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Breathing-based Continuous Non-intrusive User
Verification Leveraging Commodity WiFi

Huan Dai, Jingjing Jiang, Jiaju Ma, He Huang, and Hongbo Liu

Abstract—This paper opens up a new pathway of the utility
of breathing pattern for user verification. We demonstrate that
it is possible to capture people’s breathing pattern leveraging
commodity WiFi devices. While prior solutions for biometrics-
based user recognition usually require dedicated devices (e.g.,
video cameras or IR sensors), this paper introduces the first
general, low-cost breathing-based user verification system using
commodity WiFi devices. The proposed system is based on
the fact that the breathing pattern always keeps consistent
for the same user but distinct among different people. Our
innovative method successfully extracts the breathing pattern
of different people based on channel state information of WiFi
signal to facilitate user verification. The prototype study using
two commodity WiFi devices can differentiate people with an
average verification accuracy over 90%, suggesting that our
breathing-based user verification system using commerical off-
the-shelf (COTS) WiFi is promising to be one of the most critical
methods in biometrics.

Index Terms—Breathing pattern, channel state information,
security monitoring, user verification.

I. INTRODUCTION

THE rapid evolution of Internet of things (IoT) tech-
nologies has led to the provision of versatile ubiquitous

network applications and services embedded with modern
sensors and intelligent devices (e.g. smart health [1], smart
home [2], public safety [3]). In the meanwhile, security
issues, especially user verification, become critical for the
expansion of IoT [4] as any device is prone to targeted attacks.
Comparing with traditional user verification solutions, which
require users to memorize and maintain complex passcode, the
past decade has witnessed the proliferation of user verification
leveraging multiform bio-tokens (e.g., face, fingerprint, iris
and gait, etc. [5]–[7]). However, the existing solutions usually
rely on specialized equipment or active user involvement.
Though popular, these methods either incur extra cost on
equipment purchasing and maintenance, or impose heavy
burden on bio-token collection at a high frequency for the
user to gain continuous access. Continuous verification aims
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to identify permanently and periodically but not only at a given
moment, which provides several advantages like, for example,
improve the level of security and the quality of user experience
during interaction with applications that require authentication.
Therefore, alternative solutions of contact-free, easy deploy-
ment, low-cost and continuous biometric recognition would be
highly appealing to alleviate the imposition onto the users and
provide enhanced security.

In this work, we target continuous non-intrusive user veri-
fication for the IoT-based environment. Towards this end, we
find that breathing rate, which is a major indicator of a person’s
vital signs, can serve as a good biometric feature to facilitate
continuous non-intrusive user verification [8], [9]. Specifically,
the breath of an individual always maintains a steady rate
(i.e., 12–20 bpm) and chest motion pattern (i.e., amplitude
and variation trend), while different people induce different
motion patterns of chest. Therefore, the breathing pattern can
be utilized to uniquely determine the user’s identity through
comparing the measured pattern with previously collected one.

There have been great efforts devoted to related studies on
human breath monitoring from both industry and academia.
Traditional methods on human breath monitoring rely on
hospitalization or wearable devices, which are inconvenient
and incur extra cost [10]–[12]. Unlike these methods, radio-
based monitoring systems, which exploit wireless signals to
capture breathing-induced chest movement, recently attract
extensive research interest. In particular, Vital-Radio [13]
and WiTrack [14] remotely monitor human breath through
capturing the reflected low-power wireless signal of human
body with frequency modulated continuous wave (FMCW)
radar, which requires a custom hardware with a large band-
width from 5.46 GHz to 7.25 GHz. Doppler radar [15] and
ultra-wideband radar [16] are also adopted to detect human
breathing. However, they would continuously occupy a wide
band and may impose interference on other devices that share
the same spectrum.

Many researchers then resort to commodity devices to
perform human breathing monitoring. N. Patwari et al. [17]
explore using received signal strength (RSS) on the wireless
links between commercial wireless devices to estimate human
breathing rate. UbiBreath [18] can even detect apnea based on
WiFi RSS measurements. The mm-Vital system [19] utilizes
the RSS of 60 GHz millimeter wave signals to estimate
breathing rates with a larger bandwidth around 7 GHz, but RSS
measurements provide coarse-grained channel information,
which can only help to derive the breathing rate, and is easy
to be affected by ambient interferences. Recently, channel
state information (CSI) has been widely adopted to facili-
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tate many wireless sensing capabilities, such as suspicious
object detection, indoor localization [20], fall detection [21],
human activity recogniztion [22], and RF imaging [23]. It
can provide fine-grained channel information with multiple
OFDM subcarriers of 802.11n WiFi systems, and is readily
available on many commercial WiFi network interface cards
(NIC), e.g., Intel WiFi Link 5300 NIC [24] and the Atheros
AR9380/9390, AR9580/9590 chipset [25]. Intel 5300 NIC tool
only provides CSI for 30 out of the 56 subcarriers, while
OpenWrt can capture the CSI measurements from regular
data frames [22] which can report CSI data on all the 114
subcarriers. Compared with RSS in MAC layer, CSI depicts
fine-grained physical layer information and is more sensitive to
environments changes, which makes it more suitable to detect
human breathing. S. Lee et al. [26] propose a new method
for identifying the changes in breathing and heart rate pattern
of a person using commercial WiFi devices. Ten participants
were evaluated. The accuracy of this method is 94%. J Zhang
et al. [27] track the human breath using phase variation of
CSI. The system Breath track utilizes the hardware correction
to calibrate the time-invariant PPL phase offset using cables
and splitters. The detailed breath status and the breath rate are
extracted by the phase variation of the complex attenuation
coefficient. J. Liu et al. [28] propose to track vital signs of
both breathing rate and heart rate by making use of channel
state information in both time and frequency domain during
sleep. In both cases, breathing rate is captured by CSI while the
raido frequency signal is reflected from the chest of one user,
however the breathing pattern difference between different
people is not analyzed, and the multi-carrier CSI mining is
not sufficient.

In this work, we develop a non-intrusive and continuous user
verification system based on people’s breathing pattern. The
basic idea is to infer people’s breath patterns from the fine-
grained CSI information, which is collected with commodity
WiFi devices, and to verify their identities by comparing with
pre-collected breathing pattern profiles. The advantages of the
proposed system are two-fold: 1) Our system could be easily
applied to existing COTS WiFi devices without introducing ex-
tra cost, and 2) our system relies on people’s breathing pattern
to perform user verification, which is non-intrusive to user’s
normal behavior, and can achieve continuous verification in
practical scenarios. Furthermore, we also upgrade the Atheros
CSI Tool and implement the proposed system by developing a
new OpenWrt platform, which can obtain CSI data on all the
114 subcarriers on each TX-RX pair. The main contributions
are summarized as follows:

• We demonstrate that CSI collected from commodity
WiFi can be utilized to verify user’s identify. Like user
verification with fingerprinting or face, this system can
guarantee security with the specificity of everyone’s
breathing pattern. In particular, it does not require any
extra cost compared with the former two systems. To our
best knowledge, this is the first work to perform user
verification based on breathing pattern with the readily
available CSI information from COTS WiFi devices.

• We use CSI phase difference data of the same subcarrier

between two different receiving antennas, and develop a
novel data extraction method that can precisely separate
the breathing measurements caused by chest vibration
from the continuous background noise impacted by en-
vironments, and extract the breathing pattern which is
contained in multi-carrier. Meanwhile, we also build a
hyperplane between each classifier upon the breathing
pattern.

• Based on CSI tool [29], we upgrade the Atheros CSI tool
and develop a new OpenWrt based firmware for TP-link
4900v2, so that the CSI measurements can be collected
directly from WiFi routers instead of using laptop or
PC with external WiFi NIC adapter. Moreover, our plat-
form can report CSI data on all 56/114 subcarriers over
20/40 MHz channel on each TX-RX pair, which contain
more fine-graind information than existing platforms.

• Extensive experiments involving 16 volunteers are con-
ducted under different scenarios. The evaluation results
show that our system can achieve over 90% accuracy and
thereby validate the effectiveness of the proposed system.

II. PRELIMINARIES & FEASIBILITY STUDY

A. Channel State Information and MIMO

The CSI represents the channel frequency response (CFR)
across multiple orthogonal frequency division multiplexing
(OFDM) subcarriers between transmitting antenna and receiv-
ing antenna. OFDM, as a multi-carrier modulation technology,
divides the wireless channel into a number of orthogonal sub-
channels, and nowadays is widely applied to many wireless
network standards, such as IEEE 802.11n. It can not only
weaken the influence of multipath interference, but also greatly
reduce inter-channel interference due to the orthogonal channel
design. Leveraging the device driver for wireless NICs (e.g,
Intel 5300, Atheros Atheros AR9380/9390, AR9580/9590
chipset), the CSI across different OFDM subcarriers can be
obtained from each wireless packet to reveal fine-grained
wireless physical layer information.

We develop a new OpenWrt platform built upon commodity
WiFi router, which can report CSI data across all 56/114 sub-
carriers, each taking up 20/40 MHz bandwidth. With respect
to each subcarrier, the CSI can be expressed as a complex
value including both amplitude and phase:

Hk = realk + j × imagk = |Hk|ej∠Hk

, (1)

where Hk indicates channel response with the central fre-
quency fk. realk and imagk are the in-phase compo-
nent and quadrature component of k-th subcarrier, k =
1, 2, · · ·,K, K = 56/114. Respectively, |Hk| and ∠Hk

denote the corresponding amplitude and phase of subcarrier
k. It describes how the wireless channel is affected by the
absorption, reflection and refraction of wireless signal in the
surrounding environment, and reveals the multipath effect,
shadow fading and distortion between a pair of transceivers.

In radio, multiple-input and multiple-output (MIMO) is a
method for multiplying the capacity of a radio link using
multiple transmit and receiving antennas to exploit multipath
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Fig. 1. Comparison between original CSI data (marked as blue points) and
the phase difference data (marked as orange points) of the 56-th subcarrier
for 20000 consecutively received packets.

propagation. MIMO has become an essential element of wire-
less communication standards. In 2003, two major competing
proposals (TGN Sync and WWISE) agree that the 802.11n
standard would be based on MIMO-OFDM with 20 MHz
and 40 MHz channel options. For two receiving antennas, the
measured CSI phase difference on subcarrier k is stable:

∆ ̂∠Hk
t1,r1r2 = ∆∠Hk

t1,r1r2 +∆βk
t1,r1r2 + 2σ2, (2)

where ∆ ̂∠Hk
t1,r1r2 and ∆∠Hk

t1,r1r2 are the measured phase
difference and the true phase difference on subcarrier k be-
tween two receiving antennas respectively. ∆β is the unknown
phase offset difference, which in a constant due to the phase-
locked loop [30], σ2 is the noise variance.

As shown in Fig. 1, the blue dots represent the raw CSI
measurements of 20000 consecutively received packets with
respect to the 56-th subcarrier. Phase measured on a single
receiving antenna are evenly distributed between [−π π]. On
the other hand, the red dots denote CSI phase differences
between a pair of transceiver antennas. All the phase difference
measurements concentrate within two sectors between π/6 and
5π/6, which clearly indicate that the phase difference is more
stable comparing to raw CSI measurements.

B. Breathing Detection

To enable user verification leveraging breathing pattern, it is
critical to understand the breathing dynamics first. Breathing
includes two phases, inhaling and exhaling, which would cause
chest ups and downs in periodic pattern, and the amplitude of
chest movement depends on the lung capacity.

According to physiological research [19], the normal breath-
ing rate of adults always maintains at 10-20 breaths per minute
(bpm). The chest movement with a certain breathing rate fb
will result in a similar pattern exhibited in the wireless signal
reflected from the chest. Specifically, the CSI of any OFDM

subcarrier should be a periodic signal of frequency fk. The
CSI phase ∠Hk between a pair of transceivers is:

∠Hk = 2πd(t)/λk, (3)

where λk is the wavelength of subcarrier k. Given the period-
ical breathing pattern, the distance becomes:

d(t) = D +Acos(2πfbt), (4)

where D is the constant mean propagation distance between
transceivers. Acos(2πfbt) is the changes of equivalent dis-
tance caused by the periodical breathing, which indicates the
attenuation of wireless signals during transmission. Thus, the
reflected signal phase at the subcarrier k is defined as:

∠Hk = 2π(D +Acos(2πfbt))/λk. (5)

The measured phase difference is the CSI phase subtraction
between two receiving antenna. Thus, the measured phase
difference is also defined as:

∆ ̂∠Ht,r1r2 = ∠Ht,r1 − ∠Ht,r2. (6)

Since the transmission of each subcarrier has different
channel fading, the amplitudes of the subcarriers are different
in MIMO system. The phase difference is derived based on
the phase of the same subcarrier k at two different antennas r1
and r2. According to the above two equations, the measured
phase difference can be inferred as:

∆ ̂∠Ht,r1r2 = 2π(D1−D2)+(A1−A2)cos(2πfbt))/λk. (7)

Where D1 and D2 are constant values indicating the average
propagation distances between the transmitting antenna and
two different receiving antennas r1 and r2; A1 and A2 are the
amplitudes of CSI measurements caused by the respiratory
movement at r1 and r2, respectively. According to the (5)
and (7), the measured phase difference also keeps the same
frequency of breathing signals fb.

To verify the consistence of breathing pattern from the
same person, Dynamic Time Warping, which is capable of
measuring the similarity between two signals of different
time scales, is adopted to analyze the phase difference of
breathing pattern. Figs. 2(a) and 2(b) depict the similarity of
phase difference from the same person and different people,
respectively. Through extensive testing work, we found that
the phase differences from the breathing pattern of the same
person are more similar than those from different people as
shown in Fig. 2. It suggests that the breathing pattern of the
same person is relatively stable and unique among different
people.

We also perform case study to examine the abnormal cardio-
pulmonary rate. The tester first held his breath, and then
breathed normally. As shown in Figs. 3 and 4, we can clearly
observe that, when the user holds his breath, his breathing
curve is relatively stable, when the user breathes quickly, his
breathing fluctuates rapidly. However, when the user breathes
normally, the breathing curve returns to normal.
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Fig. 2. The performance of DTW represents the uniqueness of user’s breathing
pattern.

III. SYSTEM DESIGN

A. Challenges

To design a user verification system leveraging user’s
breathing pattern, the following challenges should be ad-
dressed.

Capturing the Breathing Pattern from WiFi Signals
Requires Fine-grained CSI. It is non-trivial to obtain such
CSI information from commodity devices. Therefore, we
need to develop new firmware to collect as much subcarrier
information, including both amplitude and phase, as possible.

Resilient to the Environmental Interferences. It is in-
evitable that the CSI measurements are affected by environ-
mental noise during the user verification process. Sometimes
the noise may have comparable intensity as the CSI measure-
ments induced by breathing. Therefore, it is critical to design
the system that is resilient to the environmental noise.

Accurate User Verification Leveraging Breathing Pat-
tern. Even with noiseless CSI measurements, it is still a chal-
lenging task to achieve accurate user verification with breath-
ing pattern. We first need to extract representative features
from CSI measurements to depict the unique breathing pattern
for each individual. Such features should be able to capture
subtle wireless signal changes caused by user breathing. Given
representative features, a suitable classification method should
be also developed to accurately identify the legitimate users
and reject malicious ones.
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Fig. 3. Different breathing patterns of the same person.
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Fig. 4. Different breathing rates of the same person.

B. System Overview

The basic idea of our system is to extract unique user
breathing pattern from fine-grained CSI measurements over
wireless channel and then verify his/her identity according
to pre-defined breathing pattern profiles. Toward this end, we
leverage breathing pattern to develop a novel continuous non-
intrusive user verification system.

Our system mainly contains three major modules: Data
acquisition, breathing feature extraction and user verification
which includes training phase and classification phase. As
illustrated in Fig. 5, our system first takes the raw CSI
measurements as inputs from commodity WiFi devices. Then
it conducts breathing rate estimation and breathing feature
extraction based on the CSI phase difference after eliminating
the DC component and high frequency noises. Then, the SVM
based system uses training set to build the hyperplane between
each classifier and automatically verifies the user identity in
real time.

Data Acquisition. We conduct experiments in three repre-
sentative indoor environments. The transmitter and receiver are
placed next to each other on the table and one user is standing
or sitting in the room alone. The commodity devices with our
developed firmware implement an OFDM system with 56/114
subcarriers. The collected CSI read from commodity device
contain real and imagine values, then reconstruct to Hk.

Breathing Feature Extraction. Based on the collected
raw CSI data, this module aims to extract effective biomet-
ric features with respect to breathing pattern. Specifically,
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Discrete wavelet
transform

CSI measurements

Data acquisition Breathing pattern extraction Breathing verification

Fig. 5. Overview of the Breathing-based user verification system.

we calculate CSI phase difference to reconstruct the CSI,
which depicts the frequency response of each subcarrier in
term of phase. Given the reconstructed CSI, our system
employs Hampel filter to eliminate the DC component and
high frequency noises. Next, discrete wavelet transformation
(DWT) is deployed to obtain a time-frequency representation
of reconstructed CSI, which are used to extract and select
effective breathing features to capture the unique pattern.

User Verification. In this module, we develop a SVM
based decision model to verify whether the user is authorized.
The result includes three occasions:1) The user is already
authorized and the user is allowed to enter the monitored area.
2) the user is not authorized but permitted to be authorized.
Thus, we update our model and consider him as the authorized
user. 3) the user is not authorized and not permitted to be
authorized. The whole authorization mechanism of our system
is described as Fig. 5.

C. Attack Model

The pattern of attack mainly includes random attack and
imitation attack. For the above attacks, our system has mech-
anisms to mitigate the impact of these attacks and the details
are as follows:

Random attack. The attacker does not have any prior
knowledge of the user’s breathing patterns. When attacking
the system, the attacker will stay at the same location as
the user does and breathe freely in terms of the breathing
rate, inhale/exhale rhythm, and deepness. In response to this
attack, when our collecting the CSI data, the person breathes
in a randomly chosen style including eupnea, tachypnea and
etc. This mechanism greatly improves the robustness of our
system, so that we can deal with the random attack efficiently.

Imitation attack. The attacker observes how the user passes
the verification and will stay in the same location as the user
does and try to mimic the user’s breathing pattern. Everyone’s
chest is unique and the breathing information is not the same
as fingerprint and human face which can not be imitated easily.
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Fig. 6. Security authentication mechanism process.

So, in our system, the problem of anyone copying the user’s
personal characteristics to crack the authentication system
can be avoided. Furthermore, breathing based security system
provides continuous verification which avoids the problem that
the adversary only adopting once attack makes the system
broken down. So, our system can solve the imitation attack.

IV. BREATHING PATTERN EXTRACTION

A. Data Acquisition

In wireless environment, when the person inhales and ex-
hales, his/her chest expands and contracts, which will affect
the wireless signals. However, wireless signal transmission
usually experiences various environmental impacts (e.g., ab-
sorption, reflection, refraction), resulting in unstable raw CSI
measurements, which are unfavorable to detect chest motion.
The key challenge in breathing signs detection leveraging
wireless signals is how to mitigate the environmental impact
and any irrelevant motion that affect the raw CSI signals. So,
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Fig. 7. Comparison between obtained CSI phase difference and calibrated
CSI phase difference.

data preprocessing is essential to facilitate effective breathing
pattern detection.

Our preliminary study finds that CSI phase difference data
is relatively stable and periodic, and what’s more, CSI phase
difference data and breathing signal has the same frequency
in a stationary environment. As shown in Fig. 5, the weak
breathing feature drowns in high frequency noises and DC
component, and it is difficult for us to extract the feature. We
propose to exploit two Hampel filters to obtain robust CSI
phase difference. Specifically, Hampel filter with the sliding
window of 300 and the threshold of 0.001 is employed to
capture the basic trend of CSI phase difference. To eliminate
the DC component, we subtract the basic trend data from the
CSI phase difference data. The detrended data is beneficial to
preserve as much detail as possible of CSI phase difference.
What’s more, the Hampel filter is leveraged with a 50 samples
sliding window and the same threshold of 0.001 to eliminate
high frequency noises.

As illustrated in Fig. 7, the trend of CSI phase difference is
preserved after eliminating high frequency noises and the DC
component, and the CSI phase difference of each subcarrier
appears as a periodic signal over the packets with low noise.

B. Breathing Feature Extraction

The breathing-induced chest motion is a minute and periodic
movement, and such periodic pattern can serve representative
breathing features. In order to extract such breathing features
from CSI phase difference, we explore the efficacy of different
frequency domain methods including FFT, short time Fourier
transform (STFT) and DWT. Different from FFT and STFT,
DWT can not only characterize a time-frequency representa-
tion, but also provide a multi-scale resolution of CSI phase
difference. In this work, we therefore adopt DWT to capture
the periodic breathing signal.

The phase difference ∆ ̂∠Hk
t1,r1r2(n) after data prepro-

cessing, can be decomposed into multiple tiers with wavelet

Fig. 8. Transform steps of discrete wavelet transform results.

decomposition as follows:

∆ ̂∠Hk
t1,r1r2(n) =

∑
k∈Z

aLk (n)ϕ
L
n−2Lk +

L∑
l=1

∑
k∈Z

dl
k(n)φ

l
n−2lk,

(8)
where L is expressed as the number of decomposition tiers.
aL and dL represent approximation coefficient and detail
coefficient respectively. ϕ′s and φ′s represent wavelet bases.
The approximation vector represents the large-scale features
of the input signal. The detail vector represents the small-
scale features of the input signal and describes the high-
frequency noise part of the input signal. We can compute DWT
coefficient as follow:{

aL
k (n) =

∑
n∈Z ∆ ̂∠Hk

t1,r1r2(n)ϕ
L
n−2Lk, L ∈ Z

dl
k(n) =

∑
n∈Z ∆ ̂∠Hk

t1,r1r2(n)ϕ
l
n−2lk, l ∈ {1, · · ·, L},

(9)
where ∆ ̂∠Hk

t1,r1r2(n) is the adjusted phase data, Z is the
integer set, ϕ’s and φ’s are wavelet basic functions.

In order to find the most appropriate L to approximate
coefficient aL to detect the breathing rate, the sampling rate
is halved after each decomposition until the frequency of aL
is as close to the breathing rate as possible.

fs

2L
≈ Bs, (10)

where Bs is the breathing rate ranging from 0.17 Hz to
0.62 Hz, fs is the sampling number of discrete signals extracted
from signals per second. As shown in Fig. 8, the measured CSI
phase difference has undergone six tiers of DWT, where the
noise is suppressed at each tier.

As shown in Fig. 8, a6 becomes a periodically denoised
signal over packets. We compute the breathing rate with
the average peak to peak intervals according to local peak
identification and breathing cycles combination. The breathing
rate in Fig. 9 is approximately 0.22 Hz, which is excatly the
same as the breathing rate acquired by respiration monitor
Glory tls-b19 Watch. It reflects that a6 characterizes breathing
features.

Next, the breathing information which extracted using DWT
is short-term data and the characteristics of the periodicity
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Fig. 9. Breathing patterns of individual users (standing and facing the device).

Algorithm 1: Breathing features extraction
Input: CSI data H of 56/114 subcarriers
Output: the characteristics of the periodicity of breathing
For each subcarrier CSI Hk ∈ H do
1. Data Preprocessing

-Calculate the CSI phase difference ∆∠HK :

∆ ̂∠Hk
t1,r1r2

= ∆∠Hk
t1,r1r2

+∆βk
t1,r1r2

+ 2σ2

2. Filtering redundant information
-Hampeling CSI phase difference data
-Compute DWT coefficient aL:

aLk (n) =
∑

n∈Z ∆ ̂∠Hk
t1,r1r2

(n)ϕL
n−2Lk

End
3. Calculating results

-Obtain the feature of breathing pattern Â(n):
Â(n) = {A(n) A(n+ 1)· · ·A(n+ T − 1)}

of breathing should be composed of several short-term data.
Thus, in this study, we adopt a kind of matrix transformation
to capture and preserve the periodicity of breathing from the
breathing information. In particular, assuming that we would
like to explore this method to ascend the i-th short-term data
of y-th person A(n) to Â(n) and the formula of the matrix
transformation is as follows.

Â(n) = {A(n) A(n+ 1)· · ·A(n+ T − 1)}, (11)

where n = 1, 2, · · ·, N , N is the quantity of breathing informa-
tion sample data, A(n) = {a1(n) a2(n) · · ·aK(n)} is vector of
breathing information which mentioned in section 4.2, K is the
number of subcarriers, T denotes the length of duration. Â(n)
is the features which are used to train model for verify the
user identity. Through this kind of matrix transformation, each
sample can cover the entire respiratory process. What’s more,
this method reduces training samples without reducing the
total amount of data. It will reduce training time complexity
and greatly improve training efficiency. As demonstrated in
Algorithm 1, the algorithm of breathing feature extraction
works in three procedures: 1) Data Preprocessing, 2) filtering
redundant information and 3) breathing feature extraction.

. .

. .

Fig. 10. The performance of different kernel function.

V. BREATHING VERIFICATION

In this section, we explore representative breathing features
that could facilitate human identity verification and build SVM
classifier using kernel function.

A. Kernel Function Selection

In our system, kernel function is applied to map the original
sample space to a higher dimensional feature space. By using
the kernel function, SVM based classification is able to find a
hyperplane in a high dimensional space. It solves the problem
of complex computation of data in low-dimensional space.

The selected parameter is the best super parameter of
SVM kernel. Regularization parameter C = 1, kernel function
parameter gamma = 0.01. As described in Fig. 10, pentagons
and triangles present the two clusters which are the features
of two people. It can be seen that the performance of RBF
distinguishing the two categories is obviously superior to that
of other three kernel function. Therefore, RBF is adopted to
our system to distinguish the user identity. The equation of
RBF is as follows:

κ(Â(i), Â(j)) = exp(−||Â(i)− Â(j)||2

2δ2
), (12)

where δ is the width of the RBF, Â(i), Â(j) denote two
breathing pattern samples.

B. SVM-based Classification

The training model for SVM classifier is to establish the
functional dependency between breathing feature Â(n) and
user identity y. Assume l denotes the feature dimension and
N is the number of labeled samples in the training set. Each
labeled sample consists of a pair (Â(n), y), n = 1, · · ·, N ,
where Â(n) is a vector representing breathing information,
y denotes the serial number of users. The training model
seeks for a hyperplane to distinguish between categories using
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TABLE I
DEVICE PARAMETERS.

Symbol Value Description
Nrx 3 The number of transmitting antennas in MIMO Control field.
Ntx 3 The number of receiving antennas in MIMO Control field.
Ns 56/114 The number of subcarriers the routers sent.
fs 60 Hz The sampling number of discrete signals extracted from continuous signals per second is defined, which is expressed in

Hertz (Hz). The reciprocal of sampling frequency is the sampling period or sampling time, which is the time interval
between samples.

BW 20/40 MHz Refers to the amount of data that can be transmitted at a fixed time, that is, the ability to transmit data in a transmission
pipeline. Usually expressed as a transmission cycle per second or Hertz (Hz).

the empirical dataset {(Â(n), y)|n = 1, 2, · · ·, N} and the
calculation formula is as follows:®
maxα

∑N
i=1 αi − 1

2

∑N
i=1

∑N
j=1 αiαjyiyjκ(Â(i), Â(j))

s.t.
∑N

i=1 αiyi = 0, α ≥ 0, i = 1, · · ·, N
,

(13)
where the α is the Lagrange multiplier, κ is the kernel function
mentioned above, yi and yj represent the user identity of
Â(i) and Â(j). Solving above equation, we can get decision
function to determine prediction result:

f(Â) = sgn(
N∑
i=1

αnyiκ(Â(i), Â) + b), (14)

where sgn returns the positive and negative sign of the
predicted result and the positive sign represents the predic-
tion results of respiratory information and identity sequence
classification, b is the offset of the hyperplane.

VI. EXPERIMENT AND EVALUATION

This section presents the experimental settings and results of
our system. Firstly, we describe the experimental environment
and data acquisition methods. Then, we demonstrate the im-
pact of the number of subcarriers, the number of antennas and
some other parameters on the identity verification accuracy.
Finally, we also compare the result of different users to explore
the robustness of our system.

A. Experimental Methodology

To validate the proposed user verification system, we deploy
two TP-link 4900v2 wireless routers: one severs as transmit-
ting antenna and the other as receving antenna. Meanwhile,
we developed a new OpenWrt platform implemented on the
routers to collect the CSI measurements from regular data
frames. In order to obtain less interference and higher distance
resolution data, we operated on 5 GHz frequency band. In
addition, we leveraged 20/40 MHz channel bandwidth which
introduces 56/114 subcarriers to capture more detailed channel
information than Intel NIC 5300. All 3 transmitting antennas
are used to transmit packets at 60 packets per second to 3
receving antennas. We can capture 3×3×56 CSI streams at
each time instant. The detailed parameters are provided in
Table 1.

Fig. 11. The experiments scenes and devices.

Fig. 12. Experimental setting to verify the influence of distance and human
body’s orientation.

Experiments were conducted involving 16 volunteers. The
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TABLE II
CHARACTERISTICS OF VOLUNTEERS.

A B C D E F G H
Gender M M M M M M M M

Age 25 24 27 25 19 21 31 35
Height
(cm)

183 180 172 177 180 178 184 165

Weight
(kg)

76 70 78 76 68 72 80 75

I J K L M N O P
Gender F F F F F F F F

Age 18 25 19 22 27 20 30 29
Height
(cm)

160 158 160 169 155 159 161 166

Weight
(kg)

47 44 51 55 57 41 59 57

characteristics of volunteers are shown in Table 2. The ex-
periments scenarios include an office room (6 m×10 m), a
laboratory(12 m×12 m) and a 26 m long corridor as shown in
Fig. 11. The first scenario office room is crowded with various
furniture; the second setup is a laboratory scenario, a cluttered
environment with tables and metal chairs, and electronic labo-
ratory cases; and the third scenario is a corridor with no other
objects except experimental equipment. Fig. 12 demonstrates
the floor plan of testing scenario and the locations of TX and
RX routers. In our experiments, the two routers are placed
side by side on the table, which are 20 cm apart from each
other at a height of 70 cm. Every scenario conducted 256
testing rounds which contained 5 experimental variables (e.g.,
user position, user sitting, user standing, user facing or back
to access points). In each round of test, 20000 samples of each
testing process performed by one volunteer were collected.

B. Evaluation Metrics

Accuracy. Given ns testing set, y′i is the prediction of the
i-th sample and yi is the corresponding groundtruth, then the
accuracy of verifying the user’s identity y over ns is defined
as:

accuracy(y, y′) =
1

ns

ns−1∑
i=0

1(y′i = yi), (15)

where 1(x) is indicator function defined as:

1A(x) :=

®
1 if x ∈ A

0 if x /∈ A
. (16)

Misjudgement. Probability of misjudegement indicates the
proportion of the number of misjudged individuals in the total.
It is defined as:

PM(y, y′) =
1

ns

ns−1∑
i=0

1(y′i ̸= yi). (17)

C. Impact of Algorithms

Table 3 compares the verification results of four different
algorithms. when the number of subcarriers is 36 and T is
30, random forest (RF), ‘splitter’ which is used to choose

TABLE III
ACCURACY OF DIFFERENT ALGORITHMS.

Algorithms
K = 36, T = 30 K = 56, T = 60

Accuracy S.D. Accuracy S.D.
KNN 73.9% 2.31 78.9% 1.89
RF 81.4% 0.55 84.4% 0.46

ANN 90.6% 0.32 93.6% 0.11
SVM 94.7% 0.78 96.7% 0.54

TABLE IV
COMPARISON OF BREATHING BASED AUTHENTICATION SYSTEM.

System Signal
source

Feature
extraction

Accuracy

[31] Rader FFT and
Dynamic

Segmentation

92.0%

BreatheSec
[32]

RF CNN 95.2%

Our system CSI DWT 94.7%

the split at each node is ‘best’) and K-nearest neighbor
(KNN) (‘leaf_size’ which affects the speed of the construction
and query is 30, the number of neighbors is 5) which are
not applicable to our data has the verficiation accuracy as
low as 54.2% and 73.9%. The verification rate of artificial
neural network (ANN) is better (i.e., 90.6%) with 3 hidden
layers where each has 32 neurons. SVM achieves the best
performance with the verification average accuracy of 94.7%.

It can be seen from Table 3 that when K = 56, T = 60,
the accuracy of the algorithm is higher than when K = 36,
T = 30. So the following experiments are based on K = 56,
T = 60.

Table 4 summarizes the respiratory authentication systems
based on IoT devices using neural networks. The radar and RF
equipment in [31] and [32] require specialized devices with
highly complex design, making many users can not affording
them, and many public users can’t afford it. Our system
provides a low-cost, efficient and highly accurate solution with
fine-grained CSI measurements.

D. Impact of the Antennas and its direction

Fig. 13(a) shows that different transmitting antenna has
different performance on identifying user. The direction and
position of antenna both cause the change of accuracy. The
parameters of the same type of antenna products have different
performance. This is mainly due to the problem of antenna
consistency. When the stationary Bobbi curve of an antenna
is irregular and disordered, the consistent performance of the
antenna is poor. Therefore, in terms of verification accuracy,
some antennas will perform poorly. The highest verification
accuracy of transmitting antenna1, transmitting antenna 2 and
transmitting antenna 3 are 84.7%, 99.1% and 96.7% when the
router is vertical to the users and the accuracy is 86.4%, 98.1%
and 96.1% when the router is parallel to the users, respectively.

Fig. 13(b) presents the performance of user identity verifi-
cation with different number of transmitting antennas. When
the number of transmitting antenna is 1, 2 and 3, the average
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Fig. 13. The performance of antenna in different situations.

verification accuracy is 88.1%, 97.6% and 99.3% when the
router is vertical to the users and the accuracy is 88.9%, 96.6%
and 97.3% when the router is parallel to the users, respectively.
Obviously, in MIMO system, the number of transmitting
antenna have a significant impact on verification accuracy.
Specifically, the highest verification accuracy with multiple
antennas is 17% higher than the setting involving single
antenna pair, and an additional pair of antennas will increase
verification accuracy about 8%. This is because MIMO system
can better mitigate the multi-path effects, and more pairs of
antennas can accurately capture the breathing dynamics by
eliminating the multi-path effects.

E. Impact of The Number of Subcarriers

As shown in Fig. 14, our system with more subcarriers
has higher verification accuracy, and it indicate that more
subcarriers include richer breathing-related information which
are beneficial to identify the users. It is also noticed from
Fig. 14 that the effect of subcarrier number on each transmit-
ting antenna is different. For the transmitting antenna 1, the
verification accuracy is significantly affected by the number
of carriers, i.e. the highest verification accuracy is 36% higher
than the lowest one. But the transmitting antenna 2 or the

Fig. 14. The performance of different subcarrier number using different
antenna.

Fig. 15. The performance of parameter T using different antennas.

transmitting antenna 3, the effect is subtle, i.e. the highest
verification accuracy is only about 8% higher than the lowest
one.

F. Impact of Duration of Breathing Cycle

Fig. 15 depicts the effect of parameter T, which indirectly
denotes the length of breathing duration on verification accu-
racy. As indicated in Fig. 15, when the value of T is greater
than 50, the accuracy of the system exceeds 95%. In fact,
a person’s breathing cycle is about 3.5 s, the data frequency
is about 15 Hz, the value of parameter T of one duration
of breathing cycle is about 52.5 (3.5×15), thus, when the
measured signal reaches a breathing cycle, the system can
achieve high accuracy.

G. Impact of Human Factor

User’s position and orientation also have a great impact
on the verification accuracy. Fig. 16 describes the effect of
user’s position and orientation on average verification accu-
racy. What’s more, when the distance is shorter, the change
rate of accuracy is obvious. On the other side, we can see
that the average verification accuracy of user back to routers
is significantly higher than that of facing routers especially at
long distances.
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Fig. 16. The performance of user’s position and orientation.
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Fig. 17. The performance of user sitting and standing.

Human posture is another critical impact factor on the
verification accuracy. The relatively static motion has stable
signal characteristics and chest is closer to router when sitting
down. These two reasons leading to higher verification accu-
racy. We study the performance of the proposed system when
user is sitting or standing. Sitting represents a relatively static
motion and standing is the opposite. Fig. 17 shows the average
verification accuracy with different transmitting antenna, it is
encouraging to find that the accuracy of sitting posture (i.e.,
96.1%) is obviously superior to that of standing (i.e., 87.1%).

H. Impact of Different Users

mFig. 18 presents the verification accuracy across different
persons. Specially, the average verification accuracy of all
the users are 81% and 85%, respectively, and the lowest
average accuracy among all the participants is still above
80%. The standard deviation of the result is about 0.04. In
these experiments, the distance from router to person is 5.4
m, T is 30, the number of transmitting antenna is 3 and the
number of subcarriers is 56. The results show the robustness
and scalability of our verification system across different users,
and demonstrate the system is promising to act as a safety
verification system which is suitable to different users.
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Fig. 18. The performance of different user standing face or back to routers.

Fig. 19. The confusion matrix of verifying 8 users.

Fig. 19 shows the confusion matrix of verifying 8 users. The
distance from router to person is 5.4 m, T is 30, the number
of transmitting antenna is 3 and the number of subcarriers is
56. The average verification accuracy is about 85%. Although
there are differences in age, height, weight and gender of eight
people, it can be seen from the figure that the probability of
misclassification among users is relatively uniform. We can
conclude that the difference between people has little effect
on our system.

I. Impact of Trainging Data Size

Next we study the performance of our system under dif-
ferent training data size as shown in Fig. 20. In particular,
the system achieves an accuracy of 63.7%, 82%, 93%, 97.4%.
when choosing 20%, 40%, 60%, 80% of entire training set.
We observe that our system can achieve an average precision
of over 80% for 8 users with 40% training set. As the size
of the training data grows, the system performance improves
significantly. The above results indicate our system can achieve
good verification performance with a limited size of training
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Fig. 20. The performance of proportion of training sets using different
antennas.
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Fig. 21. The performance of attack model with different T.

data, which ensures great convenience for practical usage on
commodity WiFi. In these experiments, the distance from
router to person is fixed at 5.4 m, T is 30, the number of
transmitting antenna is 3 and the number of subcarriers is 56.

J. Immunity to Malicious Attacks

In order to further validate the immunity of the proposed
system to imitation attack, we partition the eight users into
four groups and ask a user in each group to act as the attacker
by imitating the breathing pattern of the other. The imitation
attacker aims to bypass our user verification with the imitated
breathing pattern of legitimate user. To make the imitation
more realistic, the breathing pattern of legitimate user will
be recorded for the attacker to imitate. Fig. 21 shows the
probability of misclassification for four groups with different
T . We can find that the probability of misclassification during
the experiment always maintains at a low level (i.e., less
than 0.1). Moreover, when T is above 50, all the imitation
attacks are correctly identified, indicating the resilience of the
proposed system to imitation attack.

VII. CONCLUSIONS AND DISCUSSION

This paper explores the feasibility of using commodity WiFi
for non-intrusive user verification based on breathing pattern.
Compared with fingerprinting and face verification, this system
does not require any extra cost in terms of hardware. Moreover,
it is capable of preventing random and imitation attack with
promising continuous verification. Our system have upgraded
the Atheros CSI tool and developed a new OpenWrt based
firmware, so that the CSI of all 56/114 subcarriers over
20/40 MHz can be aggregated directly from WiFi routers
instead of using laptop or PC with external WiFi NIC adapter.
The CSI phase difference data between two receiving anten-
nas was first succesfully derived. The breathing measurment
cased by chest vibration was then separated from continuous
background nosie. Extensive experiments are conducted with
16 objects in different rooms with different positions and
different orientations. The impact of the number of antennas
and subcarrier was evaluated as well. The results reveal that
the proposed system could achieve over 90% accuracy.

Overall, this work proposes a practical and effective WiFi-
based user verification system leveraging the unique breathing
pattern. To our best knowledge, maybe not the first but still
a very valid contribution. We envision that the proposed
system can be extensively adopted by many security-critical
applications, and contribute to both personal and corporative
security services. As the very first trial in this field, our system
has also its limitation. Currently our system can achieve high
verification accuracy with respect to single user in the area of
interest. The presence of multiple people will introduce mutual
interferences on extracting breath patterns from WiFi signals,
and degrade the performance of our system. Our next step
is to build a thorough signal propagation model depicting the
relationship between signal variation and multi-user breathing.
Furthermore, more complex scenarios, including different user
movements and environments, user having cardiopulmonary
diseases, will also be taken into consideration to improve the
robustness and scalability of the proposed system.
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