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Sampling for Remote Estimation of an
Ornstein-Uhlenbeck Process through Channel with

Unknown Delay Statistics
Yuchao Chen*, Haoyue Tang*, Jintao Wang, Pengkun Yang, and Leandros Tassiulas

Abstract—In this paper, we consider sampling an Ornstein-
Uhlenbeck (OU) process through a channel for remote estimation.
The goal is to minimize the mean square error (MSE) at
the estimator under a sampling frequency constraint when
the channel delay statistics is unknown. Sampling for MSE
minimization is reformulated into an optimal stopping problem.
By revisiting the threshold structure of the optimal stopping
policy when the delay statistics is known, we propose an online
sampling algorithm to learn the optimum threshold using stochas-
tic approximation algorithm and the virtual queue method. We
prove that with probability 1, the MSE of the proposed online
algorithm converges to the minimum MSE that is achieved when
the channel delay statistics is known. The cumulative MSE gap
of our proposed algorithm compared with the minimum MSE
up to the (k+1)th sample grows with rate at most O(ln k). Our
proposed online algorithm can satisfy the sampling frequency
constraint theoretically. Finally, simulation results are provided
to demonstrate the performance of the proposed algorithm.

Index Terms—Online learning, Ornstein-Uhlenbeck process,
stochastic approximation

I. INTRODUCTION

W ITH the rapid development of the autonomous vehi-
cles [1] and intelligent machine communications [2],

status update information (e.g., the speed of the vehicles) is
becoming a major part in future communication networks [3].
Those status information are delivered to the destination
through communication channels, and to guarantee the system
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safety and efficient control, it is necessary to ensure that the
controller has an accurate estimation of the system state.

To measure the information freshness at the destination,
the metric, age of information (AoI), has been proposed
in [4]. According to the definition, AoI measures the difference
between the current time and the generation time of the latest
information received at the destination. Previous work [5], [6]
have shown that AoI minimization is different from the
traditional throughput and delay optimization. Specifically in
the data generation procedure, a new data sample should be
made only when the data stored at the destination is old.
Numerous research have been conducted to minimize the AoI
in various networks [4]–[11]. The average AoI optimization
in the queueing system is studied in [4], [7]. Age-optimal
scheduling policies in a multi-user wireless network are also
investigated in [9]–[12]. For minimizing the more general non-
linear age function, [6], [8] also design the optimal sampling
strategies.

However, when the signal model is known, AoI itself cannot
reflect the different signal evolution. As an alternative, a better
metric to capture information freshness at the destination is the
mean square error (MSE) [13]–[21]. The sampling strategy
to minimize the estimation MSE of a Wiener process is
studied in [14], [15], [20]. Sampling strategy to minimize an
Ornstein-Uhlenbeck (OU) process is investigated in [14], [21].
It is revealed that the optimum sampling threshold depends
on signal evolution and channel delay statistics. When the
channel delay statistics is known, the aforementioned optimum
sampling thresholds can be computed numerically by fixed-
point iteration [19] or bi-section search [20], [21].

When the channel statistics of the communication link
is unknown, finding the optimum policy (i.e., the optimum
AoI [6] or signal difference threshold [20], [21]) is chal-
lenging. Designing an adaptive sampling and transmission
strategy under unknown channel statistics for data freshness
optimization can be formulated into a sequential decision-
making process [22]–[29]. Based on the stochastic multi-
armed bandit, [22]–[24] design online channel selection al-
gorithms to minimize average AoI performance for the ON-
OFF channel with unknown transition probability. For chan-
nels with more efficient communication protocols, [30]–[32]
use reinforcement learning to minimize the AoI performance
under unknown channel statistics. For communication chan-
nels with random delay, [28], [29], [33] apply the stochastic
approximation method to design adaptive sampling algorithms
to optimize AoI performance. The stochastic approximation
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method can also be extended to online estimation of the signals
with simple evolution model, i.e., the Wiener process [34].

Notice that the Wiener process is the simplest time-varying
signal model, and we are interested in extending the results
to handle more general and complex signal models. In this
paper, we consider a point-to-point link with a sensor sampling
an OU process and transmitting the sampled packet to the
destination through a channel with random delay for remote
estimation. Our goal is to design an online sampling policy to
minimize the average MSE under a frequency constraint when
the channel statistics is unknown. The main contributions of
the work are listed as follows:

• We reformulated the MSE minimum sampling problem
under the unknown channel statistics as an optimal
stopping problem by providing a novel frame division
algorithm that is different from [21]. This novel ap-
proach of frame division enables us to propose an online
sampling algorithm to learn the optimal threshold adap-
tively through stochastic approximation and virtual queue
method.

• When there is no sampling frequency constraint, we
proved that the expected average MSE of the proposed
algorithm can converge to the minimum MSE almost
surely. Specifically, we first utilized the property of the
OU process to bound the threshold parameter (Lemma 2
and Lemma 6), and then we proved the cumulative MSE
regret grows at the speed of O(lnK), where K is the
number of samples (Theorem 2) we have taken.

• When there exists a sampling frequency constraint, by
viewing the sampling frequency debt as a virtual queue,
we proved that the sampling frequency constraint can
be satisfied in the sense that the virtual queue is stable
(Theorem 3).

The rest of the paper is organized as follows. In Section
II, we introduce the system model and formulate the MSE
minimization problem. In Section III, we reformulate the prob-
lem into an optimal stopping optimization and then propose
an online sampling algorithm. The theoretical analysis of the
proposed algorithm is provided in Section IV. In Section V, we
present the simulation results. Finally, conclusions are drawn
in Section VI.

II. PROBLEM FORMULATION

A. System Model

As depicted in Fig. 1, we study a status update system
similar to [21], where a sensor observes a time-varying process
and sends the sampled data to the remote estimator through
a channel. Let Xt ∈ R,∀t ≥ 0 denote the value of the
time-varying process at time t. To model these time-varying
first-order auto-regressive processes, we assume Xt to be an
OU process in this work. This general process is the only
nontrivial continuous-time process that is stationary, Gaussian,
and Markovian [35]. The OU process evolution parameterized
by µ, θ, σ ∈ R+ can be modeled by the following stochastic
differential equation (SDE) [35]:

dXt = θ(µ−Xt)dt+ σdWt,

Ornstein-Uhlenbeck Process

Sampler Wireless channel Estimator

ACK Channel

stein Uhlenbeck PrOrnstein-Uhlenbeck Process

Sampler Wireless channel Estimator

ACK Channel

Fig. 1. A point-to-point status update system.

where Wt is a Wiener process.
Suppose the sensor can sample the process at any time

t ∈ R+ at his own will. Let Sk be the sampling time-stamp
of the kth sample. Once sample k is transmitted over the
channel, it will experience a random delay Dk ∈ [0,∞)
to reach the destination. We assume the transmission delay
is independent and identically distributed (i.i.d.) following a
probability measure PD.

Due to the interference constraint, only one sample can be
transmitted over the channel at one time. Once the transmis-
sion of an update finishes, an ACK signal will be sent to the
sensor without error immediately. Let Rk be the reception time
of the kth sample. Then we can compute Rk iteratively by

Rk = max{Sk, Rk−1}+Dk. (1)

B. Minimum Mean Squared Error (MMSE) Estimation

The receiver attempts to estimate the value of Xt based
on the received packets and the transmission results before
time t. Let i(t) = maxk∈N{k|Rk ≤ t} be the index of the
latest received sample at time t. The evolution of Xt can be
rewritten using the strong Markov property of the OU process
[21, equation (8)] as follows.

Xt =XSi(t)
e−θ(t−Si(t)) + µ

[
1− e−θ(t−Si(t))

]
+

σ√
2θ
e−θ(t−Si(t))W

e
2θ(t−Si(t))−1

(2)

Let Ht :=
(
{Sk, Dk, XSk

}i(t)k=1, t
)

be the historical in-
formation up to time t. Then, the MMSE estimator at the
destination is the conditional expectation [36]:

X̂t = E[Xt|Ht] = XSi(t)
e−θ(t−Si(t)) + µ

[
1− e−θ(t−Si(t))

]
(3)

Combined with (2), the instant estimation error at time t,
denoted by ∆t can be computed as

∆t = Xt − X̂t =
σ√
2θ
e−θ(t−Si(t))W

e
2θ(t−Si(t))−1

, (4)

which can be viewed as an OU process starting at time
t = Si(t).
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Fig. 2. Illustration of the OU process and the estimation error.

To better demonstrate the MMSE estimation, we draw Fig. 2
as an example. The blue line is a sample path of an OU
process, and the orange line is the MMSE estimator computed
by (3). Then the difference between these two lines, i.e., the
shaded area, is the cumulative estimation error between the
two samples.

C. Optimization Problem

The goal of the sampler is to find a sampling policy repre-
sented by a series of sampling times, i.e., π := {S1, S2, · · ·}
to minimize the estimation MSE of the OU process at the
destination. We assume that the sampler knows the statistical
information of the OU process, i.e., parameters θ, µ, σ, while
the channel delay statistics PD is unknown. Here we focus
on the set of causal sampling policies denoted by Π. The
sampling time Sk selected by each policy π ∈ Π is determined
only by the historical information. No future information
can be used for the sampling decision. Moreover, due to
the hardware constraint and energy conservation, the average
sampling frequency during the transmission should be below
a certain threshold fmax. Then, the optimization problem can
be formulated as

Problem 1 (MSE minimization):

mmse ≜ inf
π∈Π

lim sup
T→∞

1

T
E

[∫ T

0

(Xt − X̂t)
2dt

]
, (5a)

s.t. lim sup
T→∞

E
[
i(T )

T

]
≤ fmax. (5b)

III. PROBLEM RESOLUTION

In this section, we first reformulate the Problem 1 into an
optimal stopping problem. Then, an online sampling algorithm
is proposed to approach the optimal mmse.

A. Optimal Stopping Problem Reformulation

Notice that Problem 1 is a constrained continuous-time
Markov decision process (MDP) with a continuous state space.

It has been proven in [21, Lemma 6] that it is sub-optimal to
take a new sample before the last packet is received by the
receiver. In other words, to achieve the optimal mmse, the
sampling time-stamp Sk should be larger than Rk−1. Then
(1) can be simplified as Rk = Sk+Dk. Let Wk = Sk+1−Rk

be the waiting time before taking the (k+1)th sample. Then,
designing a sampling policy π = {S1, S2, · · ·} is equivalent
to choosing a sequence of waiting time {W1,W2, · · ·}. To
facilitate further analysis, define frame k to be the time interval
between Sk and Sk+1. Then, we introduce the following
lemma to reformulate the Problem 1 into the packet-level
MDP.

Lemma 1: Define Ik = (Dk, {Xt}t≥Sk
) to be the in-

formation in frame k, and Πr to be the set of stationary
sampling policies whose Wk only depends on Ik. Let D be
the random delay following distribution PD. Then Problem 1
can be reformulated into the following MDP:

Problem 2 (Packet-level MDP reformulation):

α⋆ ≜ sup
π∈Πr

(
lim

K→∞

∑K
k=1 E[O2

Dk+Wk
]∑K

k=1 E [Dk +Wk]

)
, (6a)

s.t. lim inf
K→∞

1

K

K∑
k=1

E [Wk +Dk] ≥
1

fmax
, (6b)

where Ot is an OU process with initial state Ot = 0 and
parameter µ = 0, which is the solution to the SDE:

dOt = −θOtdt+ σdWt. (7)

Moreover, the optimum value α⋆ satisfies:

α⋆ =

(
σ2

2θ
− mmse

)
2θ

E[e−2θD]
≥ 0. (8)

The proof of Lemma 1 is provided in Appendix B.
Assumption 1: The expectation of delay Dk is bounded and

known to the transmitter, i.e.,

0 < Dlb ≤ D ≜ EPD
[Dk] ≤ Dub <∞. (9)

Lemma 2: Define Ŵ = 1/fmax + c, where c > 0 is an
arbitrary constant. If Assumption 1 is satisfied, then we can
bound α⋆ as

αlb ≤ α⋆ ≤ αub, (10)

where αlb and αub can be chosen as

αlb =
σ2(1− e−2θŴ )

2θ(Dub + Ŵ )
> 0, (11)

αub = σ2. (12)

The proof of Lemma 2 is provided in Appendix C. The
lower bound is obtained by constructing a feasible and con-
stant sampling policy whose waiting time is always Ŵ and
then using (6a). The constant c is introduced to ensure Ŵ > 0
when there is no frequency constraint. The upper bound is
obtained by using (8) and the fact mmse ≥ σ2/2θE[1−e−2θD].
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B. Optimal Sampling with Known PD

In the sequel, we will derive the optimum policy π⋆ that
achieves optimal mmse when PD is known. The structure of
the optimal policy can help us design the algorithm under
unknown channel statistics, and the average MSE obtained by
π⋆ will be used to measure the performance of the proposed
online learning algorithm in Section III-C

According to (6a), the cost obtained by any policy π that
satisfies the sampling constraint (6b) is less or equal to α⋆. In
other words, we have

− lim
K→∞

1
K

∑K
k=1 E[O2

Dk+Wk
]

1
K

∑K
k=1 E[Dk +Wk]

≥ −α⋆. (13)

Multiplying (1/K)
∑K

k=1 E[Dk+Wk] on both sides of (13)
and then adding α⋆ limK→∞(1/K)E[Dk+Wk] on both sides,
we are able to solve Problem 2 by minimizing the following
objective function:

Problem 3:

ρ⋆ ≜ inf
π∈Πr

lim sup
K→∞

1

K

K∑
k=1

(
− E[O2

Dk+Wk
]

+ α⋆E[Dk +Wk]
)
, (14a)

s.t. lim inf
K→∞

1

K

K∑
k=1

E [Wk +Dk] ≥
1

fmax
, (14b)

Similar to Dinkelbach’s method [37] for the non-linear
fractional programming, we can deduce that the optimal value
ρ⋆ of Problem 3 equals 0, and the optimum policy that
achieves mmse in Problem 1 and ρ⋆ in Problem 3 are identical.
Therefore, we proceed to solve Problem 3 using the Lagrange
multiplier approach. Let λ ≥ 0 be the Lagrange multiplier of
the sampling frequency constraint (14b), the Lagrange function
for Problem 3 is as follows:

L(π, λ) = lim sup
K→∞

1

K

K∑
k=1

(
− E[O2

Dk+Wk
]

+ (α⋆ − λ)E [Dk +Wk] + λ
1

fmax

)
. (15)

Notice that the transmission delay Dk is i.i.d., and Ot is an
OU process starting at time t = 0. Then for fixed λ, selecting
the optimum waiting time Wk to minimize (15) becomes a
per-sample optimal stopping problem by finding the optimum
stop time w to minimize the following expectation:

min
w

E
[
−O2

Dk+w + (α⋆ − λ)w|ODk
, Dk

]
. (16)

For simplicity, let Vw = ODk+w be the value of the OU
process at time Dk + w and V0 = ODk

by definition. Then
problem (16) is one instance of the following optimal stopping
problem when β = α⋆ − λ:

sup
τ

Ev0

[
V 2
τ − βτ

]
, (17)

where Ev0 is the conditional expectation given V0 = v0. The
optimum policy to (17) is obtained in the following Lemma:

Lemma 3: If 0 < β ≤ σ2, then the solution to minimize
(17) has a threshold property, i.e.,

Wk = w(ODk
;β) := inf{t ≥ 0 : |ODk+t| ≥ v(β)}, (18)

where

v(β) =
σ√
θ
G−1

(
σ2

β

)
, (19)

and G−1(·) is the inverse function of

G(x) =
ex

2

x

∫ x

0

e−t2dt, x ∈ [0,∞). (20)

The proof of Lemma 3 is provided in Appendix D.
Since [21, Theorem 6] has proven the strong duality of

Problem 3, i.e., ρ⋆ = maxλ minL(π, λ). For notational
simplicity, let o(β) and l(β) denote the expected estimation
error and frame length by using threshold β, i.e.,

o(β) :=E[O2
D+w(OD;β)], (21a)

l(β) :=E[D + w(OD;β)]. (21b)

by substituting ODk+w with (XRk+w − X̂Rk+w) in (18), the
optimal sampling time Sk+1 = Rk +Wk to Problem 3 is as
follows:

Lemma 4: [21, Theorem 2 Restated] The optimal solution
to Problem 1 is:

Sk+1 = inf{t ≥ Rk : |Xt − X̂t| ≥ v(α⋆ − λ⋆)},

where v(·) is defined in (19), λ⋆ = arg supλ L(π, λ) is
the dual optimizer, and α⋆ is the solution to the following
equation:

0 =gλ⋆(α) := o(α− λ⋆)− αl(α− λ⋆), (22)

where we recall that o(β) = E[O2
D+w(OD;β)] = E[(XSk+1

−
X̂Sk+1

)2] is the expected squared estimation error by using
threshold β, and l(β) = E[D + w(OD;β)] is the expected
framelength.

Remark 1: If the frequency constraint is inactive, then
according to the complementary slackness, we have λ⋆ = 0,
and the threshold becomes v(α⋆). Otherwise, the optimal
α⋆−λ⋆ < α⋆. Then according to (19), the sampling threshold
is larger than v(α⋆) to satisfy the sampling frequency con-
straint.

Remark 2: In [21, Theorem 2], the optimum sampling
threshold to minimize the MSE is

v(β′) =
σ√
θ
G−1

(
mse∞ − mseD

mse∞ − β′

)
, (23)

where

mse∞ = E[O2
∞] =

σ2

2θ
; (24a)

mseD = E[O2
Dk

] =
σ2

2θ
E[1− e−2θD]. (24b)

The optimum sampling threshold is taken when
β′ = mmse + λ′, i.e.,

v(β′) =
σ√
θ
G−1

(
σ2(

σ2

2θ − mmse
)

2θ
E[e−2θD]

− λ′ 2θ
E[e−2θD]

)
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Algorithm 1 Online learning sampling algorithm
1: Parameters: V .
2: Initialization: α1 = 0, U1 = 0.
3: for k = 1, 2, · · ·,K do
4: Set λk = 1

V Uk.
5: According to the last sampling generation time Sk and

delay Dk, choose the waiting time Wk as

Wk

= inf{w ≥ 0 : |XRk+w − X̂Rk+w| ≥ v((αk − λk)
+)}.

6: Update αk:

αk+1 = (αk + ηk(O
2
Lk

− αkLk))
αub
αlb
,

where

OLk
= XSk+1

− X̂Sk+1
, (26)

Lk = Dk +Wk. (27)

7: Update Uk:

Uk+1 =

(
Uk +

1

fmax
− Lk

)+

.

8: end for

(a)
=

σ√
θ
G−1

(
σ2

α⋆ − λ′ 2θ
E[e−2θD]

)
, (25)

where (a) holds by (8). Comparing (25) with (19), we find the
conclusions coincide.

C. Online Algorithm

Notice that the optimal sampling in Section III-B is deter-
mined by α⋆ − λ⋆ through (19). However, when the channel
statistics PD is unknown, α⋆ and λ⋆ are unknown, making
direct computation of v(α⋆ − λ⋆) impossible. To overcome
the challenge, we propose an online learning algorithm to
approximate these two parameters α⋆ and λ⋆ respectively.

Notice that α⋆ is the solution to (22) when λ = λ⋆.
This motivates us to approximate α⋆ using the Robbins-
Monro algorithm [38] for stochastic approximation. For λ⋆, we
construct a virtual queue Uk to record the cumulative sampling
constraint violation up to frame k.

As concluded in Algorithm 1, the proposed algorithm con-
sists of two parts: Sampling (step 5) and updating (step 6
and 7). For the sampling step, the algorithm uses the current
estimation αk and λk to compute the threshold, i.e.,

Wk = inf{w ≥ 0 : |XRk+w − X̂Rk+w| ≥ v((αk − λk)
+)},

(28)
where (·)+ = max{·, 0}. After sample (k + 1) is taken at
time Rk +Wk, we can compute the instant estimation error
OLk

:= XSk+1
−X̂Sk+1

and the frame length Lk := Dk+Wk.
According to (4), OLk

is an instance of OD+w(OD;α−λ) when
λ = λk and α = αk.

We then update αk+1 according to the Robbins-Monro
algorithm:

αk+1 = (αk + ηk(O
2
Lk

− αkLk))
αub
αlb
, (29)

where (x)ba is the projection of x onto the interval [a, b]; αlb
and αub are the lower and upper bound of α⋆ defined in (11)
and (12); ηk is the step size, which can be chosen as

ηk =

{
1

2Dlb
, k = 1;
1

(k+2)Dlb
, k ≥ 2.

For estimating λ⋆, we construct a virtual queue Uk which
evolves as

Uk+1 =

(
Uk +

1

fmax
− Lk

)+

.

Then λk = Uk/V , where V > 0 is the hyper-parameter.
Notice that 1/fmax−Lk is the violation of sampling constraint
in frame k. Therefore Uk can be interpreted as the cumulative
violation up to frame k. The Algorithm 1 attempts to stabilize
Uk to satisfy the sampling frequency constraint.

Remark 3: In (28), we choose (αk − λk)
+ to ensure the

positive input for v(·). We should also avoid the estimation
αk − λk to be zero, which will make the threshold v to be
infinite. This requires the algorithm cannot choose V to be too
small. Also in practice one can set an arbitrarily small positive
value η > 0 as a lower bound for αk−λk to avoid the infinite
threshold.

IV. THEORETICAL ANALYSIS

In this section, we analyze the convergence and optimality
of Algorithm 1.

Assumption 2: The second moment of delay Dk is bounded,
i.e., 1

0 < Mlb ≤ EPD
[D2

k] ≤Mub <∞. (30a)

First, we assume that there is no sampling frequency con-
straint, i.e., fmax = ∞ and thus λ = 0. Finally, we will prove
that in general case fmax < ∞, Algorithm 1 will still satisfy
the constraint.

Theorem 1: The time average MSE
∫ Sk+1
0 (Xt−X̂t)

2dt
Sk+1

of the
proposed online learning algorithm converges to mmse with
probability 1, i.e.,∫ Sk+1

0
(Xt − X̂t)

2dt
Sk+1

a.s.
= mmse. (31)

Theorem 2: Let Rk := E
[∫ Sk+1

0
(Xt − X̂t)

2dt
]
− mmse ·

E[Sk+1] denote the expected cumulative MSE regret up to the
(k + 1)th sample. We can upper bound Rk as follows:

Rk ≤ max
α∈[αlb,αub]

|R′
1(v(α))v

′(α)|E[e
−2θD]

2θ

C

D2
lb
ln k, (32)

where C is a constant independent of k and is defined (42).
The proof of Theorem 1 and Theorem 2 are provided in

Appendix E and Appendix F, respectively.
Now we consider the sampling frequency constraint. Here

we assume that the constraint is feasible, i.e.,

1The assumptions is presented here mainly for theoretical analysis. In
fact the proposed algorithm discussed in Section III-C does not need the
assumption.
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Assumption 3: There exists a constant ϵ > 0, and a
stationary sampling policy πϵ satisfies

E [Dk +W ϵ
k ] ≥

1

fmax
+ ϵ, (33)

where the expectation is taken over the channel statistics and
the policy πϵ.

Theorem 3: Under Algorithm 1, the sampling frequency
constraint can be satisfied, i.e.,

lim
K→∞

inf E

[
1

K

K∑
k=1

(Dk +Wk)

]
≥ 1

fmax
. (34)

The proof of Theorem 3 is provided in Appendix H.

V. SIMULATION RESULTS

In this section, we provide some simulation results to
demonstrate the performance of our proposed algorithm. The
parameters of the monitored OU process are σ = 1, θ = 0.2,
and µ = 3. The channel delay follows the log-normal distri-
bution with µD = σD = 1. The expected MSE is computed
by taking the average of 100 simulation runs for K = 104

packet transmission frames.

A. Without a Sampling Frequency Constraint

First, we consider the case with no frequency constraint,
i.e., fmax = ∞. We compare the MSE performance using the
following policies:

• Zero-Wait Policy πzw: Take a new sample immediately
after the reception of the ACK of the last sample, i.e.,
Wk = 0.

• Signal-Aware MSE Optimum Policy π⋆: Signal aware
MSE optimum policy when PD is known [21].

• Signal-Agnostic AoI Minimum Policy πAoI: Signal
agnostic sampling policy for AoI minimization [6].

• Proposed Online Policy πonline: Described in Algo-
rithm 1.

The estimation performance is depicted in Fig. 3. From
Fig. 3, we can verify that the expected MSE performance
of the proposed policy πonline converges to the optimum
policy π⋆, and achieves a smaller MSE performance compared
with the signal-agnostic AoI minimum sampling and zero-wait
policy. Previous work [21] has shown that the zero-wait policy
is far from optimality when the channel delay is heavy tail.
For the AoI optimal policy, while [20] reveals the relationship
between average AoI and estimation error for the Wiener
process, it is sub-optimal for MSE optimization of the OU
process, even worse than the zero-wait policy.

Next, we consider the estimation of the threshold
v(α⋆ − λ⋆). Obviously, the fast and accurate estimation of the
threshold is the necessary condition for the convergence of
MSE performance. As depicted in Fig. 4, the proposed algo-
rithm can approximate the optimal threshold as the time goes
to infinity. Besides, the variance of the threshold estimation
will also become small, which guarantees the convergence of
MSE.
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Fig. 3. MSE performance with no frequency constraint.

Fig. 4. Threshold evolution without frequency constraint.

B. With A Sampling Frequency Constraint

In this part, we depict the simulation results when a sam-
pling constraint exists. The parameters of the system are the
same as in Fig. 3, and we set fmax = 0.02. In other words, the
minimum average frame length 1/fmax = 50. Notice that now
the zero-wait policy does not satisfy the sampling constraint.
Therefore, we consider a frequency conservative policy πfreq,
which selects Wk as

Wk = max

{
k

fmax
−

k−1∑
k′=1

Lk′ −Dk, 0

}
.

We set the parameter V = 500 and depict the MSE
performance and average frame length in Fig. 5 and Fig. 6.
These two figures verify that the proposed algorithm can also
approximate the lower bound while satisfying the frequency
constraint.

Finally, we investigate the impact of V on the MSE
performance and average frame length. We choose three
different values of V = {300, 500, 800} and compare the
MSE performance and average frame length, as depicted in
Figs. 7(a) and 7(b) respectively. Generally speaking, the MSE
performance of proposed algorithm with different V can all
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Fig. 5. MSE performance under frequency constraint fmax = 0.02.
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Fig. 6. Average frame length under frequency constraint fmax = 0.02.

converge to the optimal MMSE, and the average inter-update
interval of the proposed algorithms are near the frequency
constraint. Notice that V is a hyper parameter controlling the
estimation of the Lagrange multiplier. A larger V indicates
less emphasis on the frequency constraint. By using a larger
V = 800, the algorithm will take a longer time to converge
to the sampling frequency constraint. Since for t < 8000
the sampling frequency of the algorithm slightly violates the
sampling frequency constraint, the MSE is smaller.

VI. CONCLUSION

In this work, we studied the sampling policy for remote esti-
mation of an OU process through a channel with transmission
delay. We aim at designing an online sampling policy that can
minimize the mean square error when the delay distribution is
unknown. Finding the MSE minimum sampling policy can be
reformulated into an optimal stopping problem, we proposed
a stochastic approximation algorithm to learn the optimum
stopping threshold adaptively. We prove that, after taking k
samples, the cumulative MSE regret of our proposed algorithm
grows with rate O(ln k), and the expected time-averaged MSE
of our proposed algorithm converges to the minimum MSE

(a) MSE performance.
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(b) Average frame length.

Fig. 7. MSE performance and average frame length with different parameter
V .

almost surely. Numerical simulation validates the superiority
and convergence performance of the proposed algorithm.

REFERENCES

[1] M. N. Ahangar, Q. Z. Ahmed, F. A. Khan, and M. Hafeez, “A survey
of autonomous vehicles: Enabling communication technologies and
challenges,” Sensors, vol. 21, no. 3, p. 706, 2021.

[2] S. Chen, R. Ma, H.-H. Chen, H. Zhang, W. Meng, and J. Liu, “Machine-
to-machine communications in ultra-dense networks-A survey,” IEEE
Commun. Surveys Tut., vol. 19, no. 3, pp. 1478–1503, 2017.

[3] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Guest editorial age of information,” IEEE J. Sel. Areas
Commun., vol. 39, no. 5, pp. 1179–1182, 2021.

[4] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE INFOCOM, 2012.

[5] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE ISIT, 2015.

[6] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory,
vol. 63, no. 11, pp. 7492–7508, 2017.

[7] R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,” IEEE Trans. Inf. Theory, vol. 65, no. 3,
pp. 1807–1827, 2019.

[8] Y. Sun and B. Cyr, “Sampling for data freshness optimization: Non-
linear age functions,” J. Commun. Netw., vol. 21, no. 3, pp. 204–219,
2019.



CHEN et al.: SAMPLING FOR REMOTE ESTIMATION OF AN ... 677

[9] I. Kadota, A. Sinha, and E. Modiano, “Scheduling algorithms for
optimizing age of information in wireless networks with throughput
constraints,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1359–1372,
2019.

[10] R. Talak, S. Karaman, and E. Modiano, “Optimizing information
freshness in wireless networks under general interference constraints,”
IEEE/ACM Trans. Netw., vol. 28, no. 1, pp. 15–28, 2020.

[11] I. Kadota and E. Modiano, “Minimizing the age of information in wire-
less networks with stochastic arrivals,” IEEE Trans. Mobile Comput.,
vol. 20, no. 3, pp. 1173–1185, 2021.

[12] H. Tang, J. Wang, L. Song, and J. Song, “Minimizing age of information
with power constraints: Multi-user opportunistic scheduling in multi-
state time-varying channels,” IEEE J. Sel. Areas Commun., vol. 38, no. 5,
pp. 854–868, 2020.

[13] V. S. Jog, R. J. La, and N. C. Martins, “Channels, learning,
queueing and remote estimation systems with A utilization-dependent
component,” CoRR, vol. abs/1905.04362, 2019. [Online]. Available:
http://arxiv.org/abs/1905.04362

[14] M. Rabi, G. V. Moustakides, and J. S. Baras, “Adaptive sampling for
linear state estimation,” SIAM J. Control. Optim., vol. 50, no. 2, pp.
672–702, 2012.
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APPENDIX A
LEMMAS AND NOTATIONS

First, we state the auxiliary lemmas and corollaries that will
be used in the following proofs. Proofs for these lemmas and
corollaries are provided in

Lemma 5: [21, Lemma 1 Restated]

E[Dk +Wk]

= E[Dk] + E[max{R1(v((αk − λk)
+))−R1(|ODk

|), 0}],
(35)

where

R1(v) =
v2

σ2 2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
)
, (36a)

2F2

(
1, 1;

3

2
, 2; z

)
=

∞∑
n=0

2nn!n!

(n+ 1)!(2n+ 1)!!

zn

n!
. (36b)

Moreover, since R1(·) is a monotonically increasing function,
v(β) = σ/

√
θG−1

(
σ2/β

)
and G(x) = ex

2

/x
∫ x

0
e−t2dt

is monotonic increasing, we have R1(v(α)) is monotically
decreasing.

Corollary 1: Recall that function l(β) = E[D+w(OD;β)]
is the expected framelength when using sampling threshold
v(β). When there is no sampling frequency constraint and
λ = 0, function l(α) has the following property:

|l(α)− l(α⋆)| ≤ N |α− α⋆|, (37)

where N = maxα∈[αlb,αub] |R′
1(v(α))v

′(α)| is a constant
independent of α.
The proof is provided in Appendix I-A

Lemma 6: Recall that E[D] ≤ Dub and E[D2] ≤ Mub and
αk is truncated into interval [αlb, αub] using Lemma 2, when
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there is no sampling frequency constraint and λk ≡ 0, we have
the following bounds for each frame k:

0 ≤ E[O2
Lk

] <
σ2

2θ
; (38a)

0 ≤ E[O4
Lk

] <
3σ4

4θ2
; (38b)

0 ≤ E[Lk] ≤Dub +
v(αlb)

2

σ2
e

2θ
σ2 v(αlb)

2

≜ Lub; (38c)

0 ≤ E[L2
k] ≤Mub + 2Dub

v(αlb)
2

σ2
e

2θ
σ2 v(αlb)

2

+
2v(αlb)

3

σ3

√
π

θ
e

3θ
σ2 v(αlb)

2

≜ Lub2. (38d)

The proof of Lemma 6 is provided in Appendix I-B.
Lemma 7: For fixed λ, function gλ(α) = o(α − λ) −

αl(α−λ) is continuous, monotonically decreasing and convex.
Moreover, there exists a constant N so that function g0(α)

g0(α) ≥ −l(α⋆)(α− α⋆) +N(α− α⋆)2, (39a)
|g0(α)| ≤ l(α⋆)|α− α⋆|. (39b)

Proof for Lemma 7 is provided in Appendix I-C.
Theorem 4: The estimation αk computed in Algorithm 1

can converge to α⋆ with probability 1, and we have

E[(αk − α⋆)2] ≤ C

kD2
lb
∼ O

(
1

k

)
, (40)

where C is a constant independent of k, i.e.,

C =
3σ4

4θ2
+ α2

ub

(
Mub + 2Dub

v(αlb)
2

σ2
e

2θ
σ2 v(αlb)

2

(41)

+
2v(αlb)

3

σ3

√
π

θ
e

3θ
σ2 v(αlb)

2)
. (42)

The proof of Theorem 4 is the same as [39, Lemma 6].

APPENDIX B
PROOF OF LEMMA 1

The ultimate goal is to rewrite the averaged MMSE (5a)
obtained by a stationary policy as the time-averaged cost of
each frame. The waiting time Wk set by any stationary policy
π can be viewed as a stopping time. The information, i.e., tuple
{(Dk,∆Sk+1

)} is a regenerative sequence as the instant esti-
mation error ∆t, t ≥ Sk +Dk is an OU process starting from
time t = Sk. Therefore, for stationary policy, the cumulative
estimation error in frame k, i.e., Ek :=

∫ Sk+1

Sk
(Xt − X̂t)

2dt
and Lk := Sk+1 − Sk are generative random processes. Then
according the renewal-reward theory [40], both the average
cumulative MSE in each frame { 1

KE
[∑K

k=1Ek

]
} and the

average frame-length { 1
KE

[∑K
k=1 Lk

]
} have limits. Then

according to the renewal reward theory [40], the time averaged
MMSE can be computed by:

lim sup
T→∞

1

T
E

[∫ T

t=0

(
Xt − X̂t

)2
dt

]

= lim sup
K→∞

∑K
k=1 E

[∫ Sk+1

Sk
(Xt − X̂t)

2dt
]

∑K
k=1 E [(Sk+1 − Sk)]

. (43)

Then to compute the average cost in each frame k, we
introduce the following properties of the stopping time of an
OU process:

Lemma 8 (Lemma 5, [21] Restated): Let Ot be an OU
process with initial state zero and parameter µ = 0, and τ
is a stopping time with E[τ ] < ∞, the integral of O2

t from 0
to t can be computed by

E
[∫ τ

0

O2
t dt
]
= E

[
σ2

2θ
τ − 1

2θ
O2

τ

]
. (44)

We then proceed to compute the expected cumulative error
of stationary policy π using Lemma 8. Notice that the interval
[Sk, Sk+1) can then be divided into two intervals [Sk, Sk+Dk)
and [Sk+Dk, Sk+Dk+Wk). The cumulative estimation error
during [Sk, Sk +Dk) can be computed as follows:

E

[∫ Sk+Dk

Sk

(Xt − X̂t)
2dt

]

= E

[∫ Sk−1+Dk−1+Wk−1+Dk

Sk−1

(Xt − X̂t)
2dt

]

− E

[∫ Sk−1+Dk−1+Wk−1

Sk−1

(Xt − X̂t)
2dt

]
(a)
= E

[
σ2

2θ
(Dk−1 +Wk−1 +Dk)−

1

2θ
O2

Dk−1+Wk−1+Dk

]
− E

[
σ2

2θ
(Dk−1 +Wk−1)−

1

2θ
O2

Dk−1+Wk−1

]
, (45)

where (a) is because during interval [Sk, Sk+Dk), the instant
Xt−X̂t from (4) is equivalent to an OU process starting from
time t = Sk−1, and the cumulative MSE can be computed by
Lemma 8. Notice that the delay distribution Dk is independent
of ODk−1+Wk−1

. Therefore,

E
[
O2

Dk−1+Wk−1+Dk

]
= E

[(
ODk−1+Wk−1

e−θDk +
σ√
2θ
e−θDkWe2θDk−1

)2
]

= E[O2
Dk−1+Wk−1

]E[e−2θDk ] +
σ2

2θ
E
[
1− e−2θDk

]
. (46)

Plugging (46) into (45), we have:

E

[∫ Sk+Dk

Sk

(Xt − X̂t)
2dt

]

=E
[
σ2

2θ
(Dk−1 +Wk−1 +Dk)

]
− 1

2θ
E[O2

Dk−1+Wk−1
]E[e−2θDk ]− σ2

4θ2
E
[
1− e−2θDk

]
− E

[
σ2

2θ
(Dk−1 +Wk−1)−

1

2θ
O2

Dk−1+Wk−1

]
, (47)

Similarly, the second part of the cumulative MSE, i.e., the
cumulative MSE during interval [Sk + Dk, Sk + Dk +Wk)
can be computed by

E

[∫ Sk+Dk+Wk

Sk+Dk

(Xt − X̂t)
2dt

]
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=E

[∫ Sk+Dk+Wk

Sk

(Xt − X̂t)
2dt

]

− E

[∫ Sk+Dk

Sk

(Xt − X̂t)
2dt

]
(b)
=E

[
σ2

2θ
(Dk +Wk)−

1

2θ
O2

Dk+Wk

]
− E

[
σ2

2θ
Dk − 1

2θ
O2

Dk

]
, (48)

where (b) is obtained because the instant estimation error Xt−
X̂t, t ≥ Sk+Dk is an OU process starting at time Sk according
to (4).

By summing up (47) and (48), we are able to compute the
expected cumulative error for stationary policy π:

E [Ek] = E

[∫ Sk+1

Sk

(Xt − X̂t)
2dt

]

= E
[
σ2

2θ
(Dk−1 +Wk−1 +Dk)

]
− 1

2θ
E[O2

Dk−1+Wk−1
]E[e−2θDk ]− σ2

4θ2
E
[
1− e−2θDk

]
− E

[
σ2

2θ
(Dk−1 +Wk−1)−

1

2θ
O2

Dk−1+Wk−1

]
+ E

[
σ2

2θ
(Dk +Wk)−

1

2θ
O2

Dk+Wk

]
− E

[
σ2

2θ
Dk − 1

2θ
O2

Dk

]
(c)
= E

[
σ2

2θ
(Dk−1 +Wk−1)

]
+

1

2θ
E
[
O2

Dk

]
− 1

2θ
E[O2

Dk−1+Wk−1
]E[e−2θDk ]− σ2

4θ2
E
[
1− e−2θDk

]
(d)
= E

[
σ2

2θ
(Dk−1 +Wk−1)

]
− 1

2θ
E[O2

Dk−1+Wk−1
]E[e−2θDk ],

(49)

where equality (c) is obtained because the transmission delay
Dk is i.i.d., and therefore

E
[
σ2

2θ
(Dk−1 +Wk−1)−

1

2θ
O2

Dk−1+Wk−1

]
=E

[
σ2

2θ
(Dk +Wk)−

1

2θ
O2

Dk+Wk

]
. (50)

and equality (d) is because:

E[O2
Dk

] =
σ2

2θ
E[1− e−2θDk ].

Finally, plugging (49) into (43), we have, with probability
1, the time-averaged MSE can be computed by:

lim sup
T→∞

1

T
E

[∫ T

t=0

(Xt − X̂t)
2dt

]

= lim sup
K→∞

∑K
k=1

(
E
[
σ2

2θ (Dk−1 +Wk−1)
])

∑K
k=1 E[Dk +Wk]

−
∑K

k=1
1
2θE[O

2
Dk−1+Wk−1

]E[e−2θDk ]∑K
k=1 E[Dk +Wk]

=− E[e−2θDk ]

2θ
× lim

K→∞

∑K
k=1 E

[
O2

Dk+Wk

]∑K
k=1 E[Dk +Wk]

+
σ2

2θ
. (51)

Notice that optimal value of LHS of (51) is indeed mmse.
Therefore, the problem is equivalent to

mmse

= inf
π∈Πr

−E[e−2θDk ]

2θ
× lim

K→∞

∑K
k=1 E

[
O2

Dk+Wk

]∑K
k=1 E[Dk +Wk]

+
σ2

2θ

Denote α⋆ =
(
σ2/2θ − mmse

)
2θ/E[e−2θDk ]. Rearranging

the terms yields

α⋆ = sup
π∈Πr

lim
K→∞

∑K
k=1 E

[
O2

Dk+Wk

]∑K
k=1 E[Dk +Wk]

. (52)

According to [21], we have mmse ≤ σ2/2θ. Therefore,
α⋆ ≥ 0.

APPENDIX C
PROOF OF LEMMA 2

Notice that

E[Dk + Ŵ ] >
1

fmax
+ c >

1

fmax
.

This means Ŵ is a fixed and feasible waiting solution to
the problem. Then according to (6a), we have

α⋆ ≥
E[O2

D+Ŵ
]

E[D + Ŵ ]
.

First we bound E[D + Ŵ ] ≤ Dub + Ŵ . Next we bound
E[O2

D+Ŵ
] as

E[O2
D+Ŵ

] =
σ2

2θ

(
1− E[e−2θ(D+Ŵ )]

)
(a)

≥ σ2

2θ

(
1− e−2θŴ

)
,

where (a) holds since D ≥ 0 and e−x is decreasing. Combin-
ing the above two terms we have

α⋆ ≥ σ2(1− e−2θŴ )

2θ(Dub + Ŵ )
= αlb.

For the upper bound, according to [21], we have

mmse ≥ mseD =
σ2

2θ
E[1− e−2θD]. (53)

Plugging (53) into (8) yields

α⋆ ≤
(
σ2

2θ
− σ2

2θ
E[1− e−2θD]

)
2θ

E[e−2θD]
= σ2 = αub.
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APPENDIX D
PROOF OF LEMMA 3

To solve the problem, From general optimal stopping theory
[41, Chapter 1], we know that the following stopping time
should be optimal:

τ⋆ = inf{t ≥ 0 : |Vt| ≥ v⋆}, (54)

where v⋆ is the optimal stopping threshold to be found.
We solve (17) by the free-boundary approach [41]. To find

the v⋆, we solve the following free boundary problem:

σ2

2
H ′′(v)− θvH ′(v) = β, v ∈ (−v⋆, v⋆), (55a)

H(±v⋆) = v2⋆, (55b)
H ′(±v⋆) = ±2v⋆. (55c)

where H(v) is the value function of (17).
Let S(v) = H ′(v), (55a) implies:

S′(v)− 2θv

σ2
S(v) =

2β

σ2
. (56)

Multiplying e−θv2/σ2

on both sides of (56), we have:

[S(v)e−
θ
σ2 v2

]′ =
2β

σ2
e−

θ
σ2 v2

. (57)

Then

S(v)e−
θ
σ2 v2

= C1 +

∫ v

0

2β

σ2
e−

θ
σ2 u2

du, (58)

where C1 is a constant so that S(±v⋆) satisfy (55c). Denote

erf(x) =
2√
π

∫ x

0

e−t2dt. (59)

Then,

S(v)e−
θ
σ2 v2

= C1 +
2β

σ2

√
π

4

σ√
θ

erf

(√
θ

σ
v

)

= C1 +
β

σ

√
π

θ
erf

(√
θ

σ
v

)
(60)

Therefore, we have:

H ′(v) = S(v) = C1e
θ
σ2 v2

+
β

σ

√
π

θ
e

θ
σ2 v2

erf

(√
θ

σ
v

)

= C1e
θ
σ2 v2

+
2β

σ
√
θ
F

(√
θ

σ
v

)
, v ∈ (−v⋆, v⋆), (61)

where F (x) = ex
2 ∫ x

0
e−t2dt. Consider that H ′(v) is odd but

eθv
2/σ2

is even, we have C1 = 0. Therefore:

H ′(v) =
2β

σ
√
θ
F

(√
θ

σ
v

)
. (62)

Plugging (62) into the boundary condition (55c), we have:

2β

σ
√
θ
F

(√
θ

σ
v⋆

)
= 2v⋆. (63)

Multiplying
√
θ/σ on both sides of (63), we have:

β

σ2
F

(√
θ

σ
v⋆

)
=

√
θ

σ
v⋆. (64)

Finally, denote G(x) = F (x)/x. the optimum threshold v⋆
can be obtained by:

β

σ2
G

(√
θ

σ
v⋆

)
= 1, (65)

Therefore, we have

v⋆ =
σ√
θ
G−1

(
σ2

β

)
.

APPENDIX E
PROOF OF THEOREM 1

According to Lemma 6, since αk and E[Lk] is bounded
by a function of α, to show that the average MSE
(1/Sk+1)

∫ Sk+1

0
(Xt − X̂t)

2dt converges to mmse, it is then
suffice to show that sequence

ξk :=
1

k

(∫ Sk+1

0

(Xt − X̂t)
2dt− mmse × Sk+1

)
(66)

converges to 0 almost surely.
Our proof is based on the perturbed ODE approach [42,

Chapter 7] for analyzing stochastic approximation. To use the
ODE approach, first we need to rewrite ξk in recursive form
as follows:

ξk =
1

k

(∫ Sk

0

(Xt − X̂t)
2dt− mmse × Sk

+

∫ Sk+1

Sk

(Xt − X̂t)
2dt− mmse × Lk

)
(a)
=

1

k
(k − 1)ξk−1

+
1

k

(∫ Sk+1

Sk

(Xt − X̂t)
2dt− mmse × Lk

)

=ξk−1 +
1

k

(
−ξk−1 +

∫ Sk+1

Sk

(Xt − X̂t)
2dt− mmse × Lk

)
︸ ︷︷ ︸

=:Gk

,

(67)

where (a) is from the definition of ξk−1 in (66). In (67), 1/k
can be viewed as a step-size of updating ξk and Gk is the
updating direction. We can further decompose Gk as follows:

Gk

= −ξk−1 +

∫ Sk+Dk

Sk

(Xt − X̂t)
2dt

+

∫ Sk+Dk+Wk

Sk+Dk

(Xt − X̂t)
2dt− mmse × Lk

= −ξk−1 +

∫ Sk+Dk

Sk

(Xt − X̂t)
2dt
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+

∫ Sk+Dk+Wk

Sk+Dk

(Xt − X̂t)
2dt−

(
σ2

2θ
− E[e−2θD]

2θ
α⋆

)
× Lk

= −ξk−1 +

∫ Sk+Dk

Sk

O2
Lk−1+(t−Sk)

dt︸ ︷︷ ︸
=:Gk,1

+

∫ Sk+1

Sk+Dk

O2
Dk+(t−(Sk+Dk))

dt︸ ︷︷ ︸
=:Gk,2

−
(
σ2

2θ
− E[e−2θD]

2θ
α⋆

)
× Lk︸ ︷︷ ︸

=:Gk,3

.

(68)

Let Ek[·] ≜ E[·|Hk−1] be the conditional probabil-
ity given historical information Hk−1. Then according to
(47), since the transmission delay Dk is independent of
OLk−1

= XSk
− X̂Sk

, the conditional expectation E[Gk,1] can
be computed by:

Ek[Gk,1] = E

[∫ Sk+Dk

Sk

(Xt − X̂t)
2dt|Hk−1

]

=E
[
σ2

2θ
Dk

]
+

1

2θ
O2

Lk−1

(
1− E[e−2θD]

)
− σ2

4θ2
E
[
1− e−2θD

]
, (69)

Similarly, through (48), the conditional expectation of the
Gk,2 can be computed by:

Ek[Gk,2] = E

[∫ Sk+Dk+Wk

Sk+Dk

(Xt − X̂t)
2dt|Hk−1

]

=Ek

[
σ2

2θ
Wk − 1

2θ
O2

Lk

]
+ Ek

[
1

2θ
O2

Dk

]
. (70)

And the conditional expectation of Gk,3 can be computed
by:

Ek[Gk,3] =

(
σ2

2θ
− E[e−2θD]

2θ
α⋆

)
Ek[Lk]. (71)

From (69)–(71), we can compute the conditional expectation
of Ek[Gk] by:

Ek[Gk]

(b)
= −ξk−1 +

��
���E

[
σ2

2θ
Dk

]
+

1

2θ
O2

Lk−1

(
1− E[e−2θD]

)
−
��������σ2

4θ2
E
[
1− e−2θD

]
+ Ek

[
�
�
�σ2

2θ
Wk − 1

2θ
O2

Lk

]
+
���

���
Ek

[
1

2θ
O2

Dk

]
−

(
�
��σ
2

2θ
− E[e−2θD]

2θ
α⋆

)
Ek[Lk]

= −ξk−1 +
1− E[e−2θD]

2θ
O2

Lk−1
− 1− E[e−2θD]

2θ
α⋆l(αk−1)

− 1

2θ
(Ek[O

2
Lk

]− αkEk[Lk])

+
1− E[e−2θD]

2θ
α⋆l(αk−1)

− 1

2θ
αkEk[Lk] +

E[e−2θD]

2θ
α⋆Ek[Lk]

= −ξk−1 +
1− E[e−2θD]

2θ

(
O2

Lk−1
− α⋆l(αk−1)

)
− 1

2θ
(o(αk)− αkl(αk)) +

1

2θ
(α⋆l(αk−1)− αkl(αk))

+
E[e−2θD]

2θ
α⋆(l(αk)− l(αk−1))

= −ξk−1 −
1

2θ
(o(αk)− αkl(αk))

+
1− E[e−2θD]

2θ

(
O2

Lk−1
− o(αk−1)

)
︸ ︷︷ ︸

=:βk,1

+
1− E[e−2θD]

2θ
(o(αk−1)− α⋆l(αk−1))︸ ︷︷ ︸

=:βk,2

+
1

2θ
α⋆(l(αk−1)− l(αk))︸ ︷︷ ︸

=:βk,3

+
1

2θ
(α⋆ − αk)l(αk)︸ ︷︷ ︸

βk,4

+
E[e−2θD]

2θ
α⋆(l(αk)− l(αk−1))︸ ︷︷ ︸

βk,5

. (72)

where (b) is obtained because E
[

1
2θO

2
Dk

]
= σ2

4θ2E[1−e−2θD]
by (24b). Terms βk,1, · · ·, βk,5 can be viewed as the bias terms
in the ODE. Denote δMk := Gk − Ek[Gk] be the difference
between the actual update and the conditional expectation, and
define function:

f(ξ, α) = −ξ − 1

2θ
(o(α)− αl(α)) . (73)

Plugging (72) into (67), we have:

ξk = ξk−1 +
1

k

f(ξk−1, αk) +

5∑
j=1

βk,j + δMk

 . (74)

Denote t0 = 0 and tk :=
∑k−1

j=0 (1/j) to be the cumulative
step-size sequences. Select m(t) ∈ N+ to be the largest integer
so that tm(t) ≤ t. To show that the ODE (74) converges
to 0 with almost surely, we will then verify the following
statements, whose proof are provided in Appendix G:

Lemma 9: The updating steps {Gk} and the difference
sequence {δMk} have the following properties:

(a) For each constant N , the expectation E[|Gk|I(|ξk−1|≤N)]
is bounded for each k, i.e.,

sup
k

E[|Gk|I(|ξk−1|≤N)] <∞. (75)

(b) Function f(ξ, α) is continuous in ξ for each α.
(c) For any running time T , the following limit holds for

all ξ and µ > 0:

lim
k→∞

Pr

sup
j≥k

max
0≤t≤T

∣∣∣∣∣∣
m(jT+t)−1∑
i=m(jT )

1

i
(f(ξ, αi)− f(ξ, α⋆)

∣∣∣∣∣∣ ≥ µ


= 0.

(d) The difference sequence δMk = Gk −Ek[Gk] satisfies:

lim
k→∞

Pr

(
sup
j≥k

max
0≤t≤T

∣∣∣∣∣
j∑

i=k

1

i
δMi

∣∣∣∣∣ ≥ µ

)
= 0..
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(e) The sum of the bias terms defined in (72) satisfies:

lim
k→∞

Pr

sup
j≥k

max
0≤t≤T

∣∣∣∣∣∣
m(jT+t)−1∑
i=m(jT )

5∑
b=1

1

i
βi,b

∣∣∣∣∣∣ ≥ µ

 = 0. (76)

(f) Function f(ξ, α) can be decomposed into the sum of
function of ξ and a function of α, i.e.,

f(ξ, α) = −ξ − 1

2θ
g0(α). (77)

Since g0(α⋆) = 0, we have −ξ = f(ξ, α⋆). Moreover,

lim
k→∞

Pr

sup
j≥n

m(jτ+τ)−1∑
i=m(jτ)

|1
i
g0(αi)| ≥ µ

 = 0. (78)

(g) For each ξ, ξ′, function f(ξ, α) satisfies:

|f(ξ, α)− f(ξ′, α)| = |ξ − ξ′|. (79)

Finally, according to [42, p. 166, Theorem 1.1], sequence {ξk}
converges to some limits of the ODE:

ξ̇ = f(ξ, α⋆) = −ξ. (80)

Since function f(·, α⋆) is monotonically decreasing, ξ = 0
is the unique equilibrium point of the ODE (80). Therefore,
ξk converges to 0 almost surely, and the time-averaged MSE
converges to the mmse with probability 1.

APPENDIX F
PROOF OF THEOREM 2

The cumulative regret, i.e., the difference between the ex-
pected cumulative MSE using the online algorithm compared
with the MSE optimum sampling up to sample (K + 1) can
be upper bounded as follows:

RK =E

[∫ SK+1

0

(Xt − X̂t)
2dt

]
− mmse × E[Sk+1]

(a)
= − E[e−2θDk ]

2θ
×

(
K∑

k=1

E[O2
Dk+Wk

]

)

+ (mse∞ − mmse)×

(
K∑

k=1

E[Lk]

)
(b)
=
E[e−2θDk ]

2θ
×

(
−

K∑
k=1

(
E[O2

Dk+Wk
]− α⋆E[Lk]

))
,

(81)

where (a) is obtained by (51) and mse∞ = σ2/2θ, and (b)
is obtained by substituting mse∞ − mmse = α⋆E[e−2θD]/2θ
from (8).

Then to further bound the cumulative regret computed by
(81), let W ⋆

k be the waiting time selected by using parameter
α⋆ (i.e., the MSE minimum sampling policy). Then it is suffice
to upper bound each term −E[O2

Dk+Wk
] + α⋆E[Lk] for each

k as follows:

− E[O2
Dk+Wk

− α⋆Lk]

= −E[O2
Dk+Wk

− αkLk]− E[(αk − α⋆)Lk]

(c)

≤ −E[O2
Dk+W⋆

k
− αkL

⋆
k]− E[(αk − α⋆)Lk]

= −E[O2
Dk+W⋆

k
− α⋆L⋆

k]− E[(αk − α⋆)(l(αk)− l(α⋆))]

(d)
= −E[(αk − α⋆)(l(αk)− l(α⋆)]

(e)

≤ max
α∈[αlb,αub]

|R′
1(v(α))v

′(α)| × |αk − α⋆| . (82)

where (c) is because Wk is the optimum policy that mini-
mizes −E[O2

Dk+w] + αkE[Dk + w] and therefore we have
−E[O2

Dk+Wk
−αkLk] ≤ −E[O2

Dk+W⋆
k
−α⋆L⋆

k]; (d) is because
E[O2

Dk+W⋆
k
− α⋆L⋆

k] = 0 by (22); (e) is from Corollary 1.
Finally, plugging (82) into (81) for each term k, the cumu-

lative regret RK can be bounded, i.e.,

RK

(f)

≤ E[e−2θD]

2θ
×

(
K∑

k=1

C

D2
lb

max
α∈[αlb,αub]

|R′
1(v(α))v

′(α)|1
k

)

≤E[e−2θD]

2θ

C

D2
lb

max
α∈[αlb,αub]

|R′
1(v(α))v

′(α)| ln(K + 1),

(83)

where (f) is obtained by Theorem 4.

APPENDIX G
PROOF OF LEMMA 9

We will verify each statement in Lemma 9 respectively:
(a) By substituting Gk with (68), we can upper bound

E[|Gk|I(|ξk−1|≤N)] as follows:

E[|Gk|I(|ξk−1|≤N)]

≤ E[|ξk−1|I(|ξk−1|≤N ] + E

[∫ Sk+1

t=Sk

(Xt − X̂t)
2dt

]
+ mmseE[Lk]. (84)

The first term E[|ξk−1|I(|ξk−1|≤N ] ≤ N < ∞ is
bounded. Then notice that E[Lk] is bounded by Lemma 6
and mmse ≤ mse∞, the third term mmseE[Lk] is also
bounded. It then remains to show that the second term
E
[∫ Sk+1

Sk
(Xt − X̂t)

2dt
]

is bounded. According to (49), the
expectation of the second term can be computed by:

E

[∫ Sk+1

Sk

(Xt − X̂t)
2dt

]

= E
[
σ2

2θ
Lk−1

]
− 1

2θ
E[O2

Lk−1
]E[e−2θDk ]. (85)

Since αk ∈ [αlb, αub] is bounded and function
l(αk−1) = E[Lk−1], o(αk−1) = E[O2

Lk−1
] are both bounded

for α ∈ [αlb, αub], the expectation of the second term
E[
∫ Sk+1

Sk
(Xt − X̂t)

2dt] is also bounded. This verifies
statement (a).

(b) Function f(ξ, α) can be decoupled into
= −ξ − 1/2θ × g0(α) and is thus continuous in ξ for
each α.

To proceed with the proof of statement (c) − (f), we
re-state the following lemma, whose proof is provided in
[34, Appendix G]
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Lemma 10: Let {ψk} be a sequence. Then
limk→∞ Pr

(
supj≥k

∣∣∣∑j
i=k

1
iψi

∣∣∣ ≥ µ
)

= 0 holds if one
of the following condition is satisfied:
(1) ψk is a martingale sequence and its second order moment

is bounded, i.e., Ek[ψk] = 0, supk E[ψ2
k] < ∞. The

correlation between each (k, k′), k ̸= k′ pair satisfies:
E[ψkψk′ ] = 0.

(2) E[|ψk|] = O(k−ε), ε > 0.
(c) According to Lemma 7, since g0(α) is monotonic decreas-
ing and convex, the difference |g0(α)− g0(α′)| ≤ N1|α−α′|.
Therefore,

|f(ξ, αk)− f(ξ, α⋆)| = 1

2θ
|g0(αk)− g0(α

⋆)|

≤ N1

2θ
|αk − α⋆|. (86)

Therefore, the expectation of f(ξ, αk) − f(ξ, α⋆) can be
upper bounded by:

E [f(ξ, αk)− f(ξ, α⋆)] ≤ E[
N1

2θ
|αk − α⋆|]

(a)

≤ N1

2θ

√
E[(αk − α⋆)2]

(b)
=
N1

2θ

√
C

D2
lb

√
1

k
(87)

where equality (a) is by Cauchy-Schwartz inequality and
equality (b) is from Theorem 4. Since term f(ξ, αk)−f(ξ, α⋆)
satisfies condition 2 in Lemma 10, statement (c) is verified.

(d) Denote δMk,j := Gk,j −Ek[Gk,j ]. Since Gk = Gk,1 +
Gk,2 − Gk,3, the difference term δMk = δMk,1 + δMk,2 −
δMk,3 also consists of three parts. By the union bound,

lim
k→∞

Pr

(
sup
j≥k

max
0≤t≤T

∣∣∣∣∣
j∑

i=k

1

i
δMi

∣∣∣∣∣ ≥ µ

)

≤
3∑

p=1

lim
k→∞

Pr

(
sup
j≥k

max
0≤t≤T

∣∣∣∣∣
j∑

i=k

1

i
δMi,p

∣∣∣∣∣ ≥ µ/3

)
. (88)

Therefore, to show that statement (d) is satisfied, it is suffice
to show that each term δMi,p, p = 1, 2, 3 satisfies condition (1)
in Lemma 10.

Notice that for fixed OLk−1
, the first difference term

δMk,1 = Gk,1 − Ek[Gk,1] depends only on Dk and the
OU process evolution during [Sk, Sk + Dk). Therefore,
E[δMk,1] = 0 and E[δMk,1δMk′,1] = 0,∀k ̸= k′ due to the
independence of Dk and Dk′ . Then, notice that Var(δMk,1) ≤
E[δM2

k,1] ≤ E[G2
k,1]. To show that Var(δMk,1) < ∞ is

bounded, it is suffice to show E[G2
k,1] is bounded, which is

shown as follows:

E[G2
k,1]

= E

(∫ Sk+Dk

t=Sk

O2
Lk−1+(t−Sk)

dt

)2


(b)

≤ E

[
Dk

∫ Sk+Dk

t=Sk

O4
Lk−1+(t−Sk)

dt

]
(c)

≤ E

[
Dk

∫ Sk+Dk

t=Sk

3

(
σ2

2θ
(1− e−2θ(Lk−1+(t−Sk)))

)2

dt

]

≤ 3Dub

(
σ2

2θ

)2

. (89)

where (b) is by Cauchy-Schwartz inequality; inequality (c)
is from (103). Since δMk,1 meets the first condition in
Lemma 10, we have:

lim
k→∞

Pr

(
sup
j≥k

max
0≤t≤T

∣∣∣∣∣
j∑

i=k

1

i
δMi,1 ≥ 1

3
µ

∣∣∣∣∣
)

= 0. (90)

The difference sequence δMk,2 and δMk,3 only
depends on the transmission delay Dk and the
OU process evolution in frame k. Using similar
methods, it can be shown that sequences {δMk,2}
and {δMk,3} satisfy condition 1 in Lemma 10. Since
limk→∞ Pr

(
supj≥k max0≤t≤T

∣∣∣∑j
i=k

1
i δMi,p ≥ 1

3µ
∣∣∣) = 0

holds for p = 1, 2, 3, plugging into (88) verifies statement (d).
(e) Through the union bound, we have:

Pr

(
sup
j≥k

max
0≤t≤T

∣∣∣∣∣
j∑

i=k

1

i

5∑
b=1

βi,b

∣∣∣∣∣ ≥ µ

)

≤
5∑

b=1

Pr

(
sup
j≥k

max
0≤t≤T

∣∣∣∣∣
j∑

i=k

1

i
βi,p

∣∣∣∣∣ ≥ µ/5

)
. (91)

To show that statement (e) holds, it is suffice to show that
each of the bias term satisfy:

lim
k→∞

Pr

sup
j≥k

max
0≤t≤T

∣∣∣∣∣∣
m(jT+t)−1∑
i=m(jT )

1

i
δβi,p

∣∣∣∣∣∣ ≥ µ/5

 = 0,

∀p. (92)

the second condition in Lemma 10. We will then upper bound
the expectation of each bias term E[βk,p], respectively.

The first bias term satisfies E[βk,1] = 0 and is hence a
martingale sequence. We can bound E[β2

k,1] by:

E[β2
k,1] = Var[βk,1]

= Var
[(

1− E[e−2θD]

2θ
(O2

Lk−1
− o(αk−1))

)]
= E

[(
1− E[e−2θD]

2θ
(O2

Lk−1
− o(αk−1))

)2
]

≤ 2

(
1− E[e−2θD]

2θ

)2

E
[
O4

Lk−1
+ o(αk−1)

2
]
. (93)

Then according to Lemma 6, E[L4
k−1] < ∞ and

E[o(αk−1)
2] = E[O2

Lk−1
]2 < ∞, term βk,1 satisfies Con-

dition 1, Lemma 10. Therefore, (92) holds for p = 1. The
expectation of the second bias term βk,2 can be upper bounded
by:

E [|βk,2|]

=
1− E[e−2θD]

2θ
E[|o(αk−1)− α⋆l(αk−1)|]

=
1− E[e−2θD]

2θ
(E[|o(αk−1)− αk−1l(αk−1)|]

+ E[(αk−1 − α⋆)l(αk−1)])

≤ 1− E[e−2θD]

2θ
E[N1 × |αk−1 − α⋆|]
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+
1− E[e−2θD]

2θ
l(αlb)E[|αk−1 − α⋆|]. (94)

Recall that by Theorem 4, E[|αk−1 − α⋆|] ≤√
E[(αk−1 − α⋆)2] = O(1/

√
k), (94) implies

E[|βk,1|] = O(1/
√
k) and satisfies Lemma 10 condition 2.

Equation (92) holds for p = 2.
We then proceed to upper bound the expectation of of the

third bias term by:

E[|βk,2|] = E
[
1

2θ
α⋆(l(αk−1)− l(αk))

]
≤ 1

2θ
α⋆ (E [|l(αk−1)− l(α⋆)|] + E [|l(αk)− l(α⋆)|])

(d)

≤ 1

2θ
α⋆N (E[|αk−1 − α⋆|] + E[|αk − α⋆|])

≤ 1

2θ
α⋆N

(√
E[|αk−1 − α⋆|2] +

√
E[|αk − α⋆|2]

)
= O(k−1/2). (95)

where inequality (d) is obtained by Corollary 1. Therefore,
βk,2 also satisfies the Condition 2 in Lemma 10 and (92) holds
for p = 2. Since term αk ∈ [αlb, αub], we can show that
βk,3, βk,4, βk,5 satisfy Condition 2 Lemma 10 and thus (92)
also holds for p = 3 ∼ 5. Considering that (92) holds for
p = 1 ∼ 5, through the union bound (91), we show that
statement (e) holds.

(f) According to the convexity of function g0(·) from (39b)
Lemma 7, we have |g0(α)−g0(α⋆)| ≤ N1|α−α⋆|. Therefore,
we can upper bound the expected value of 1−E[e−2θD]

2θ g0(αk)
as follows:

E
[∣∣∣∣1− E[e−2θD]

2θ
g0(αk)

∣∣∣∣]
≤E

[∣∣∣∣1− E[e−2θD]

2θ
N1(α

⋆ − αk)

∣∣∣∣]
≤O(1/

√
k). (96)

This verifies Condition 2 in Lemma 10 and therefore verifies
statement (f).

APPENDIX H
PROOF OF THEOREM 3

Recall that the sampling debt queue Uk evolves as

Uk+1 =

(
Uk +

1

fmax
− Lk

)+

.

According to [43], in order to satisfy the sampling constraint,
it is sufficient to prove that

lim sup
K→∞

1

K

K∑
k=1

E[Uk] <∞.

Here we adopt the Lyapunov drift-plus-penalty method to
prove the stability of Uk. Define the Lyapunov function as

L(Uk) =
1

2
U2
k , (97)

and the Lyapunov drift is defined by

∆(Uk) = E[L(Uk+1)− L(Uk)|Uk]. (98)

First we upper bound U2
k+1:

U2
k+1 =

[
max{Uk +

1

fmax
− Lk, 0}

]2
≤
(
Uk +

1

fmax
− Lk

)2

.

Plugging the above inequality into (97) yields

L(Uk+1)− L(Uk)

≤1

2

[(
Uk +

1

fmax
− Lk

)2

− U2
k

]

=− Uk

(
Lk − 1

fmax

)
+

1

2

(
1

fmax
− Lk

)2

.

Plugging the above equation into (98) and then take the
expectation on both sides of (98) yields

∆(Uk)

(a)

≤ −UkE
[
Lk − 1

fmax

∣∣∣∣Uk

]
+

1

2

(
1

f2max
+ E[D2

k] + E[W 2
k |Uk] + 2E[DkWk|Uk]

)
≤ −UkE

[
Lk − 1

fmax

∣∣∣∣Uk

]
+

1

2

(
1

f2max
+Mub + E[W 2

k |Uk] + 2E[DkWk|Uk]

)
.

(99)

where (a) holds since Dk is independent of Uk. Similar to the
proof of Lemma 6, we can bound E[DkWk|Uk] and E[W 2

k |Uk]
as

E[DkWk|Uk] ≤ Dub
v(η)2

σ2
e

2θ
σ2 v(η)2

E[W 2
k |Uk] ≤

2v(η)3

σ3

√
π

θ
e

3θ
σ2 v(η)2 .

Therefore, we have

∆(Uk) ≤− UkE
[
Wk +Dk − 1

fmax

∣∣∣∣Uk

]
+

1

2

(
1

f2max
+Mub +

2v(η)3

σ3

√
π

θ
e

3θ
σ2 v(η)2

+2Dub
v(η)2

σ2
e

2θ
σ2 v(η)2

)
.

Now we upper bound the first term of the RHS of (99).
According to (16), the waiting time Wk is the optimal solution
to

sup
w

E
[
O2

Dk+w − (αk − λk)w|ODk
, Dk

]
. (100)

For simplicity, we denote the historical information
ODk

, Dk to be Mk−1.
Let Wϵ be the waiting time under policy πϵ. According to

(100), we have

E[O2
Dk+Wk

|Mk−1]− E[(αk − λk)Wk|Mk−1]

≥ E[O2
Dk+Wϵ

|Mk−1]− E[(αk − λk)Wϵ|Mk−1].
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Adding 1
V Uk

(
Dk − 1

fmax

)
on both sides yields

E[O2
Dk+Wk

|Mk−1]− E[(αk − 1

V
Uk)Wk|Mk−1]

+
1

V
Uk

(
Dk − 1

fmax

)
≥ E[O2

Dk+Wϵ
|Mk−1]− E[(αk − 1

V
Uk)Wϵ|Mk−1]

+
1

V
Uk

(
Dk − 1

fmax

)
.

Rearranging the terms yields

− UkE
[
Dk +Wk − 1

fmax

∣∣∣∣Mk−1

]
≤− UkE

[
Dk +Wϵ −

1

fmax

∣∣∣∣Mk−1

]
− V E[O2

Dk+Wϵ
− αkWϵ|Mk−1]

+ V E[O2
Dk+Wk

− αkWk|Mk−1]

(a)

≤ − Ukϵ+ V E[O2
Dk+Wk

+ αkWϵ|Mk−1]

(b)

≤ − Ukϵ+ V

(
σ2

2θ
+ αubWub

)
,

where (a) holds by Assumption 3; (b) holds by Lemma 6 and
Wub = 1/fmax +Dub for sufficiently small ϵ.

Now we have

∆(Uk) ≤− Ukϵ+ V

(
σ2

2θ
+ αubWub

)
+

1

2

(
1

f2max
+Mub +

2v(η)3

σ3

√
π

θ
e

3θ
σ2 v(η)2

+2Dub
v(η)2

σ2
e

2θ
σ2 v(η)2

)
≜− Ukϵ+ C1,

where

C1 =V

(
σ2

2θ
+ αubWub

)
+

1

2

(
1

f2max
+Mub +

2v(η)3

σ3

√
π

θ
e

3θ
σ2 v(η)2

+2Dub
v(η)2

σ2
e

2θ
σ2 v(η)2

)
is a constant. Summing up from k = 1 to K yields

E
[
1

2
U2
k+1 −

1

2
U2
1

]
≤ −ϵ

K∑
k=1

E[Uk] +KC1.

Notice that U1 = 0 and Uk+1 ≥ 0. Thus we have

ϵ

K∑
k=1

E[Uk] ≤ KC1.

Rearranging the terms yields

lim sup
K→∞

1

K

K∑
k=1

E[Uk] ≤
C1

ϵ
<∞.

APPENDIX I
PROOF OF AUXILIARY LEMMAS AND COROLLARIES

A. Proof of Corollary 1

Proof:

|l(α)− l(α⋆)|
= |E[Dk] + E[max{R1(v(α))−R1(|ODk

|), 0}]
− (E[Dk] + E[max{R1(v(α

⋆))−R1(|ODk
|), 0}])|

≤ |R1(v(α))−R1(v(α
⋆))|

≤ max
α∈[αlb,αub]

|R′
1(v(α))v

′(α)| × |αk − α⋆| . (101)

B. Proof of Lemma 6

Since O2
Lk

is an instance of O2
Dk+Wk

, we just bound
E[O2

Dk+Wk
] and E[O4

Dk+Wk
]. Therefore we have

E[O2
Dk+Wk

] =
σ2

2θ
E[1− e−2θ(Dk+Wk)] ≤ σ2

2θ
. (102)

E[O4
Dk+Wk

] = 3E

[(
σ2

2θ
(1− e−2θ(Dk+Wk))

)2
]
≤ 3σ4

4θ2
,

(103)

which verifies (38a) and (38b).
For Lk, according to Lemma 5 we can bound

E[Lk] = E[Dk] + E[max{R1(v(αk))−R1(|ODk
|), 0}]

≤ Dub + E[R1(v(αk))].

Since v(αk) is decreasing function with respect to αk, v(αk)
can be bounded

0 < v(αub) ≤ v(αk) ≤ v(αlb)
(a)
< ∞, (104)

where (a) holds by Lemma 2.
Next, we bound R1(v) as

R1(v) =
v2

σ2 2F2

(
1, 1;

3

2
, 2;

θ

σ2
v2
)

=
v2

σ2

∞∑
n=0

2n

(n+ 1)(2n+ 1)!!
(
θ

σ2
v2)n

(a)

≤ v2

σ2

∞∑
n=0

1

n!
(
2θ

σ2
v2)n

=
v2

σ2
e

2θ
σ2 v2

.

where (a) holds by n! ≤ (2n+ 1)!!. Then we have

0 ≤ R1(v(αk)) ≤
v(αlb)

2

σ2
e

2θ
σ2 v(αlb)

2

. (105)

Therefore, we can bound E[Lk] as

0 ≤ E[Lk] ≤Dub +
v(αlb)

2

σ2
e

2θ
σ2 v(αlb)

2

,

which verifies (38c).
Finally, we rewrite E[L2

k] as

E[L2
k] =E[(Dk +Wk)

2]

=E[D2
k] + 2E[DkWk] + E[W 2

k ]
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=E[D2
k] + 2E[DkE[Wk|Dk]] + E[W 2

k ]

≤Mub + 2E[DkE[Wk|Dk]] + E[W 2
k ]. (106)

Next we bound E[DkE[Wk|Dk]] and E[W 2
k ], respectively.

E[Wk|Dk]
(a)

≤E[Wk|Dk, ODk
< v(αk)]

(b)
=E[R1(v(αk))−R1(|ODk

|)|Dk, |ODk
| < v(αk)]

≤E[R1(v(αk))|Dk, |ODk
| < v(αk)]

≤E[R1(v(αlb))]

(c)

≤ v(αlb)
2

σ2
e

2θ
σ2 v(αlb)

2

,

where (a) holds because Wk = 0 if |ODk
| > v(αk); (b) holds

by Lemma 5; (c) holds by (105). Therefore, we have

E[DkE[Wk|Dk]]
(a)

≤E[Dk]
v(αlb)

2

σ2
e

2θ
σ2 v(αlb)

2

≤Dub
v(αlb)

2

σ2
e

2θ
σ2 v(αlb)

2

. (107)

where (a) holds because v(αlb)
2

σ2 e
2θ
σ2 v(αlb)

2

is a constant.
Now we bound E[W 2

k ] as

E[W 2
k ] =E[E[W 2

k |Dk, αk]]

(a)

≤E[E[W 2
k |Dk, αk, |ODk

| < v(αk)]]

where (a) holds because Wk = 0 if |ODk
| > v(αk). Now we

just need to bound E[W 2
k |Dk, αk, |ODk

| < v(αk)]. According
to (28), Wk is the stopping time that an OU process exits
a bounded set [−v(αk), v(αk)] with the initial state ODk

.
Denote t(1)v (x) and t(2)v (x) to be the first and second moment
of Wk with initial state x and bounded set [−v, v]. According
to [44, Theorem 6.1], we have

σ2

2

d2t(2)v (x)

dx2
− θx

dt(2)v (x)

dx
= −2t(1)v (x), x ∈ [−v, v]

where according to Lemma 5

t(1)v (x) = R1(v)−R1(x). (108)

Let s(x) = dt(2)v (x)
dx , and we have

σ2

2
s′(x)− θxs(x) = −2t(1)v (x).

Multiplying 2
σ2 e

− θ
σ2 x2

on both sides yields

s′(x)e−
θ
σ2 x2

− 2θ

σ2
xs(x)e−

θ
σ2 x2

=
−4t

(1)
v (x)

σ2
e−

θ
σ2 x2

.

This is equivalent to(
s(x)e−

θ
σ2 x2

)′
=

−4t
(1)
v (x)

σ2
e−

θ
σ2 x2

.

Therefore, we have

s(x) = Ce
θ
σ2 x2

− e
θ
σ2 x2

∫ x

−v

4t
(1)
v (u)

σ2
e−

θ
σ2 u2

du,

where C is a constant. Since t
(2)
v (x) is even and takes the

maximum when x = 0. Therefore, we have

C =

∫ 0

−v

4t
(1)
v (u)

σ2
e−

θ
σ2 u2

du. (109)

Since t(2)v (x) is even, we only need to consider x ∈ [−v, 0].
When x ∈ [−v, 0], t(2)v (x) is increasing and s(x) ≥ 0.
Therefore, we have

0 ≤ s(x) ≤ Ce
θ
σ2 x2

, x ∈ [−v, 0]. (110)

Then for x ∈ [−v, 0]

t(2)v (x) =

∫ x

−v

s(u)du

(a)

≤
∫ x

−v

Ce
θ
σ2 x2

du

≤
∫ 0

−v

Ce
θ
σ2 x2

du

(b)
=ve

θ
σ2 x2

∫ 0

−v

4t
(1)
v (u)

σ2
e−

θ
σ2 u2

du.

(c)

≤vR1(v)e
θ
σ2 x2

∫ 0

−v

4

σ2
e−

θ
σ2 u2

du

=vR1(v)e
θ
σ2 x2 2

σ

√
π

θ
erf

(√
θ

σ
v

)
(d)

≤vR1(v)e
θ
σ2 v2 2

σ

√
π

θ
.

where (a) holds by (110); (b) holds by (109); (c) holds by
(108); (d) holds since erf(x) ≤ 1. Since t(2)v (x) is even for
x ∈ [−v, v], we have

t(2)v (x) ≤ 2

σ

√
π

θ
vR1(v)e

θ
σ2 v2

, x ∈ [−v, v].

This means

E[W 2
k |Dk, αk, |ODk

| < v(αk)]

≤ 2

σ

√
π

θ
v(αk)R1(v(αk))e

θ
σ2 v(αk)

2

(a)

≤ 2

σ

√
π

θ
v(αlb)

v(αlb)
2

σ2
e

2θ
σ2 v(αlb)

2

e
θ
σ2 v(αlb)

2

=
2v(αlb)

3

σ3

√
π

θ
e

3θ
σ2 v(αlb)

2

,

where (a) holds by (105). Therefore we have

E[W 2
k ] ≤

2v(αlb)
3

σ3

√
π

θ
e

3θ
σ2 v(αlb)

2

. (111)

Plugging (107) and (111) into (106) yields

E[L2
k] ≤Mub + 2Dub

v(αlb)
2

σ2
e

2θ
σ2 v(αlb)

2

+
2v(αlb)

3

σ3

√
π

θ
e

3θ
σ2 v(αlb)

2

,

which verifies (38d).

C. Proof of Lemma 7

Proof: For notational simplicity, for each stopping rule w,
denote L̃(w,α−λ) := E[−O2

D+w +(α−λ)w], which equals
(16) before taking the infimum. Recall that the selection rule

w(OD;α− λ) = inf{t ≥ D : |Xt − X̂t| ≥ v(α− λ)}.
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is chosen to minimize function (16). We have

−gλ(α) = inf
w
L̃(w,α− λ). (112)

For each policy w, function L̃(w,α − λ) is a linear increas-
ing function of α. Then by taking the infimum, function
infw L̃(w,α−λ) is continuous, concave and increasing. There-
fore, function gλ(α) is convex and monotonic decreasing.

When λ⋆ = 0, according to Lemma 4, (22), we have
g0(α

⋆) = 0. The derivative at α⋆ can be computed by:

g′0(α
⋆) = o′(α⋆)− α⋆l′(α⋆)− l(α⋆)

(a)
= −l(α⋆), (113)

where (a) is obtained because v(α⋆) is the optimum threshold
the minimizes E[−O2

D+w + α⋆(D + w)] so that o′(α) −
α⋆l′(α) = 0. Then according to the convexity of g0(·), the
Taylor expansion at α⋆ implies:

g0(α) ≥g0(α⋆)− l(α⋆)(α− α⋆)

+
1

2
min

α′∈[αlb,αub]
g′′0 (α

′)(α− α⋆)2. (114)

Since function g0(α) is monotically decreasing and convex,
by taking N = 1

2 minα′∈[αlb,αub] g
′′
0 (α

′), we have:

g0(α) ≥ −l(α⋆)(α− α⋆) +N(α− α⋆)2. (115)

From the convexity of g0(·), we have:

g0(α) ≥ g0(α
⋆)− l(α⋆)(α− α⋆). (116)

Then notice that g0(α) is monotonic decreasing, g′0(α
⋆) <

0, for α > α⋆, g0(α) ≤ 0 and for α < α⋆, g0(α) ≥ 0.
Therefore we have

|g0(α)| ≤ l(α⋆)|α− α⋆|. (117)
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