)th CSI in a time step
to cover the whole acquired information. In our work, the
parameter values for N and k are taken to be between 1000
and 10000 and 8 to 32, respectively.

For each of the blocks,an initial training is carried out
assuming 6400 block size with OFDM, 4-QAM, and 8-QAM
modulation with signal to noise ratio (SNR) varying between
−10 and 10 dB. Upto 100 epochs of the training are sustained
with a MSE goal of 10−3 taking sub-CSI value block size of
64. The MSE convergence values generated using waveforms
with SNR variations reached at certain milestone epochs at
different layers are shown in Table III.

Here, as already indicated L1 represents contextual process

and denoising layer, L2 feature learning layer, L3 recovery
layer and L4 discrimination layer. It is seen that with rise in
the SNR value the performance of the training phase improves.
This is only an initial training which is required later to shorten
the time of learning as a complete system. The presence of
the TDL blocks and the differential feeds make the learning
faster since it circulates the most relevant portion of the inputs
and removes the redundant segments of the signals.
For the feature learning layer, LSTM cells are selected on
the basis of MSE convergence recorded upto 1000 epochs
as shown in Fig. 14. Both the cells have nearly similar
MSE convergence upto 50 epochs but beyond that the LSTM
shows better learning. Beyond 500 epochs, the VRC shows
no convergence while the MSE curve of the LSTM continues
with a downward trend. It indicates that the LSTM cells
facilitate better learning. Hence, for experimental purpose, the
the feature learning layer is formed by the LSTM cells.

After this training is completed, the layers are connected
and complete system is trained. For this training, 6400 block
size with OFDM, 4-QAM, and 8-QAM modulation with signal
varying between −10 and 10 dB passed through 2 × 2 MIMO
channels with Rayleigh and Rician distributions considered.
Doppler shift of 30 to 100 Hz have been considered. The
channel path gains are shown in Fig. 15. The true CSI states
of these channel paths are applied as apriori knowledge to
the system enabling it to learn the patterns. This happens
only during the first few cycles of the training where out
of 6400 blocks first 10 segments of 64 length sequences are
applied as apriori labels for four different path gains to the
system. It means that the system for the four path gains
takes only four instances of the apriori CSI states to learn.
Subsequently it works on an autonomous mode and starts to
generate the path gains as a time sequence. This is recorded
with SNR value of 0dB which means that signal elements are
not that strengthened.

The block size of the apriori CSI used in the training phase
is a critical aspect. In the initial phase a few variations of the
block sizes are required to ascertain the performance of the
system. Certain trials are carried out to determine the effect
of block sizes in the performance of the system when it is
subjected to SNR variations. With block size 10, the network
performs best with its discrimination ability enhancing with
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Fig. 15. Path gains of 2 × 2 MIMO channels with Rayleigh and Rician distributions used during training.

TABLE IV
BER VALUES OBTAINED WITH apriori CSI BLOCK SIZE AND SNR

VARIATION DURING TRAINING.

SNR Block size
10 8 4 2

1 2× 10−3 4× 10−3 8× 10−3 9× 10−3

2 0.5× 10−3 2× 10−3 5× 10−3 7× 10−3

3 0.2× 10−3 0.6× 10−3 4× 10−3 7× 10−3

4 5× 10−4 0.1× 10−3 4× 10−3 7× 10−3

5 5× 10−5 8× 10−4 2× 10−3 2× 10−3

rise in SNR. Table IV shows BER values obtained with apriori
CSI block size and SNR variation during training.

C. Effect of L1 and L3 Layers

The roles played by the L1 (contextual process and denois-
ing layer) and L3 (recovery layer) layers are significant. First, a
series of experiments are performed to ascertain the role of the
L1 layer. Received signals (OFDM modulation passed through
Rayleigh faded channel in 2 × 2 antenna diversity) with SNR
variation between 0 to 4 dB are applied to the system. First,
the SNR variation obtained by using the L1 layer is calculated.
Next, the SNR variation due to the absence of the L1 layer
is calculated. The system is trained to discriminate between
channel paths with all the considered states applied to it before
hand. The results obtained are shown in Table VI. It is seen
that at 0 dB, the SNR variation between the two cases is 1 dB.
Similarly, at 1 dB this margin is 1.39 dB, at 2 dB this gap is
2.3 dB and at 4 dB this difference is 3.25 dB. This clearly
indicates that the presence of the L1 layer helps in SNR gain.
Therefore it is essential to keep the L1 layer though it adds
to the computational complexity which arises only during the
training time and is insignificant later.

Another set of experiments are carried out to show the
effectiveness of the L3 layer. Here also as done above, in the
pre-trained network (with the L1 layer present), the role of the

TABLE V
SNR GAIN DUE TO PRESENCE AND ABSENCE OF L1 LAYER.

Description SNR in dB
0 1 2 3 4

L1 1.5 2 3.1 3.65 4.25
present dB dB dB dB dB

L1 0.5 0.61 0.81 0.98 1
absent dB dB dB dB dB

TABLE VI
SNR GAIN DUE TO INCREASING % OF NULL STATES IN THE INPUT

SEQUENCE.

% of SNR in dB
missing data 0 1 2 3 4

0 1.2 1.5 1.8 2.1 2.4
5 1 1.3 1.5 1.7 1.8

10 0.8 1 1.3 1.5 1.6
15 0.6 0.8 0.85 1.1 1.3
20 0.3 0.5 0.6 0.8 1.1
25 0.1 0.2 0.4 0.6 0.8

L3 layer is ascertained by reducing the size of the input coming
to the system. This is done by continuously incorporating null
values between 0 to 25% in gaps of 5%. At 4 dB SNR in
the input, the system gives a 1.8 dB gain with 5% missing
data. In the worst case, with 25% missing content, the layer
helps in attaining a 0.8 dB gain while with 20% null states,
the system is able to achieve an addition of 1.1 dB at 4 dB
input SNR. This establishes the role played by the L3 layer. It
clearly indicates that this layer enhances the performance of
the system.

D. Overall Performance

The system is subjected to training using all the pre-trained
blocks. It is set to sustain the learning with samples as
described above. MSE curves for four situations are recorded.
The first MSE is during the training time. Next one is
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TABLE VII
AVERAGE SNR GAIN GENERATED BY PROPOSED APPROACH COMPARED

TO DFE, DDFE, MLP, TDNN, RNN AND NARX.

Set-up DFE DDFE MLP TDNN RNN NARX
1 × 1 0.67 0.71 0.5 0.4 0.4 0.4
1 × 1 1.78 1.11 1.1 0.6 0.6 0.6
2 × 1 2.21 1.16 1.1 0.7 0.8 0.7
2 × 2 2.6 1.43 1.2 0.8 1.0 0.8

during the testing time. These two curves are generated with
the L1 and L3 layers inserted in a pre-trained form. The
third and fourth MSE curves are recorded without the L1
and L3 layers, respectively. Fig. 16 shows the four MSE
curves. The curves derived without the use of the L1 and
L3 layers show that the learning has stopped beyond certain
points. Here more number of epochs are not attempted to
prevent over training. Some of the common methods used
in channel modeling and channel estimation like decision
feedback equalizer (DFE) [36], delayed decision feedback
estimator (DDFE) [36], and ML approaches like multi layer
perceptron (MLP), TDNN, RNN and nonlinear autoregressive
exogenous (NARX) are used for comparing the performance of
the proposed approach. The calculations are based on MMSE
as it is optimal for various structures and data processing
techniques. The proposed approach demonstrates significant
SNR gain with four different antenna diversity configurations
in a Rayleigh faded UAV channel. This is summarized in
Table VII. In case of the 2 × 2 configuration, the proposed
approach provides a gain of 2.5 dB over that provided by
the DFE based method. For the learning based approaches,
this margin is between 0.4 and 1.5 dB. While generating
this performance, compared to DFE and DDFE, the present
approach required 80% less CSI pilots while for the leaning
based approaches like MLP, TDNN, RNN and NARX this
margin is around 60%. This is a major advantage of the
system.

Table VIII shows the values of capacity (in bit/s/Hz) gen-
erated by the proposed approach compared to the theoretical
limit and that generated by TDNN, RNN, NARX methods and
the technique presented in [37]. The comparisons are done in
the LS (time average) and MMSE (ensemble averages) terms.
The technique presented in [37] is based on convolutional neu-
ral network (CNN) which is effective in vision based pattern
recognition problems [8] but requires specific modification in
the structure to deal with time varying signals as observed in
UAV channels. The results shown in Table VIII are relate to
trails carried out using a 2× 2 MIMO channel with Rayleigh
fading in 60 Hz Doppler. The capacity is linked with the
estimation of the path gains. The proposed approach provides
content rich path gains which provides average capacity values
closer to the theoretical limit.

The proposed approach at 2 dB SNR using LS estimation
shows capacity improvement of 0.14 bits/s/Hz compared to
RNN, 0.19 bits/s/Hz to that obtained using TDNN and NARX
and 0.25 bits/s/Hz using the CNN based technique reported
in [37]. While using MMSE, this improvement is 0.09, 0.15,
0.15, and 0.25 bits/s/Hz over those obtained using RNN,
TDNN, NARX and [37], respectively. With increasing SNR

there is further improvement in the average capacity. This is
significant. This improvement has been achieved with only
10% of CSI pilots carriers used during the first cycles of
training. As a result, it make huge contribution to bandwidth
saving.

The outage performance of the system improves with the
MIMO-NOMA set-up where the channel gains are estimated
using the proposed approach. The outage performance of the
DL assisted MIMO-NOMA set-up is shown in Fig. 17 in com-
parison to situations where NOMA is not used and MIMO-
NOMA is deployed with MMSE based channel path gain
estimation. The proposed approach assisted MIMO-NOMA
provides near optimal outage performance for an SNR range
between −5 and 20 dBm for two users separated by 1 KM
distance in Rayleigh fading.

The trained system is also used to generate a sequence of
path gains of the UAV channel used for generation of the
values shown in Table VIII. Fig. 18 shows a representation
of the path gain tracking of a MIMO channel with both
Rayleigh and Rician distribution. Nearly no parts of the signal
are lost which is made possible by the actions of different
layers used in the system. The effect of height of the UAV
on the outage probability of ground to air (G2A) and air to
air (A2A) connections in Rayleigh and Rician fading over a
500 meter radius in studied. The transmission power has a
SNR of 20 dB and the height is varied between 10 to 100
meters. The average outage probability of both the channels
obtained using the proposed approach is shown in Fig. 19.
Outage probability performance improves with greater height.
The incorporation of the EH aspects both in terms of channel
configuration and device level implementation adds strength to
the proposed system. The outage probabilities of the two users
at different values of the EH efficiency are plotted in Fig. 20.
It clearly indicates that with information transmission using
the harvested energy, a proper outage performance can be
observed which reassures the fact that the UAV relay node can
perform sufficiently well without any dedicated battery source.
Hence, an uninterrupted power supply can be guaranteed
for information transmission with low outage conditions as
opposed to a fixed, vehicle power source which will result
in absolute outage once the battery source dries out. Such
a system set up uses the CSI to transmit information using
NOMA. The required CSI is estimated using the proposed
approach.

Further, as reported above (Section II-I), a dedicated block
has been implemented to use energy harvesting directly as
an aid to extend the UAV battery life. Some of the relevant
parameters associated with the design are summarized in
Table IX. We have presented a simple, low power, high
frequency RF energy harvesting rectifier and a boost converter
for specific target storages or applications. It achieves a peak
efficiency of 93% at a very low input power of −12 dBm
with the use of only six MOSFETs and for smaller value
of inductance which makes the design practically feasible.
Moreover it achieves a very good transient settling time
of 5.5 s which indicates its capability for high frequency
applications. Moreover the design is scalable in the sense that
it can be configured for different output voltages as demanded



180 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 24, NO. 2, APRIL 2022

Fig. 16. MSE v/s epoch plot.

TABLE VIII
AVERAGE CAPACITY GENERATED BY THE PROPOSED SYSTEM COMPARED TO CERTAIN BENCHMARK METHODS.

Capacity (bit/s/Hz)
SNR in dB LS/MMSE Theory Proposed RNN TDNN NARX [37]

2 LS 4.2 4.05 3.91 3.86 3.86 3.8
MMSE 4.4 4.35 4.26 4.2 4.2 4.1

4 LS 5.6 5.52 5.5 5.5 5.5 4.9
MMSE 5.8 5.75 5.6 5.6 5.6 5.1

6 LS 7.3 7.26 7.19 7.18 7.18 6.5
MMSE 7.6 7.54 7.3 7.3 7.3 6.8

8 LS 9.1 9.05 8.94 8.9 8.9 7.2
MMSE 9.4 9.32 9.25 9.2 9.2 7.8

10 LS 11.6 11.5 11.1 11.1 11.0 7.9
MMMSE 11.8 11.75 11.5 11.4 11.4 8.1

Fig. 17. Outage performance of the MIMO-NOMA system with and without
NOMA and proposed approach.

Fig. 18. Actual and tracked path gains.

Fig. 19. Average outage probability v/s height of the UAV over a 500 meter
radius using a 20 dB SNR OFDM signal.

by any target applications. Fig. 21 shows that the system is
able to provide 4.9 to 5 V output for input of around 0.8 V
which is derived form the received RF signal.

While generating average SNR gain with the 2×2 configura-
tion, by the proposed approach obtains significant performance
improvements over DFE and DDFE methods while compared
to MLP, TDNN, RNN, and NARX, this margins 1.2, 0.8, 1.0,
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Fig. 20. Outage probability Vs the Transmit SNR for η=[1,0.7].

TABLE IX
PARAMETERS OF DIFFERENT LAYERS OF THE COMPLETE SYSTEM.

Sl. no. Item Parameters

1 Technology 45 nmnode
2 Input −12 dBm

3 Output 4.9 Vvoltage

4 No. of 6transistors
5 Peak efficiency 93%

Load

6 transient 5.5s@28Wresponse

7 Parameters

Inductor- 10 µH;
Capacitor, Cin= 100 pF
Capacitor, Cout= 1 pF

Switching frequency= 100 MHz
Duty cycle= 90%

Input voltage= 800 mV

Fig. 21. Output DC voltage across input voltage generated by the RF-EH
rectifier and the PMU implemented for battery life extension of the UAV.

and 0.8 dB, respectively. In obtaining these performances,
compared to DFE and DDFE, the present approach takes
80% less CSI pilots while for the leaning based approaches
like MLP, TDNN, RNN, and NARX this margin is around
60%. The proposed approach shows capacity improvements

with less bandwidth. When the input is 10 dB SNR, the
improvements are 1 dB, 1.2 dB, and 1.3 dB compared to
TDNN, RNN and NARX respectively obtained with small
portion of the CSI pilots carriers taken only during the first
cycles of training. As a result, it makes huge contribution
towards bandwidth saving. The advantage of the proposed
approach is obvious.

IV. CONCLUSION

Here we reported the design of a deep learning based
approach formed by gated functions like VRC and LSTM
aided by TDL blocks configured for UAV channels. The key
parts of the system are contextual process and de-noising layer,
feature learning layer, recovery layer and discrimination layer.
Extensive training, testing and experiments are carried out us-
ing UAV CSI data generated using Jakes model and that taken
from actual measurements. The samples cover NLOS and LOS
conditions with Doppler shift approximating upto 60 Kmph.
Antenna diversity obtained using 2 × 2 have been used to
check the effectiveness of the system to perform in high data
rate conditions. The proposed approach shows significant im-
provements in terms of SNR path gain and capacity (bit/s/Hz)
compared to data aided methods like DFE and DDFE and
neuro-computing approaches like TDNN, RNN, and NARX.
Further, the system has been configured for work with NOMA-
MIMO configuration with energy harvesting attributes. System
level implementation of RF energy harvesting based PMU to
achieve greater battery life has also been incorporated and
tested. The system can be very well configured as part of
an operational deployment where after the wireless profiling,
in the autonomous mode, the UAV communication channel
can be replicated in the best form and wireless links secured
for reliable data transfer. With a cloud based CSI capturing
arrangement, the knowledge about the channel path gains can
be shared among a swarm of drones to build intranets of UAVs
which can provide coverage extension to wireless networks.
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