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Efficient End-to-End Failure Probing Matrix
Construction in Data Center Networks
Zequn Jia, Qiang Liu, Ying He, Qianqian Wu, Ren Ping Liu, and Yantao Sun

Abstract—Data centers play an essential role in the functioning
of modern society. However, failures are unavoidable in data
center networks (DCN) and will lead to negative impact on all
applications. Therefore, researchers are interested in the rapid
detection and localization of failures in DCNs.

In this paper, we present a theoretical model to analyze the
end-to-end failure detection methods in data center networks.
Our numerical results verify that the proposed theoretical model
is accurate. In addition, we propose an algorithm to construct
probing matrices based on an enhanced probing path selection
indicator. We also introduce deep reinforcement learning (DRL)
method to solve the problem and propose a DRL-based probing
matrix construction algorithm. Our experimental results show
that both of the proposed algorithms for constructing probing
matrices achieve better performance in detection accuracy than
existing methods. We discussed different scenarios that the
algorithms are applicable to that can improve detection accuracy
or construction speed performance.

Index Terms—Data center network, deep reinforcement learn-
ing, failure detection, probing matrix construction.

I. INTRODUCTION

DATA centers are warehouses that host many servers, pro-

vide data processing services, and enable communication

between a large number of computing resources [1]. Massively

distributed services in data centers like microservices [2], [3]

and Spark [4] supports various user-end application. High-

speed data center networks connect separated servers together

to provide more reliable and scalable computing capability.

With the growth of the DCN scale and the emerging appli-

cation of new network devices, failures in DCNs have become

the norm rather than occasional events. Failures in DCNs

usually have more severe consequences than in general net-

works, from disruption of services to loss of critical data [5].

Meanwhile, the complexity of large-scale DCN management

makes it difficult for network administrators to find and locate

failures in a timely manner. As a result, rapid detection and

localization of failures are crucial in DCN research.
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Failure detection is essential to data transmission reliability

and system security. Passive detection methods (e.g., SNMP

and NetFlow) were utilized in the past, which find and locate

failures by periodically collecting port statistics of transmitted

bytes and packets. Due to the unpredictability of the data

traffic characteristics in DCN, the results of the analysis are

imperfect [6], [7]. Nowadays, active probing is a common

failure detection technique in DCNs. It will send one or more

probes periodically to other nodes to identify any connection

problems. This technique can adapt to frequently changing

networks. Therefore, active network probing solutions like

Microsoft’s PingMesh [8] have been developed. By deploying

end-to-end probing agents on the edge servers, PingMesh

measures the latency between servers and analyzes the results

to identify the network’s current problem status.

However, there are two main problems with active detection

methods such as PingMesh. Firstly, it is challenging for

conventional probing methods to use deterministic probing

paths due to the abundance of equal-cost multipaths (ECMP)

in DCNs. Second, a reasonable set of probing paths must be

carefully chosen in order to achieve high detection accuracy

with low overhead.

The emergence of new technologies such as software-

defined networks, programmable switches, etc., leads to the

development of in-band network telemetry (INT)-based failure

detection methods [9], [10], [11]. As a result, it is possible to

ascertain the probes’ forwarding paths, which addresses the

issue of too many ECMPs.

Unfortunately, generating a collection of probing paths with

high accuracies remains challenging. Most existing research

solutions have poor detection accuracy because of the data

center’s huge scale, high-reliability requirements, and high-

application diversity. Moreover, the network load could po-

tentially increase due to the measurement traffic introduced

into the network [12]. The reliability of the active failure

detection is dependent on the probing path of the agents [13].

PingMesh tries to cover more failures by generating three tiers

of ping lists: Intra-racks, inter-racks, and inter-datacenters.

These strategies are developed based on the expertise of

network specialists. While it is difficult for this approach

to generate probing path sets with higher failure-locating

accuracy. DeTector [14] tries to improve the accuracy of failure

localization by proposing probing matrix construction (PMC)

and packet loss localization (PLL) algorithms. While failure

detection matrix generation and failure localization accuracy

still have growth potential. Besides, there is still limited

theoretical analysis on failure detection and localization so far.

In this paper, we propose a formal representation of the
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accuracy of a given failure probing matrix. The design of the

probing matrix is then formulated as an optimization problem

to minimize the overhead for a given accuracy. We derive

an iterative probing matrix construction algorithm with an

alternative indicator for evaluating the probing matrices. This

algorithm selects a path with the largest accuracy increment

from the available detection paths and iterates repeatedly until

the accuracy reaches a given value. In doing so, the proposed

algorithm will find the optimal path under the current path

number limitation at each iteration. Experimental results show

that when the detection path is not saturated, the selected

probing matrix has higher accuracy than previous methods.

Furthermore, we would like to design an algorithm with

higher detection accuracy than conventional heuristics meth-

ods. Deep reinforcement learning has generated interest in

a variety of research applications. In recent years, the DRL

model has been widely used in failure detection, and the auto-

matic feature learning process of its architecture offers excel-

lent potential for solving the problem of failure detection [15].

Therefore, the rational use of reinforcement learning methods

can help achieve better failure detection and localization.

So in this paper, we also proposed another DRL-based

solution for probing matrix construction. We focus on con-

structing a probing matrix using the DRL model that performs

better than traditional heuristics methods at a given number

of probing paths. The experimental results show that our

approach is effective, i.e., DRL-based methods are able to

find better matrices with higher accuracy than all traditional

methods.

Specifically, we have made the following contributions.

• We theoretically analyzed the end-to-end active failure

detection and localization method. The failure localization

process was analyzed, and we derived the theoretical

accuracy for different probing matrices and failure rates.

• We proposed a heuristic approach for probing matrix

construction. A novel evaluation was proposed based on

the formula above. Then we proposed a heuristic PMC

algorithm using the new indicator to get higher failure

localization accuracy.

• We propose a DRL-based probing matrix construction

method. DRL was incorporated into the PMC problem,

and a proximal policy optimization (PPO)-based solution

was proposed. The probing matrix generated by this

method can achieve higher accuracy.

Our proposed solutions have the potential to make a mean-

ingful impact. By improving the accuracy and efficiency of

failure detection, our work can help data center operators

enhance network reliability, minimize downtime, and reduce

costs. This can eventually enable a seamless user experience

for various data center applications and services.

Furthermore, our research can serve as a foundation for

future studies in the field of data center network optimization

and resilience, ultimately contributing to the development of

more robust and efficient data center infrastructures. Our work

provides new insights into failure detection in data center

networks and has the potential to improve the reliability and

availability of data center services.

The rest of this paper is organized as follows. The details of

related work are presented in Section II. Section III outlines

the system model and defines the probing matrix construction

problem. Section IV and Section V describe the motivation and

details of our proposed PMC algorithm and DRL-based PMC

algorithm, respectively. The evaluation results are presented

and discussed in Section VI. Finally, Section VII concludes

this article.

II. RELATED WORK

Researchers have been working on failure detection and

developed various failure detection techniques for different

applications [16]. PTPmesh [17] network monitoring tool uses

precision time protocols to estimate one-way latency and

quantify packet loss, and it is a viable tool for cloud tenants

to obtain network performance statistics. Similar to PingMesh,

PTPmesh does not prioritize improving failure localization

precision by choosing more appropriate failure detection paths.

Pandey et al. [18] proposed a novel networked multi-agent
system diffusion protocol based on network structure and node

priority. Nodes interact with neighboring nodes to diffuse

information based on the weighted difference of available

resources on the neighboring nodes. While this solution still

relies on point-to-point probing, which increases the expense

of replacing network devices. Liang et al. [19] proposed a
heuristic algorithm to optimize the computed backup path, for-

malizing the backup path selection as an integer programming

problem. However, this scheme does not allow for flexible

modeling of failure modes, and detection accuracy is inade-

quate. Xie et al. [20] proposed a new chunked matrix com-
pletion algorithm to detect link failures. Compared with the

existing matrix completion algorithms, the proposed chunk-

ing algorithm reduces the sampling complexity. Nevertheless,

this method includes a centralized scheduling mechanism

to periodically choose the probe paths, which increases the

system’s costs and complexity. DeTector [14] is a topology-

aware failure detection system for DCNs. The authors gave

more attention to the significance of failure probing paths and

proposed an algorithm to identify suitable probing paths in

order to improve the accuracy of failure localization.

However, the theoretical analysis of failure detection is

still insufficient, and there is still room for further research

in constructing a more efficient and accurate path selection

algorithm based on the analysis. We proposed a scheme to

address this issue and included a comparison of our approach

to deTector in this paper.

With artificial intelligence, failure detection methods

based on machine learning have been introduced [21].

Hou et al. [22] use an unsupervised two-stage method to de-
tect and characterize the faults in networks. They collect mas-

sive time series data of probing results and provide valuable

insights on anomaly mining. Mahmood et al. [23] proposed a
routing method based on reinforcement learning for intelligent

failure detection that finds the best route with minimum end-

to-end delay. In addition, it also demonstrates that the proposed

fault-tolerant strategy contains highly trusted computational

capabilities that successfully improve network efficiency and
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thus reduce the risk of network failure. Karthik et al. [24]
proposed an automatic link failure prediction and detection

method that improves existing techniques with ML to detect

and predict failures with automatic troubleshooting capabil-

ities. Such prediction helps the network to react before a

failure occurs. Traffic loss during failures is almost zero

and can be achieved by predicting failures in advance. Deep

learning methods such as graph neural networks (GNNs) are

also applied to failure detection tasks within data centers.

Jiang et al. [25] proposed APGNN, which extracts features
and learns alarm-fault mappings using GNN. Directed graph

convolutional neural networks (DGCNN) [26] are applied to

locate link failures in data center simulations. The DGCNN

model uses the structure of a directed line graph to represent

the second-order structure of its underlying graph, providing

a new approach to modeling the domain represented by the

directed graph.

DRL methods may be more appropriate for this issue

than CNNs because it is more adaptive to diverse network

topologies. But there are currently rare applicable DRL-based

solutions for this problem. We applied deep reinforcement

learning to this problem and obtained better results than with

conventional approaches.

III. SYSTEM OVERVIEW

In this section, we present the system model for end-to-end

failure detection. We then analyze the formulation of failure

detection accuracy given the network topology and the failure

probing matrix and propose the optimization problem.

A. System Model

Fig. 1 depicts a system model for failure detection via

the end-to-end probe mechanism. In this model, agents are

deployed on the edge servers of the DCN to send and

receive probes, and the results of the probes are analyzed to

identify network issues. This model consists of the following

components.

• Probing matrix is a matrix used to represent a set of
failure detection paths in a DCN. Each row of it represents

a probe path, whereas each column represents a DCN

link.

• Probing matrix construction (PMC) algorithm is em-

ployed to generate probing matrices. According to the

structure of the network and the detection objectives, the

algorithm can construct a probing matrix that meets the

requirements.

• Packet loss localization (PLL) algorithm is designed to

analyze the collected probing results to identify and locate

failures in the network.

• Agent is a lightweight software that is installed on the
edge servers of a DCN and consists of senders and

receivers. The sender receives the probing matrix from the

PMC and constructs probes to transmit to the specified

peers according to the probing matrix. Receiving the

probes from the sender, the receiver logs the results and

reports them to the PLL for analysis routinely.

TABLE I
TABLE OF NOTATION.

System model

𝑛 Number of links in the network

𝑳 ∈ I𝑛 Current link status of the network

𝑘 Number of all available probing paths

𝑅 ∈ I𝑘×𝑛 Matrix of candidate probing paths

𝑚 Number of probing paths in the probing matrix

𝑷 Probing path

𝐷 ∈ I𝑚×𝑛 The chosen probing matrix

F𝑝 The PMC algorithm

𝒔 Probing result of 𝐷

𝑳′ Inferred link status

F𝑚 The PLL algorithm

Problem formulation

A(𝐷) Failure probing accuracy

P(𝑳) Power set of 𝑳

𝑄 ∈ I2
𝑛×𝑛 Failure matrix

S ∈ I2
𝑛×𝑚 Probing results of 𝑄

�̂�𝑁×𝑚 Compressed S that removes duplicated rows

𝑁 Number of unique row vectors in S

𝑈𝑁×1 Mapping matrix for �̂� and S

�̂�𝑖 The set of candidate link failure situations of 𝑖th
probing result.

𝑃 The probability of accurately localizing all link
failures can be achieved by the basic-policy PLL
algorithm

𝑃′ The probability of accurately localizing all link fail-
ures can be achieved by the enhanced-policy PLL
algorithm

Probing matrix construction algorithm

G𝑡 The set of all indistinguishable failures sets in step 𝑡

𝐶 The proposed indicator to evaluate the result of the
set division

𝜎 Standard deviation

𝛽 Identifiability

DRL-based probing matrix construction

𝜋 Reinforcement policy

𝑆 State vector

𝐴 Action space

𝑊 Termination reward

This architecture is highly compatible with current data

center networks, especially the software-defined data center

networks, as it leverages the flexibility and programmability

of these networks. The PMC and PLL algorithms can be

integrated into the SDN controllers. The PMC algorithm,

when deployed on the controller, can construct corresponding

probing matrices based on the network topology collected by

the controller. Similarly, the probing statistics collected in the

edge servers can also be aggregated to the controller through

the SDN control plane and analyzed by the PLL algorithm in

the controller. This integration allows for a more efficient and

rapid response to network issues, as well as more effective

remediation.

The sender and receiver agents can be implemented as
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Fig. 1. System architecture of end-to-end probing solutions.

lightweight software modules running on the edge servers of

the data center network. As their functions are straightforward,

they can be designed to operate with minimal overhead,

ensuring that their impact on the data center’s primary services

is very minimal.

Assuming that there are 𝑛 links in the whole network
topology, we use a binary vector 𝑳 ∈ I𝑛 to indicate the current

status of the network. 𝐿𝑖 is the 𝑖th element of 𝑳 that represent
the status of link 𝑖. 𝐿𝑖 = 0 for link failure, 𝐿𝑖 = 1 for link is
in a normal state.

A forwarding path consists of multiple connected links.

Probing paths are forwarding paths in the network, whose

source and destination nodes both belong to the set of edge

servers. The matrix of candidate probing paths is defined as

𝑅 ∈ I𝑘×𝑛, where 𝑘 is the number of all available probing paths.
Each row of this matrix denotes the related link to this probing

path.

The PMC algorithm is expected to choose 𝑚 for-

warding paths from candidate paths, i.e., probing paths

𝑷 = {𝑝1, 𝑝2, · · ·, 𝑝𝑚}. And we construct the probing matrix
𝐷 ∈ I𝑚×𝑛 by extracting 𝑅𝑝1 , 𝑅𝑝2 , · · ·, 𝑅𝑝𝑚 from 𝑅. In other
words, 𝐷 is a subset of 𝑅, i.e.,

𝐷 = F𝑝 (𝑅), (1)

where F𝑝 indicates the PMC algorithm. The value of 𝐷𝑖 𝑗 is

either 0 or 1, implying that link 𝑙 𝑗 is involved in path 𝑝𝑖 .
The probing results will demonstrate whether or not each

link in the probing paths works well. A path will be reported

as failed if any link in the probing path are in failure. And

in reverse, a failed probing path means at least one related

link fails. The probing result of 𝐷 is defined as vector 𝒔 with
length 𝑚, where 𝒔𝑖 = 1 means that path 𝑝𝑖 is probed to be
working, while 𝒔𝑖 = 0 means 𝑝𝑖 is out-of-order.
Then we use the PLL algorithm to infer 𝐿 according to 𝒔.

The resulting inferred link status, denoted as 𝐿′, are shown
below.

𝐿′ = F𝑚 (𝑅, 𝐷, 𝒔)

= F𝑚 (𝑅, F𝑝 (𝑅), 𝒔)
(2)

Thus, the key problem of failure probing is to design ap-

propriate PMC (F𝑝) and PLL (F𝑚) algorithms to find the

minimized Diff (𝐿′, 𝐿). We could use the ratio of detected
link failure number and total link number, i.e., 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, to
indicate Diff (𝐿′, 𝐿).

B. Problem Formulation

In this subsection, we model the detection accuracy. Ac-

cording to the analytical model, one can calculate the detection

accuracy value of the failure detection matrix for any network

topology under a specific failure localization policy.

Problem: Given topology matrix 𝑅 and probing matrix 𝐷,
find failures accuracy A(𝐷).
The set of all possible link failures is the power set of 𝑳,

i.e., P(𝑳), and |P(𝑳) | = 2𝑛. We put all values of 𝑳 into the
failure matrix 𝑄 ∈ I2

𝑛×𝑛. Each row of 𝑄 is a unique status

of 𝑳 and represents a failure situation of the topology. 𝑄𝑖 𝑗

means in the 𝑖th failure situation, 𝐿 𝑗 is failed or normal.

As mentioned above, the probing result relies on each

involved link, therefore the probing result matrix of all failure

situation S ∈ I2
𝑛×𝑚 is a binary matrix as shown below.

S = ¬B(𝑄 · 𝐷𝑇 ) (3)

Here B is the binarization function. S𝑖 𝑗 is the probing result

of the 𝑗 th probing path under the 𝑖th failure situation. 𝑆𝑖 𝑗 = 1
means that all links in 𝑝 𝑗 are reported normal, while 𝑆𝑖 𝑗 = 0
means one or more links are out of order.

We now turn our attention to the failure localization al-

gorithm F𝑚 and present its theoretical accuracy formulation.

The algorithm F𝑚 is designed as a reverse mapping that

retrieves the failure situation from the probing results, as

depicted in (2). Due to the constraints of probing complexity,

this mapping is not always one-to-one. Consequently, multiple

failures may lead to the same probing outcome for a given

probing result. In such cases, there could be several candidate

failure situations 𝑸𝑖 that satisfy (3), making it impossible for

the PLL algorithm to determine the expected result.

We assume that all link failures in the network follow a

binomial distribution with probability 𝑝, i.e., 𝑋 ∼ 𝐵(𝑛, 𝑝).
Let 𝑆𝑁×𝑚 represent the compressed S matrix with duplicate

rows removed, where 𝑁 denotes the number of unique row

vectors in S. We then define the mapping matrix 𝑈𝑁×1 as
follows:

𝑈 = {𝑈𝑖}, ∀𝑈𝑖 ∈ 𝑈,𝑈𝑖 = |{S 𝑗 }|,where ∀ 𝑗 ,S 𝑗 = �̂�𝒊 .

In this case, 𝑈𝑖 corresponds to the number of times the row

vector �̂�𝒊 appears in S. We also define �̂�𝑖 as the set of

candidate link failure situations, meaning that all elements

within it result in the same probing outcome �̂�𝒊 :

�̂�𝑖 = {𝑸 𝒋},where 𝑗 ∈ [1,𝑈𝑖], and ∀ 𝑗 , S𝒋 = �̂�𝒊.
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Each �̂�𝒊 𝒋 is a vector representing a failure situation.
We now consider the accuracy of inferring �̂�𝒊 𝒋 from S𝒊. If

the inferred �̂�𝒊 𝒋 is chosen randomly from the candidate failure
situations �̂�𝒊 , the probability that the algorithm can correctly

identify all failed links is given by the following expression,

where Σ𝑅 𝑗 represents the length of the probing paths.

𝑃 =
𝑁∑
𝑖=1

���
1
𝑈𝑖

·

𝑈𝑖∑
𝑗=1

(
𝑝Σ�̂�𝒊 𝒋 · (1 − 𝑝)Σ𝑅 𝑗−Σ�̂�𝒊 𝒋

)�	
 (4)

But we would like to find a better policy for choosing �̂�𝒊 𝒋

from �̂�𝒊 to improve the detection accuracy. Therefore, we

proposed to choose the �̂�𝒊 𝒋 with the minimum number of

failure occurrences from �̂�𝒊 , i.e., 𝑗
∗ = arg min

𝑗
Σ�̂�𝑖 𝑗 . Then

the probability that the algorithm can identify all the failed

links become as follows.

𝑃′ =
𝑁∑
𝑖=1

(
𝑝Σ�̂�𝒊 𝒋∗ · (1 − 𝑝)Σ𝑅 𝑗−Σ�̂�𝒊 𝒋∗

)
𝑗∗ = argmin Σ�̂�𝑖 𝑗

(5)

Here, 𝑝 is the probability of link failure, this value is
usually less than 20% in commercial data center networks [27].

Therefore we could assume that 𝑝 < 0.5. It could be proved
that (5) is higher than (4) for 𝑝 < 0.5 as follows.
1) Let

𝑃1 𝑗 = 𝑝
Σ�̂�𝒊 𝒋 · (1 − 𝑝)Σ𝑅 𝑗−Σ�̂�𝒊 𝒋 ,

𝑃2 = 𝑝Σ�̂�𝒊 𝒋 · (1 − 𝑝)Σ𝑅 𝑗−Σ�̂�𝒊 𝒋 .

To prove that (5) > (4), we need to prove that for a
given 𝑈𝑖 , 𝑃2 > 𝑎𝑣𝑔(𝑃1 𝑗 ).

2) Let

𝐾 =
𝑃1 𝑗

𝑃2
=

(
𝑝

1 − 𝑝

)Σ�̂�𝒊 𝒋−Σ�̂�𝒊 𝒋∗
.

In (5), we let 𝑗∗ = argmin Σ�̂�𝑖 𝑗 , and as a result,

Σ�̂�𝒊 𝒋 − Σ�̂�𝒊 𝒋∗ ≥ 0, ∀ 𝑗 ∈ 𝑈𝑖 .

3) We get 𝐾 < 1 when 𝑝 < 0.5, i.e., 𝑃1 𝑗 < 𝑃2,∀ 𝑗 ∈ 𝑈𝑖

That means 𝑎𝑣𝑔(𝑃1 𝑗 ) < 𝑃2, and the proof is finished.

But the probabilities in (5) means the located failures

situations �̂�𝒊 𝒋 are exactly the same with the actual failures.

Whereas the accuracy only counts the number of located

failure links. Therefore we also present the probability for

different statistic calibers.

𝑃( 𝑓 ) =
𝑁∑
𝑖=1

𝑈𝑖∑
𝑗=1

(
𝑝Σ�̂�𝒊 𝒋 · (1 − 𝑝)Σ𝑅 𝑗−Σ�̂�𝒊 𝒋

)
·
𝑓 (�̂�𝒊 𝒋∗ , �̂�𝒊 𝒋)

Σ�̂�𝒊 𝒋

, (6)

where 𝑗∗ = argmin Σ�̂�𝒊 𝒋 , and 𝑓 indicates the statistical
functions for different statistic calibers. There are different

𝑓 (�̂�𝒊𝒌 , �̂�𝒊 𝒋) in (7), (8) and (9) for accuracy, false negative

rate (FNR) and false positive rate (FPR) .

For 𝑃( # of detected failures
# of total failures

), i.e., the accuracy A,

𝑓 (�̂�𝒊 𝒋∗ , �̂�𝒊 𝒋) = Σ
(
�̂�𝒊 𝒋∗

⋂
�̂�𝒊 𝒋

)
. (7)

For 𝑃( # of undetected failures
# of total failures

), i.e., FNR,

𝑓 (�̂�𝒊 𝒋∗ , �̂�𝒊 𝒋) = Σ�̂�𝒊 𝒋 − Σ
(
�̂�𝒊 𝒋∗

⋂
�̂�𝒊 𝒋

)
. (8)

For 𝑃( # of misreported normal link
# of total failures

), i.e., FPR,

𝑓 (�̂�𝒊 𝒋∗ , �̂�𝒊 𝒋) = Σ�̂�𝒊 𝒋∗ − Σ
(
�̂�𝒊 𝒋∗

⋂
�̂�𝒊 𝒋

)
. (9)

The size of the probing matrix 𝐷 affects how much probing
overhead is required. This means more probing agents need to

be deployed in DCNs and more extra bandwidth is occupied.

Therefore we would like to achieve a given detection accuracy

A with minimum probing overhead, i.e., the smallest number

of probing paths. We model the optimization problem as

shown in (10).

min rows(𝐷)

s.t.

𝑁∑
𝑖=1

𝑈𝑖∑
𝑗=1

(
𝑝Σ�̂�𝒊 𝒋 · (1 − 𝑝)Σ𝑅 𝑗−Σ�̂�𝒊 𝒋

)
·
𝑓 (�̂�𝒊 𝒋∗ , �̂�𝒊 𝒋)

Σ�̂�𝒊 𝒋

≥ A, (10)

𝑗∗ = argmin Σ�̂�𝒊 𝒋∗ ,

𝑓 (�̂�𝒊 𝒋∗ , �̂�𝒊 𝒋) = Σ
(
�̂�𝒊 𝒋∗

⋂
�̂�𝒊 𝒋

)

IV. PROBING MATRIX CONSTRUCTION ALGORITHM

The above optimization problem of failure detection via

round-trip probing is NP-hard, as proven in [28]. In order

to obtain the available probing matrix in a reasonable time,

we propose an iterative probing matrix calculation algorithm,

which chooses one path from the sub-optimal probing paths

that maximizes the accuracy increment ΔA and iterates until

the accuracy reaches the target.

However it remains a complex problem to calculate the

accuracy of the new probing matrix 𝑃′ after each iteration.

According to (6), the complexity of computing the probing

accuracy for a given probing matrix will be 𝑂 (2𝑛), where 𝑛
is the number of physical links. While the scale of a modern

data center network is enormous, e.g., Microsoft hosts over one

million servers in over 100 data centers globally [29]. There-

fore, we need an approximate indicator with lower enough

computational complexity to reflect the accuracy variation.

As we mentioned in the previous section, one given state
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S may correspond to multiple 𝑸𝑖 values. In (6), there are

multiple probing methods to choose a value from multiple

possible values �̂�𝒊 as our predicted value. For both probing

methods 1 and 2, the less optional values, i.e., |�̂�𝒊 |, the higher

the probability that the predicted result is the same as the actual

result, which means higher probing accuracy.

Define G𝑡 as the set of all indistinguishable failures sets in

step 𝑡.
G𝑡 = {𝐺1, 𝐺2, · · ·, 𝐺𝑘} (11)

At the start of constructing the probing matrix, we put all

possible failures into G. After a new probing path 𝑝 is added
to the probing matrix 𝐷, the set can be divided according
to whether the link in the failure exists on the path. The set

division from step 𝑡 to 𝑡 + 1 is defined as follows.

G𝑡+1 = {𝐺′
1, 𝐺

′′
1 , 𝐺

′
2, 𝐺

′′
2 , · · ·, 𝐺

′
𝑘 , 𝐺

′′
𝑘 }, (12)

where

𝐺′
𝑖 = {𝑔 |𝑔 ∈ 𝐺𝑖 and 𝑔 × 𝑝

𝑇 > 0},

𝐺′′
𝑖 = {𝑔 |𝑔 ∈ 𝐺𝑖 and 𝑔 × 𝑝

𝑇 = 0}.

We can increase 𝑡 by adding more paths to 𝐷, until the
accuracy constraint is met. Here each 𝐺𝑖 is corresponding to

a �̂�𝒊 . We would like to decrease |�̂�𝒊 | by finding a more rea-

sonable solution of set division, i.e., constructing the probing

matrix.

On the basis of the above observations, we propose a new

indicator 𝐶 to evaluate the result of set division. There are two
key requirements for set division: 1) each 𝐺𝑖 should contain as

fewer elements as possible to make failures easier to identify;

2) each |𝐺𝑖 | should be evenly distributed to avoid lower

accuracy due to too many failures reside in some particular

𝐺𝑖 . Therefore the proposed indicator 𝐶 is defined as follows.

𝐶 (G) =
1 + 𝜎(L(G))

|G|
, (13)

where L(G) = {|𝐺𝑖 |},∀𝐺𝑖 ∈ G and 𝜎 is the standard

deviation of it. Smaller 𝐶 means fewer elements in each subset
of G and/or elements are more balanced divided, eventually

leading to better accuracy.

However, the number of failures initially being divided i.e.,∑
L, is still up to 2𝑛. Considering the identifiability mentioned

in [14], we can use the failure set of maximum 𝛽 simultaneous
failures to reduce the complexity. As a result, the total number

of failures will fall to
∑𝛽

𝑖=1
(𝑛
𝑖

)
.

The proposed PMC algorithm is shown in Algorithm 1,

where 𝐶 is the criterion when adding a new probing path. This
algorithm is a greedy method, which will iterate until given

number of probing paths are selected or a given accuracy is

achieved. At each iteration, the algorithm calculates the 𝐶 for
each candidate path after adding it to the current set of detected

paths, and selects the path that minimizes 𝐶 to the set. The

overall time complexity will be 𝑂 (𝑚 × 𝑘 × 𝑛), where 𝑚 is

the size of probing matrix and 𝑘 is the number of candidate
probing paths.

𝐶 will remain valid until set division of G is complete, i.e.,
each subsets in G contains only one element. As Algorithm 1

is an iterative algorithm, in each iteration, the algorithm

Algorithm 1 Proposed probing matrix contruction algorithm
Input: 𝑅, 𝛽,A
Output: Probing matrix 𝑃𝑚×𝑛

𝑄 ← 𝐿𝐼𝑁𝐾𝑂𝑅(𝑅, 𝛽)
G ← {𝑄}

𝐷 = Φ
while 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑃) < A do

for 𝑝 ∈ 𝑅 do
G𝑝 ← divide G by 𝑝

𝐶𝑝 ←
1+𝜎 (L (G) )

| G |

end for
𝑝 ← argmin𝑝′ ∈𝑅 𝐶𝑝′

𝐷 ← 𝐷 ∪ {𝑝}
𝑅 ← 𝑅/{𝑝}
G ← G𝑝

end while

evaluates the candidate set division solutions according to 𝐶.
Thus it is necessary to ensure that 𝐶 is valid, i.e., |G| ≤ L(G).

In the subsequent experiments, we found that generally when

𝛽 = 1, |G| will reach L(G) too fast, making the iteration fail

to continue. While 𝛽 = 2 or 3 is large enough to achieve the
expected accuracy.

V. DRL-BASED PROBING MATRIX CONSTRUCTION

Algorithm 1 focuses on finding a better probing path in

each step. Therefore, the final probing matrix is likely to be

the local optimum and there is no guarantee that the global

optimum will be obtained.

But in some specific scenarios that are extremely sensitive to

overhead, we would like to find a probing matrix that is closer

to the optimal result, allowing higher system accuracy on the

same probing matrix size. Reinforcement learning methods

have achieved remarkable results in solving complex combina-

torial optimization problems [30]. The PPO algorithm [31] has

been reported to be more efficient and stable compared to other

reinforcement learning algorithms such as DQN in solving

these combinatorial optimization problems [32]. Therefore,

we apply the PPO algorithm to the probing path construction

problem. We provide feedback to the policy model to enable

it to choose more reasonable failure detection paths. The PPO

algorithm uses an actor-critic model and limits the change of

the policy through the hyperparameter 𝜖 so that the update of
the policy is within a limited range, making it more stable.

The above probing matrix construction problem is ab-

stracted into an environment in order to employ reinforcement

learning algorithms. To model this problem with a DRL model,

we use the selected set of probing paths as the output of the

reinforcement learning model, i.e., actions. But the solution

space of this problem is exponential. Thus the action space will

become overwhelmingly large, and it will grow rapidly with

the increase of the network size. Excessive action space will

have a negative impact on the performance of the DRL model,

which is not conducive to find an appropriate policy [33].

In order to manage and reduce the complexity of the

action space, we have designed our reinforcement learning
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environment to treat the probing matrix construction problem

as an episode, which is divided into multiple steps. This

approach allows us to break down the problem into smaller,

more manageable subproblems. At each step, the DRL policy

selects a single probing path and adds it to the existing probing

path set. By doing so, we effectively reduce the action space

at each step, as the DRL model only needs to consider a single

probing path rather than the entire solution space. This step-

by-step approach not only simplifies the action space but also

enables the DRL model to learn more efficiently, as it can

focus on making incremental improvements to the probing

path set. As a result, the performance of the DRL model is

less likely to be negatively impacted by the exponential growth

of the action space, allowing it to find an appropriate policy

more effectively.

Additionally, it is worth noting that while this method of

reducing complexity may have some potential negative impact

on the final results, our experimental results demonstrate that

this approach still achieves optimization outcomes that surpass

those of traditional methods. This indicates that the trade-off

between managing the complexity of the action space and the

quality of the final solution is well-balanced in our proposed

method. By effectively handling the action space complexity,

our DRL model is able to learn more efficiently and ultimately

outperform conventional techniques in solving the probing

matrix construction problem.

State space: The state space includes the information that
the DRL policy needs to know when making path selections

in each step. In this environment, we feed the set of selected

probing paths as the state to the policy model 𝜋. The policy
model 𝜋 will choose new probe paths to be added to the set
based on the current state. Therefore, we define the state vector

𝑆 ∈ I1×𝑘 as follows, where 𝑆𝑖 indicates whether the candidate
probing path 𝑖 exists in the set of detection paths and 𝑘 is the
number of all candidate probing paths.

𝑆 = (𝑆1, 𝑆2, · · ·, 𝑆𝑘), 𝑆𝑖 ∈ {0, 1}

Action Space: The action space of each step is the new
probing path selected by policy 𝜋 in the current step. We
directly use the ordinal number of the probe path to represent

the corresponding path. Formally, the action space 𝐴 can be
defined as a discrete integer.

𝐴 = 𝑖, 𝑖 ∈ {1, 2, · · ·, 𝑚}

Reward: The reward provides feedback to the policy 𝜋 and
must be carefully designed to ensure that qualified probing

paths are chosen. We divide the reward in the whole environ-

ment into two parts: 1) the reward after each action step is

completed (step reward), and 2) the reward at the end of an

episode when the compliant set of probing paths is obtained

(termination reward).

• Step reward: After each step is completed, we first

penalize the repeatedly selected path, as it provides no

help to the probing. We directly give a large negative re-

ward and terminate this episode. This penalty discourages

the DRL policy 𝜋 from selecting the same path multiple
times. For each distinct path, we also give a small penalty

Episode Start

Policy �

 

N

Y

Repeated?

Start a new episode

Episode End

Step Reward:

Large Penalty

N

Y

Finished?

Step Reward:

Small Penalty

Termination

Reward

action

Fig. 2. The training process of the PPO-based PMC algorithm.

to encourage the DRL policy 𝜋 to continue exploring
until the size of the probing matrix meets the requirement.

This step reward design aims to balance exploration and

exploitation during the learning process.

• Termination reward: For the reward at the end of each
episode, we use the proposed indicator 𝐶. We design the
reward 𝑊 to increase in proportion to the performance,

as follows:

𝑊 =
1
𝐶

=
|G|

1 + 𝜎(L(G))
. (14)

This termination reward design encourages the DRL

policy to select the set of probing paths with a higher

final reward 𝑊 . By using the indicator 𝐶, we ensure that
the reward is directly related to the detection accuracy,

thus guiding the policy towards better solutions.

As shown in Fig. 2, the reward mechanisms are adopted

to train the DRL policy. We do not include the termination

reward 𝑊 in the intermediate step and introduce a discount,

as we are more concerned about the final result rather than

the intermediate process for this model. This design choice

helps the policy avoid converging to a local optimum, as might

happen with a greedy algorithm.

VI. EVALUATION AND DISCUSSION

A. Experimental Setup

To evaluate the performance of the two algorithms proposed

in this paper, we constructed simulation platforms for experi-

mental assessment.

First, we developed a Python-based simulation platform to

assess the detection accuracy of failure probing matrices pro-

duced by the PMC algorithm. This platform initially generates

a fat-tree network topology with faults, taking into account

the specified link failure rate 𝑞. Subsequently, it executes the
provided PMC algorithm to create the corresponding probing

matrix and deploys the relevant agents to the appropriate edge

servers. Then detection agents run on the edge server nodes,

transmitting probing data. The PLL algorithm from [14] is

employed for failure localization using collected probing data.
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Finally, the identified link failures are compared with the actual

link failures to compute metrics such as detection accuracy.

Additionally, to emulate a more realistic probing topology,

we constructed a similar experimental environment utilizing

the ns-3 network simulator. The probe transmission and re-

ception processes are simulated on the edge servers within

the network topology established in ns-3. The forwarding

model of ns-3 more closely resembles the actual data center

network nodes, thereby providing a better representation of

our algorithms’ performance in real-world scenarios.

We compare our proposed algorithms with deTector [14] as

it is currently one of the leading algorithms for host-based fail-

ure localization. It builds upon the well-known PingMesh [8].

Our work improves upon deTector in several critical aspects,

including theoretical analysis, a superior indicator, and further

more, a DRL-based solution. By comparing against deTector,

we aim to highlight the strengths of our proposed algorithms.

The fat-tree topology [34] is one of the most prevalent

network structures in data center networks, with many com-

mercial data centers employing fat-tree and its variants [35]. It

utilizes a hierarchical structure where every level is fully inter-

connected. This design guarantees multiple pathways between

any two nodes within the network, thereby circumventing

bottlenecks and augmenting overall network performance.

Therefore, we used a 4-ary fat-tree network topology in our

experiments, consisting of a total of 36 nodes.

The simulation platform and other related experiments in

this paper are run on a workstation with an Intel Core i7-8700

processor and 32 GB of memory.

B. Theoretical Accuracy

We first investigate the consistency between the proposed

accuracy model and the simulation accuracy results. The

experiments are conducted in a 4-ary fat-tree network topology

with two pods, where 128 candidate probing paths are involved

in this network. Algorithm 1 was executed with different link

failure rates to generate the probing matrices at each given link

failure rate. Then we construct probing matrices with different

sizes from 1 to 20, and run the PLL algorithm respectively

based on them. The theoretical and simulation accuracies are

shown in Fig. 3.

It is shown that the simulated values (detected rates, unde-

tected rates, and misreported rates) are closely approximated to

the theoretical values given by (6) with different link failure

rates (𝑞 = 0.05 and 𝑞 = 0.1). This indicates our proposed
model in Section III is able to accurately reflect the failure

detection accuracy given the network topology and probing

matrix.

C. Heuristic PMC Algorithm

We propose an indicator 𝐶 in (13) as an alternative to the
absolute accuracy with high time complexity. We first compare

the probing accuracies using different evaluation indicators

(ΔA and 𝐶) with our proposed Algorithm 1.
As shown in Fig. 4, We ran the failure detection algorithm

using ΔA and 𝐶 as evaluation metrics respectively. It is shown
that with the same link failure rate, the accuracies produced by

the two approaches are close to each other. This demonstrates

that the indicator 𝐶 we proposed for choosing better probing
paths during each iteration is reasonable and can depict the

contribution of each probing path to the final accuracy.

We evaluate the theoretical values in (7), (8), and (9)

of the proposed PMC algorithm and deTector. The results

shown in Fig. 5 demonstrate that our proposed PMC algorithm

outperforms the PMC algorithm in deTector. Specifically, the

proposed algorithm gains higher detected rates as well as lower

undetected and misreported rates.

In addition, we evaluate the simulated failure detection

accuracies of our algorithm. The experiments are conducted

in both numerical and ns-3 simulation environments with

deTector as a comparison.

The PLL algorithm proposed in [14] is a failure localization

algorithm that is efficient and could be deployed in data

center networks. Therefore, we also performed an accuracy

evaluation using the PLL algorithm. We generated the probing

matrices using the same parameters and sent their probing

results to the PLL algorithm as inputs. The accuracy of the

link failures inferred by the PLL algorithm according to the

probing results is shown in Fig. 6(a).

To validate the actual effectiveness of the algorithm in

real data center networks, we implemented the whole probing

matrix construction, probing agents and failure localization

algorithms in a popular network simulator ns-3. We use ns-3

to generate the experimental network topology, and obtain

the corresponding probing results on the receiver agents by

sending actual probe packets from the sender agents. The

probing results are aggregated at the controller to calculate

the failure localization using the PLL algorithm. Results

in Fig. 6(b) indicate that the proposed algorithm also gains

better accuracies in the ns-3 simulator than the deTector

algorithm.

These several experimental data above show that our pro-

posed algorithm has a significant improvement in the accuracy

of failure detection compared with deTector. Our method’s

accuracy increases more rapidly with the number of probing

paths and can be accomplished with fewer probing paths com-

pared with deTector, which could reduce the overall probing

overhead.

We can also find that with the different values of 𝛽, the
accuracies of 𝛽 = 2 and 𝛽 = 3 are almost the same in the
first half of the curve, whereas the curve of 𝛽 = 2 tends to
flatten out while 𝛽 = 3 continues to grow in the rest. This

is due to the failures of 𝛽 = 2 is already divided completely
when the path number is greater than 15, i.e., there is only

one element in each set. As a result, the set number cannot be

used to enhance the subsequent probing path selection. While

there are more elements in 𝛽 = 3 and they can keep being
split as the number of paths increases.

This provides insight for selecting an appropriate 𝛽 value.
The value of 𝛽 can be determined in accordance with the
accuracy requirement. With a given accuracy, a smaller 𝛽
is preferred to reduce the overhead of deploying agents and

probing bandwidth.
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(b) Undetected failure rate
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(c) Misreported failure rate

Fig. 3. The comparison of theoretical and simulation values of (6) with different link failure rates.

TABLE II
COMPARISON OF ACCURACIES OF DIFFERENT SCHEMES IN DIFFERENT 𝛽 AND PROBING PATH NUMBER PARAMETERS.

Schemes Accuracy
(𝜷 = 2, path=10)

Accuracy
(𝜷 = 3, path=15)

deTector PMC algorithm [14] 63.68% 83.19%

Proposed PMC algorithm in Section IV 72.13% 85.87%

Proposed DRL-based PMC algorithm in Section V 73.01% 86.68%

� � �� �� ��
��

���

���

���

���

����

	



�
�

�

����������

�������� 	

��
������

�������� ����������������
���������	

��
������

�������������������������

Fig. 4. The accuracy results when choosing different indicators in Algorithm 1.

D. DRL-based PMC Algorithm

We also evaluated the accuracy of the failure probing matrix

obtained using the DRL-based method. As the main objective

of using reinforcement learning methods is to improve the

final accuracy as closely to the global optimal as possible,

the reinforcement learning method we designed focuses on

improving the final 𝐶, and not on the values in the intermediate
process.

The comparison of the accuracies of the three methods

is shown in table Table II. This table demonstrates that

our reinforcement learning scheme is able to find a probing

matrix that is closer to the optimal solution than the heuristic

algorithm and deTector with the same given number of probing

paths and 𝛽 value.

It is worth noting that although the DRL-based method can

find a better probing matrix, it takes longer training time than

the greedy heuristic algorithms. However, considering the fat-

tree network topology with 128 candidate paths as an example,

the complexity of finding the optimal probing matrix with 10

paths is
(128

10
)
≈ 2 × 1014, while the complexity of selecting

15 or 20 paths is even higher. This means the DRL-based

algorithm is able to find a suboptimal matrix that is closer to

the optimal one after several hours of training even for such

a complex problem.

To further justify our choice of the PPO algorithm, we

conducted a comparative experiment between PPO and DQN,

two popular DRL algorithms. As shown in Fig. 7, the PPO

algorithm demonstrates faster growth, smaller fluctuations, and

ultimately achieves a higher normalized reward compared to

DQN. In contrast, the DQN algorithm exhibits slower growth,

larger fluctuations, and its final reward is only about 60% of

the PPO’s reward. These results provide empirical evidence

supporting our choice of the PPO algorithm for solving the

complex combinatorial optimization problem in our study. The

superior performance of PPO in terms of both convergence

speed and final reward makes it a more suitable choice for

our application.

The entire training process of 1000K PPO steps took

approximately 2 hours. The training was performed on an Intel

Core i7-8700 workstation with 32 GB of RAM, utilizing only

the CPU. Because reinforcement learning typically employs

smaller neural networks, so the benefits of using a GPU would

be counterbalanced by the communication overhead between

the CPU and GPU.

E. Limitations and Future Work

Our experimental results demonstrate the effectiveness of

the proposed solutions. The results show that our theoretical

model is consistent with actual scenarios, and both our heuris-

tic algorithm and DRL-based PMC algorithm outperform other

methods.
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(a) Detected failure rate (Accuracy) (b) Undetected failure rate (c) Misreported failure rate

Fig. 5. Theoretical values of different methods with different 𝛽.

(a) Accuracies in the PLL numerical simulation (b) Accuracies in the ns-3 simulator

Fig. 6. Accuracies of generated probing matrices using different methods with different 𝛽s.
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Fig. 7. Training performance comparison of PPO and DQN-based PMC
algorithms.

Nevertheless, our algorithms exhibit certain limitations and

drawbacks. The DRL-based algorithm delivers superior detec-

tion performance, achieving higher accuracy with equivalent

probing overhead or reduced probing overhead with the same

target accuracy. In contrast, the heuristic algorithm provides

expedited construction speed but slightly lower detection per-

formance. As a result, these two algorithms cater to distinct

application scenarios. When probing overhead is highly sen-

sitive and a smaller probing matrix is desired, the DRL-based

algorithm should be employed given the same target accuracy.

On the other hand, when the construction speed of the probing

matrix is prioritized and its size is less critical, the heuristic

algorithm should be selected.

Additionally, scalability remains a significant limitation for

both algorithms. As the size of data center networks increases,

the matrix construction speed of these methods still has

considerable constraints. Further research is warranted in this

area.

Fortunately, recent studies such as Bernardez et al. [36] sug-
gest that trained GNNs can yield favorable results on unseen

topologies in the training data, indicating a degree of gener-

ality. Our work establishes the groundwork for utilizing deep

reinforcement learning in failure probing matrix construction.

Building upon this foundation, it might be feasible to develop

a universal reinforcement learning PMC solution employing

GNN-based reinforcement learning techniques. This approach

would enable the construction of probing matrices on any

network topology following a single training session. We leave

this exploration for future work.

Besides, our proposed algorithms are anticipated to perform

optimally in data centers with physical infrastructure instead of

virtualized networks. This is mainly due to physical data center

networks’ regular and predictable topologies. Conversely, vir-

tualized data center networks present a more diverse range of

topologies. These virtualized networks may not always offer

multiple equivalent paths, which could potentially diminish

the effectiveness of our solution. We acknowledge that further
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research is necessary to optimize probing matrix construction

in data centers with virtual infrastructure.

VII. CONCLUSION

This paper firstly models the end-to-end failure detection

method and presents the theoretical accuracy of failure de-

tection under a given network topology and probing matrix.

Secondly, we design an alternative indicator for evaluating the

effectiveness of a probing matrix, and propose a new probing

matrix construction algorithm. The evaluation results show that

the proposed algorithm using the new indicator focuses on

improving the accuracy at each step of selection. As a result,

the selected probing matrix can achieve the target accuracy

sooner than previous methods. Furthermore, we propose to use

the deep reinforcement learning algorithm to construct probing

matrices. We provide feedback to the reinforcement learning

policy via balanced set division result. The proposed algo-

rithms are evaluated in both numerical and ns-3 simulations.

Experimental results show that the DRL-based probing matrix

construction is able to find a probing matrix that is closer

to the optimal. Finally, we discussed the different application

scenarios of the two proposed methods that are aiming to

achieve better detection accuracy or construction speed.
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