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Abstract:    With the advent of Industry 4.0 (I4.0), predictive maintenance (PdM) methods have been widely
adopted by businesses to deal with the condition of their machinery. With the help of I4.0, digital transformation,
information  techniques,  computerised  control,  and  communication  networks,  large  amounts  of  data  on
operational and process conditions can be collected from multiple pieces of equipment and used to make an
automated fault detection and diagnosis, all with the goal of reducing unscheduled maintenance, improving
component utilisation, and lengthening the lifespan of the equipment. In this paper, we use smart approaches
to create a PdM planning model. The five key steps of the created approach are as follows: (1) cleaning the data,
(2) normalising the data, (3) selecting the best features, (4) making a decision about the prediction network,
and (5) producing a prediction. At the outset, PdM-related data undergo data cleaning and normalisation to
get everything in order and within some kind of bounds. The next step is to execute optimal feature selection
in order to eliminate unnecessary data. This research presents the golden search optimization (GSO) algorithm,
a powerful population-based optimization technique for efficient feature selection. The first phase of GSO is
to produce a set of possible solutions or objects at random. These objects will then interact with one another
using  a  straightforward  mathematical  model  to  find  the  best  feasible  answer.  Due  to  the  wide  range  over
which  the  prediction  values  fall,  machine  learning  and  deep  learning  confront  challenges  in  providing
reliable predictions. This is why we recommend a multilayer hybrid convolution neural network (MLH-CNN).
While conceptually similar to VGGNet, this approach uses fewer parameters while maintaining or improving
classification correctness by adjusting the amount of network modules and channels. The projected perfect is
evaluated on two datasets  to  show that  it  can accurately  predict  the  future  state  of  components  for  upkeep
preparation.

Key  words:   Industry 4.0; predictive maintenance; golden search optimization; multilayer hybrid convolution
neural network; data cleaning

1    Introduction

Often mentioned to as the “next industrial revolution”,
Industry  4.0  encompasses  the  use  of  smart
manufacturing.  It  rapidly  alters  procedures  and
business  models  in  many  fields  and  uses  cutting-edge

technology  to  fully  materialise  smart  industrial
systems[1].  Industry  4.0  relies  heavily  on  several
foundational  enabling  technologies,  including
electronic contracts (ECs). Machine learning is used to
train replicas services[2, 3], while Internet of Things (IoT)
is  utilised  for  real-time  data  collection,  data  storage, 
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and analysis. This data processing pipeline is employed
by the vast  majority  of  Industry  4.0  use  cases.  One of
the  most  common  applications  of  Industry  4.0  is
predictive maintenance. However, a major roadblock in
commercial settings is the fact that most state-of-the-art
AI  or  machine  learning  (ML)  mockups  necessitate
massive volumes of data for enhanced accuracy[4]. Data
silos  form  when  businesses  and  manufacturers  are
reluctant  to  share  information,  restricting  its  use  to
internal  operations.  Additionally,  AI  representations
trained  on  local  data  are  unable  to  handle  unknown
scenarios from different contexts[5, 6], and data obtained
from  a  single  context  are  not  unavoidably  a  true
reflection  of  global  settings.  One  of  the  more  recent
machine  learning  (ML)  techniques,  federated  learning
(FL),  allows  for  the  training  of  distributed  models
among a large sum of participants or data silos, without
the need for any of the training data to leave, which can
be a crucial method for enabling open AI models to be
trained on data and devices from all around the world[7].

Industry  4.0’s  widespread  adoption  in  areas  like
predictive  maintenance  has  already  resulted  in  cost
savings,  improved  brand  image,  and  even  lifesaving
outcomes[8]. By combining the CNN and BLSTME, the
hybrid  deep  learning  model  is  created.  Based  on  the
relationship  between  the  input  images’ temporal  and
spatial  components,  the  models  may  effectively
comprehend[9].

Considering  a  predictive  maintenance  system
designed  for  a  single  type  of  machine  found  in
numerous production settings, they plan to apply AI to
develop a model for predictive machine, etc., it will fail
quite  training[10].  However,  the  likelihood  of
successfully  developing  a  strong  predictive  model
increases greatly if the model is trained using data from
a large number of machines (whether they are all built
by  the  same  business  or  not)  across  many  different
industries  and  locations.  But  most  industries  do  not
exchange data because of fears of IP leakage, increased
rivalry,  and  increased  insurance  claims.  A  system  or
arrangement  that  safeguards  the  personal  information
of contributors is beneficial for everyone involved[11].

Computing  to  achieving  Industry  4.0,  and  here  is
where “the  cloud” comes  in.  Instead, “the  cloud” or
remote  shared  storage  is  the  foundation  of  cloud
computing[12].  The  goal  of  lean  management  is  to

eliminate waste at every stage of the value chain from
receiving  customer  orders  to  fulfilling  those  orders.
Integrating systems both horizontally and vertically and
analysing data are crucial for Industry 4.0 enablers. By
connecting  and  integrating  business,  IT,  equipment,
operational  systems,  and  gadgets,  we  may  gain  a
holistic  perspective  of  the  value  chain[13, 14].  Data
privacy  and  security  concerns:  with  IoT  devices
constantly collecting and transmitting data to the cloud,
there  is  an  increased  risk  of  data  breaches  and
unauthorized access. Sensitive information about assets,
operations,  and  processes  may  be  exposed,  leading  to
potential security vulnerabilities. In this paper, we will
look at how Industry 4.0 tools can be utilised to create
flexible  manufacturing  environments,  e.g.,  tools  for
mapping  and  navigating,  sustainable  data  fusion,  and
Slovak national circumstances. The growing popularity
of  deep  learning  based  techniques  can  be  put  to  good
use in predictive maintenance (PdM).

The primary charities of this study are as trails.
●  PdM  planning  components’ future  states  are

anticipated using hybrid deep learning.
●  A  multilayer  hybrid  convention  neural  network

(MLH-CNN) is projected to enhance prediction in PdM
planning.

●  Using  the  suggested  golden  search  optimization
(GSO)  algorithm,  optimal  feature  selection  is  carried
out in order to address the issues of overfitting and data
redundancy.  When  determining  which  features  to  use,
the goal is to pick those that have the lowest correlation
with one another.

Industry 4.0 will engulf the entire planet like a tsunami.
Future  manufacturers  will  face  a  significant  challenge
that calls for extremely reliable gear and equipment. In
order  to  improve  the  current  predictive  maintenance
approach, Industry 4.0 and its specialised technologies
are presented in this article[15].

The  remaining  parts  of  this  work  are  structured  as
follows.  It  is  mentioned  in  Section  2  that  how
conventional PdM prediction methods have contributed
to the field. Section 3 explains how to use the proposed
model  in  PdM  planning.  In  Section  4,  we  see  the
outcomes  of  comparing  the  suggested  model  to  the
already used methods.  Section 5 presents  findings and
offers recommendations for further study.
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2    Related Work

Data  collection,  feature  removal,  a  prediction  model,
cloud storage, and analysis are all parts of the decision
support  system  (DSS)  proposed  by  Rosati  et  al.[16]

Unlike  previous  studies,  our  approach  uses  data  from
both  the  lower  and  higher  tiers  of  the  production
scheme  to  fuel  a  feature  extraction  approach  and  ML
prediction model, which is a significant departure from
the  status  quo.  Predictive  performance  (mean absolute
error (MAE): 0.089) and computational effort (average
latency of quality) were all found to be optimal by the
experiments.  These  characteristics,  together  with  the
machine  learning  (ML)  architecture,  allow  the
operator/maintainer  to  directly  optimise the machining
quality  procedures.  With  these  advantages,
manufacturers  can  reduce  service  costs  by  increasing
uptime and productivity while minimising service needs.

In  order  to  facilitate  secure  knowledge  exchange
amongst  authorised  machine  tools  in  the  swarm  with
ultra-low  latency  performance,  Zhang  et  al.[17]

presented  a  fresh  framework  for  the  construction  of  a
knowledge-sharing  intelligent  machine  tool  swarm  by
combining  digital  twin  with  multi-access  edge
computing  (MEC).  The  framework’s  three  primary
enablers  are  MEC-enhanced  system  deployment,
knowledge-based  cloud  brain  learning,  and  the
construction of a digital twin of a machine tool swarm.
Finally,  a  prototype  scheme  is  created,  and  its
effectiveness is  shown through assessment studies and
usage demonstrations.

Ullah  et  al.[18] proposed  multi-level  strategy  which
shows how federated learning, IoT, and crowdsourcing
could  work  together  to  produce  a  self-sustaining
federated  learning  ecosystem  well-suited  to  Industry
4.0. All of these help pave the way for future intelligent
applications in the Industry 4.0 sphere. System problem
identification  and  predictive  maintenance  are  two
examples of the value of smart manufacturing facilities.
Moreover,  it  showcases  a  variety  of  Industry  4.0
applications  for  multi-level  federated  learning.  If  the
plan  is  carried  out  as  intended,  it  will  not  only  boost
performance but also help achieve a broader goal, such
as Sustainable Development Goal 13 set by the United
Nations, which is to lessen humanity’s carbon footprint
on the earth.

Converso  et  al.[19] provided  a  novel  approach  for
combining machine  workload information into  a  well-

established  procedure.  The  projected  technique  uses  a
neural network computer model to estimate breakdown
likelihood in light of scheduled activities and a logistic
regression  model  to  assess  the  health  of  equipment.
Prototype  testing  showed  that  this  approach  improves
forecasting  of  work  completion  rates,  gives  cyber
physical  systems  (CPSs)  more  leeway  in  accepting  or
rejecting  jobs  based  on  their  expected  health  status,
reduces  maintenance  costs,  and  maximises  the
efficiency of available production resources. This study
contributes  to  the  present  body  of  knowledge  since  it
introduces predictive capabilities at the plant shop floor
and  fully  uses  the  primary  enabling  knowledges  of
Industry 4.0.

The  standard  procedures  for  predictive  maintenance
were  combined  into  a  single  method  by  Murugiah
et al.[20] Because of this, it can be challenging to tackle
both  the  preventative  maintenance  and  prognostic
analysis jobs concurrently. For this reason, we propose
a  new  predictive  manufacturing  system  within  the
framework  of  Industry  4.0  to  analyse  the  machinery.
Data are initially gathered through IoT industry sensors.
The  multi-scale  dilation  attention  convolutional  neural
network (MSDA-CNN) cleans the data extensively and
extracts deep features. The probabilistic beetle swarm-
butterfly  optimization  approach  is  then  used  to
optimise  the  weights  of  the  retrieved  deep  weighted
features.  Finally,  the  deep  neural  network  (DNN)  and
deep  belief  network  (DBN)  perform  optimized  hybrid
fault  detection  (OHFD),  receiving  the  weighted
features  as  input.  In  the  end,  the  system  notifies
industrialists  of  impending  machine  failures  so  they
can take preventative measures. Industry 4.0 real-world
metrics are used to test the proposed model’s efficacy.
The majority  of  in-training techniques  in  the  literature
are based on what is known as the a priori methodology
from  the  perspective  of  multi-objective  optimisation
(MOO), where the decision-making preference for one
objective  (the  level  of  fairness)  must  be  specified
before optimising the other (accuracy)[21].

Cao et  al.[22] have achieved important advancements
in the sector with their novel knowledge -based scheme
for predictive. The innovative hybrid approach used to
develop  a  knowledge-based  system  for  predictive
maintenance  in  Industry  4.0  (KSPMI)  brings  together
the best features of statistical AI and symbolic AI. The
hybrid approach utilises statistical AI technologies like
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machine  learning  and  text  mining  to  obtain  machine
deterioration  models  from  industrial  data  (a  form  of
sequential pattern mining approach). Yet, the recovered
chronicle  patterns  will  be  used  by  symbolic  AI
technologies  like  domain ontologies  and logic  rules  to
query  and  reason  on  the  system’s  incoming  data  with
comprehensive  domain  and  contextual  knowledge.
Using  a  hybrid  approach  to  ontology  reasoning,
anomalies in machinery may be detected automatically,
and  future  occurrences  can  be  predicted  by  merging
domain  ontologies  with  semantic  web  rule  language
(SWRL)  rules  derived  from  chronicle  patterns.  Using
both  real-world  and  synthetic  data,  we  put  KSPMI
through its paces.

In  order  to  apply  predictive  maintenance  in  the
injection  moulding  process,  Farahani  et  al.[23] used
cloud and edge computing to integrate the various data
sources  relevant  to  this  procedure.  As  an  example  of
the usefulness of the framework, the monitoring of the
cooling  system  for  the  injection  moulding  process  is
presented.  These  results  show  that  monitoring  other
process  variables  outside  of  mould  temperature  is  an
effective  way  to  detect  cooling  issues.  In  general,  the
cloud-based system makes a mean inaccuracy of 3.29%
when  comparing  the  predicted  mould  temperature  to
the  matching  sensor  value;  this  is  something  that  may
be  improved  by  providing  more  training  data  to  the
scheme.

3    Proposed System

Predictive  asset  maintenance  or  PdM  is  used  to
optimise  maintenance  schedules  by  utilising  data-
driven  algorithms  to  foresee  when  assets  would  break
down.  Downtime  is  decreased  and  product  quality  is
enhanced  when  PdM  is  put  into  practise.  Condition-
based  maintenance  or  PdM  looks  for  patterns  in  the
deterioration  of  components  over  time  by  analysing
past  data,  therefore  it  is  important  to  take  speedy
actions  into  account.  Predicting  system  failures  and
fixing components to extend their useful life are two of
the more difficult jobs in PdM. More importantly, this
strategy  is  dependent  on  sensor  data  collection  and
processing. There are two ways that condition data are
gathered when doing constant monitoring and inspection.
Moreover,  PdM  decision-making  necessitates  the
integration  of  disparate  sources  of  data,  such  as  work
orders,  cause  and  effect  chains,  monitoring  data,  and

maintenance logs.
To collect the most accurate forecasting information,

the projected PdM planning model makes use of datasets.
(1)  Data  cleaning,  (2)  data  normalisation,  (3)  optimal
feature selection, (4) decision-making in the prediction
network, and (5) prediction are the five main phases of
the  proposed  model.  The  datasets  are  first  cleaned  by
removing anomalies and completing any missing data.
Next,  normalisation  occurs,  wherein  the  cleaned  data
are placed within a predetermined range (0−1). Optimal
feature  selection,  in  which  duplicate  information  is
discarded,  is  conducted  following  normalisation.  As
such, we engage in a process of optimal feature selection.

3.1    Data cleaning

Data  cleaning  entails  locating  and  fixing
inconsistencies  across  various  data  processes  and
operations.  In  this  case,  data  cleaning is  accomplished
through the  elimination  of  outliers  and the  addition  of
missing values.

Outlier  detection[24]. In  statistics,  outliers  are
equivalent  to “noisy  data”,  which  tend  to  obscure
meaningful trend. There have been a number of distinct
outlier  identification  methods  developed  for  specific
uses.  There  is  a  degree  of  generalizability  to  each  of
these techniques. Data outliers are patterns that deviate
significantly from the norm. In this case, we utilise the
MATLAB function fill outliers to identify outliers and
then  fill  them in  with  new data.  Early  on,  the  outliers
are  found  so  that  the  leftover  components  can  be
extracted and decomposed.

Missing  data[25]. When  there  are  blanks  where
numbers  should  be,  we  have  a  missing  data  problem.
More processing time is needed to deal with missing data,
and  more  investigation  is  needed  to  understand  the
issues that arise from them. The fill missing MATLAB
function is used to insert a constant value into an array
entry  that  is  lacking  data.  Decomposing  residuals  and
approximations  is  the  job  of  the  function.  In  order  to
separate  the  approximation  and  residual  parts  of  the
elements,  a  harmonic  analysis  is  performed.  The  next
step  is  to  perform  data  reconstruction.  The
approximation  part  is  the  primary  value,  and  the
residual part is some random noise. A random number
is  generated by first  calculating the  standard deviation
and  the  mean  of  the  residual  component.  Then,  the
approximation  components  themselves,  or  the  noise
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components added together, are used to fill in the blanks.
In the end, this model was able to recover data.

The  cleaned  data  are  represented  as  Dtu, u =  1,
2, … , ND , where N is the population size and D is the
number of dimensions in the problem space.

3.2    Data normalization

The  purpose  of  data  normalisation  is  to  supply
“normalised” data,  which is  a  copy of a set  of  records
that is an identical save for a few numeric values. The
frequency of events is used to standardise the data. Here,
normalisation at the level of individual records yields a
representation  that  is  consistent  with  what  we  would
expect to find in a set of records that is otherwise very
comparable to the one being studied. Using field-level
normalisation, the most common value for each field in
the normalised record is chosen.

Once data cleaning is complete, data normalisation is
carried  out,  yielding  a  range  of  numbers  as  output.
Adjusting  values  unhurried  on  multiple  scales  to  a
notionally common scale,  frequently before averaging,
is what is meant by the term “data normalisation”. The
minimum  and  maximum  normalised  values,
represented  by  the  variables  be  =  0  and  ae  =  1,
respectively,  are  considered  here.  In  a  nutshell,  the
equation for normalising data looks like this:
 

Dtnrm
u = (ae−be)× Dtu−Dtmin

Dtmax−Dtmin +be (1)

Dtnrm
uHere, we refer to normalised data as , the value to

be  normalised  as  Dtu,  and  the  minimum  and  supreme
values  for  each  greatest  value  as  Dtmin and  Dtmax,
respectively.

3.3    Optimal feature selection using GSO

This  research proposes  the  golden search optimization
(GSO)  algorithm,  a  straightforward  approach  to
optimization  that  still  achieves  impressive  results  by
drawing  on  the  established  practises  and  principles  of
metaheuristic algorithms. The novel approach strikes a
nice  balance  between  global  exploration  and  local
exploitation  and  avoids  premature  convergence  by
combining  several  important  features  of  previously
reported algorithms particle swarm optimization (PSO)
and  sine  cosine  algorithms  (SCA).  The  objects’
positions in the GSO method are updated using a step
size parameter that is nearly equal to the velocity in the
PSO  algorithm.  However,  the  GSO  uses  sine  and
cosine  functions  rather  than  random  numbers.  One

object  can  be  repositioned  around  another  using  the
oscillation behaviour of sine and cosine functions, and
the area delineated by these two solutions can be used
with  confidence.  Expanding  the  range  of  sine  and
cosine functions,  which permit a solution to update its
position  outside  the  space  between  itself  and  another
solution, will further enhance the exploration capability
of  the  algorithm.  The  algorithm’s  simplicity  belies  its
superiority  over  competing  metaheuristics  when  it
comes  to  finding  the  optimal  solution  for  a  given
problem in a global context.

Like  other  population-based  metaheuristic
optimization  methods,  GSO  starts  the  search  with  an
apparently  arbitrary  selection  of  objects  (candidate
solutions).  To achieve its goal,  the algorithm repeats a
series of iterations in which the positions of the objects
are  modified  according  to  a  step  size  parameter.  The
mathematical  expression  of  the  GSO  procedures  is  as
follows.
3.3.1    Algorithmic steps
Given  that  it  is  a  GSO,  it  should  ideally  cover  the
exploration and exploitation phases and be able to find
a  reasonable  balance  between  these  seemingly
conflicting skills.

There are three key phases to the algorithm: populace
creation,  evaluation,  and  population  update.  The
proposed  GSO  method  is  laid  out  in  sequential  order
below.

Step 1: Population initialization
Using  the  following  equation,  GSO  generates  a

random  sample  of  objects  (potential  solutions)  in  the
search space to begin the search process.
 

Oi = lbi+ rand× (ubi− lbi) , i = 1, 2, . . . ,N (2)

where Oi represents  the i-th  object’s  position  in  the
search  space.  The  object’s  lower  and  upper  limits,  ubi
and lbi, are also denoted.

Step 2: Population evaluation

Obesti

At this point, the fitness of the starting population is
calculated  using  the  objective  function,  and  the  best
object is chosen as .

Step 3: Golden change
The third stage involves sorting the objects by fitness

and replacing the least fit one with a random alternative.
Step 4: Step size evaluation
The  step  size  operator  (Sti)  is  used  to  incrementally

relocate the objects in the optimization process in order
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to  get  them  closer  and  closer  to  the  optimal  solution.
The St equation is a three-part formula. The first half of
this  expression  is  the  previous  value  of  the  step  size
multiplied  by  the  transform  operator  (T),  which
progressively  reduces  in  order  to  strike  a  good
compromise  between  the  algorithm’s  global  and  local
searches. The second section displays, as the cosine of
a  random  number  is  between  0  and  1,  the  distance
among  the i-th  object’s  present  position  and  its  best
position ever obtained.

The  last  piece  is  the  sine  of  a  random  number
between 0  and 1  multiplied  by  the  difference  between
the i-th  object’s  current  position  and  the  best  position
obtained  so  far  among  all  objects.  Starting  with  a
random value for Sti, which will be changed according
to  the  following  equation  at  each  iteration  of  the
optimization procedure:
 

Sti (t+1) =T ·Sti (t)+C1 · cos(r1) · (Obesti− xi (t))+C2·

sin(r2) · (Obesti− xi (t))
(3)

where C1 and C2 are  random  statistics  in  the  range
[0, 2], r1 and r2 are also random numbers in the range
[0, 1], and Obesti is the best previous position obtained
by the i-th object local search in late iterations. In reality,
T is  a  declining  function,  and  its  value  may  be
calculated by Eq. (4)
 

T = 100× exp
(
−20× t

tmax

)
(4)

tmaxwhere  is the supreme sum of iterations.
Step 5: Step size limitation
The  algorithm  advances  by  a  step  for  each  iteration

by modifying the distance that each object travels along
each dimension of the issue hyperspace. By solving Eq.
(3), we see that the step size is a stochastic variable that
can  affect  how  closely  the  objects  follow  cycles  of
increasing size. An acceptable interval is introduced to
restrict  the  object’s  movement  according  to  the
divergence:
 

−Stimax ⩽ Sti ⩽ Stimax (5)

where  Stimax is  the  maximum  allowable  motion,
defining  the  most  shift  an  object  can  make  in  its
positional coordinates in a single iteration according to
the equation:
 

Stimax = 0.1× (ubi− lbi) (6)

Step 6: Refresh current status
At this point, the objects are propagating towards the

global optimum in the search space in accordance with
the following equation:
 

Oi (t+1) = Oi (t)+Sti(t+1) (7)
3.3.2    Time complexity analysis
(1)  The  effectiveness  of  a  novel  optimization  method
can  be  assessed  in  a  variety  of  ways  through
computational  time  complexity  analysis.  The “Big O
notation” is  a  mathematical  notation used in  computer
science  to  indicate  the  needed  running  time  of  an
algorithm  taking  into  account  the  growth  rate  when
dealing with diverse inputs.

(2)  Most  algorithms’ temporal  complexity  may  be
broken  down  into  three  distinct  parts,  each  of  which
can be analysed separately. The time complexity study
of the proposed GSO necessitates similar examinations
of  the  following  three  factors:  Complexity  of
population  initialization  in  time  is  typically  expressed
as O(ND), where N is the population size and D is the
number of dimensions in the problem space.

(3)  Initial  fitness  assessment  time  complexity  is
typically  measured  in  terms  of O(N)F(X),  where F(X)
is the objective function.

O(tmax× (N ×DCN ×F (X) ))

O (tmax( N ×DCN ×F (X) ))

(4)  Time  complexity  of  the  main  loop,  generally
intended  by ,  where  tmax
is the maximum sum of difficulty of GSO algorithm, is

.

3.4    Classification using MLH-CNN

In  order  to  extract  features  from  images,  this  article
primarily  makes  use  of  the  convolution  layer  and  the
batch normalisation (BN) layer. To boost the network’s
generalisation  capability,  shake  up  the  training  data,
and quicken the model’s convergence, the BN[26] layer
is employed. Every individual training batch is used to
determine the BN. Mean and standard deviation values
for each training batch are recorded and then utilised to
derive  values  for  the  complete  training  set  in  the
following way:
 

µβ =
1
m

m∑
i=0

xi, δ
2 =

1
m

(
xi−µβ

)2
(8)

 

E [x]← Eβ
[
µβ

]
,Var[x]← m

m−1
Eβ

[
δ2β

]
(9)

δwhere μβ is  the  mean  of  the  entire  dataset,  is  the
variance of the entire dataset, E[·] is the feature map of
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the output, Eβ[·] is the feature map of the batch size, x
is the input to layer one, β is a dataset of batch size m,
and m is  the  small  batch  size.  Each  feature  map
undergoes  a  batch  standardisation,  meaning  the  same
process  is  performed  at  various  locations  across  all  of
them. If the feature map has a size of p and q, then BN
for  this  feature  map  is  identical  to  normalising  the
feature  batch  to  have  a  size  of m'=  |β|  = mpq·BN.  To
effectively avoid gradient disappearance and explosion,
which is independent of the parameters’ starting values
and has a regularisation impact, BN is chosen.

It was pointed out in VGGNet that the field of view
of two 3×3 convolution kernels is equivalent to that of
a  single  5×5  convolution  kernel.  Hence,  a  3×3
convolution  kernel  is  used  to  guarantee  the  perceived
field  of  view  while  simultaneously  decreasing  the
convolution  layer’s  parameters.  Hence,  the  network
architecture of this paper employs the 3×3 convolution
kernels.

The  schematic  for  the  whole  proposed  module  is
shown  in Fig.  1.  Typical  channel  counts  for  these
mixers range from 32 to 256.
 

Zl
u,v =

∞∑
i=−∞

∞∑
j=−∞

Xl−1
i+u, j+v ·Kl ·χ (i, j)+bl (10)

 

χ (i, j) =

1, 0 ⩽ i, j ⩽ n;

0, others
(11)

After the convolution layer’s output feature has been
down-sampled  by  the  BN  layer,  it  moves  on  to  the
maximum pooling  layer.  Each  convolution  kernel  unit
now  has  a  weight  of l+1,  and  the  output  is  further
augmented by a bias unit bl+1. This is what the layer of
sampling produces as its output:
 

Zl+1
i, j = β

l+1
(i+1)r−1∑

u=ir

( j+1)r−1∑
v= jr

al
u,v+bl+1 (12)

 

al
u,v = f

(
Zl

u,v

)
(13)

 

al+1
i, j = f

(
Zl+1

i, j

)
(14)

After the sampling layer comes the convolution layer,
now we get the following output:
 

Zl+2
u,v =

∞∑
i=−∞

∞∑
j=−∞

al+1
i+u, j+u ·Kl+2

i, j ·χ (i, j)+bl+2 (15)

χ(i, j) m×m Kl+2
i, j

n×n al+1
i+u, j+u Zl+1

i+u, j+u

(u,v) 0 ⩽ u,v ⩽ n

where  is a matrix of order ,  is a matrix
of order , and  is a function of . The
range of  is .

Following  the  combination  of  the  modules,  the  data
transitioning  from  the  convolution  layer  to  the
complete connection layer are “flattened” by means of
a  flattening  layer.  The  next  step  involves  employing
two  full  connection  layers,  with  128  and  64  channels,
respectively. While the number of channels may be high,
the  parameters  and  total  quantity  of  calculations  are
greatly  diminished.  At  the  end,  classification  is
performed using the Softmax classifier.

While fine-tuning CNN has the potential to improve
classification  accuracy,  they  suffer  from  drawbacks
such as high complexity and a huge sum of parameters.
In  this  paper,  we  begin  with  a  simple  and  low-
complexity  convolutional  neural  network  and  improve
its  receptive  field  of  view  and  network  parameters  by
employing  a  convolution  kernel  size  of  3×3.  Data
compression and parameter reduction are accomplished
by  adding  a  maximum  pool  layer  basic  module,  as
depicted  in Fig.  1.  This  can  help  keep  the  model’s
generalizability  while  decreasing  the  amount  of
processing required.

There  are  four  separate  parts  to  this  network
architecture.  Little  3×3  convolution  kernels  with  a
stride  of  1  are  used  in  each  convolution  layer.  Each
convolution layer uses 0 padding to prevent the loss of
edge feature information that occurs when pixels at the
image’s  corners  are  skipped  over  during  the
convolution procedure. Filters and steps of size 2×2 are
used in the maximum pool layer. Ultimately, the output
network  has  a  relatively  low  number  of  parameters

 

3×3 convolution 3×3 convolution 3×3 convolution
layer layer layer

Maximum pooling
layer

ModuleBasic module

BN layer BN layer BN layer

 
Fig. 1    Construction of the projected modules.
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(17 099.26) compared to the CNN.
Selection of optimizer
When it  comes to  whether  or  not  the training of  the

network  model  can  converge  fast  and  produce
improved accuracy and recall  rate,  the optimizer plays
a crucial role. Adam, Gradient descent, and Momentum
are  all  popular  optimizers.  Based  on  the  given  model,
this work primarily examines and compares Adam[27].

Under  various  conditions,  the  comparisons  are
carried out between proposed model, Adam, SGD, and
SGDM  with  Nesterov.  Early  on,  SGD  produces  the
best  results,  whereas  Adam and SGD become steadier
as  training  progresses,  and  SGDM  +  Nesterov  peaks
near  the  end  of  the  process.  As  a  whole,  SGDM  +
Nesterov  performs  well  in  terms  of  classification
accuracy.  The  SGDM  +  Nesterov  optimizer  is  clearly
superior in terms of accuracy and average iteration time.
The  suggested  model’s  feature  classification  is  then
performed using SGDM + Nesterov as the optimizer.

In  order  to  drastically  minimise  the  sum  of
parameters  and  shorten  the  training  period,  this  work
uses input data with a size of 64×64×3. As the optimizer,
we  have  settled  on  the  SGDM,  with  the  momentum
parameter set at 0.9, the learning rate at 0.1. The rate of
learning  is  also  slowed  down,  and  an  early  stop
mechanism  is  included.  The  patience  parameter  is
arranged to 30 in this work. At the present learning rate,
a 0.1 reduction in the rate of learning is implemented if
the loss function value in the most recent training is not
smaller  than  the  value  in  the  most  recent  training.  A
batch  size  of  32  has  been  selected.  The  suggested
model  is  built  on  Keras  and  trained  using  NVIDIA’s
GeForce  940MX  graphics  processing  units. Table  1
presents  the  values  of  these  hyper-parameter
optimizations.

4    Result and Discussion

4.1    Experimental setup

MATLAB 2018a was used to actualize the hybrid DL-

based  PdM planning  method.  The  effectiveness  of  the
suggested  model  was  measured  using  datasets  from
aircraft engines and Li-ion batteries.

In  the  first  dataset,  known  as “plane  engines”,  data
were  culled  from  Github[28].  Many  multivariate  time
series  data  were  given,  with  examples  ranging  from a
single  engine  to  a  hundred.  There  was  some  variation
in the run length, which ranged from 128 cycles to 356
cycles.

In  Dataset  2,  18  650  Li-ion  cells  with  a  nominal
capacity  of  2  A·h  were  charged  using  a  standard  CC-
CV methodology and discharged in a variety of ways at
three  distinct  temperatures  (4  °C,  24  °C,  and  43  °C).
Terminal current, voltage, and cell temperature were all
measured  in-cycle,  and  discharge  capacity  and  EIS
impedance were measured between cycles.

4.2    Evaluating models

Accuracy  (ACC),  precision  (PRE),  recall  (REC),  and
F1-score (F1) are used to evaluate the proposed models,
which  is  shown  in  Eqs.  (16)−(19).  The  following
equations are used to regulate these values.
 

Accuracy =
TP+TN

TP+FP+TN+FN
(16)

 

Precision =
TP

TP+FP
(17)

 

Recall =
TP

TP+FN
(18)

 

F1 =
2 ·Precision ·Recall
Precision+Recall

(19)

where  TP  is  true  positive,  TN  is  true  negative,  FP  is
false positive, and FN is false negative.

4.3    Performance analysis  of  projected model  with
existing techniques

In  this  analysis,  the  validation  analysis  is  carried  out
with and without GSO model for two datasets. Table 2
presents  the  comparative  analysis  of  existing  models
and proposed model without GSO.

When the analysis is carried out, the existing models
such  as  SVM,  DBN,  AE,  RNN,  and  CNN  achieved
nearly  78% to  88%,  MSDA-CNN  achieved  91.22%,
and  proposed  model  achieved  92.24% for  Dataset  1.
When  the  models  are  tested  with  various  metrics,  the
existing  model  MSDA-CNN achieved  90% to  91% of
precision,  recall,  and F1-score,  and  proposed  model
achieved  92% of  precision,  recall,  and F1-score  for
Dataset  1.  But  the  same  proposed  model  achieved

 

Table 1    Value of hyper-parameter optimizations.

Optimizer (momentum parameter) Value
Batch size 32

Learning rate 0.1
Patient value 30

Batch normalization Momentum = 0.99,
epsilon = 0.001

Number of epochs 100
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nearly 83% of accuracy, precision, recall, and F1-score
for Dataset 2, where the existing techniques such as RNN,
AE,  CNN,  and  MSDA-CNN  achieved  nearly  81% to
82% of  accuracy,  precision,  recall,  and F1-score  for
Dataset 2. The reason for poor performance is that the
whole  features  including  irrelevant  and  unwanted
information  are  also  considered.  When  the  irrelevant
features  are  removed  by  using  GSO,  the  performance
of all techniques is improved, which is shown in Table 3.

The  existing  models  such  as  SVM,  DBN,  and  AE
achieved  nearly  84% to  87% of  all  metrics  such  as
accuracy,  precision,  recall,  and F1-score,  where  the
other  models  such  as  RNN,  CNN,  and  MSDA-CNN
achieved  nearly  94% to  96% of  accuracy,  precision,
recall,  and F1-score  for  Dataset  1.  But  the  proposed

model achieved 98% of accuracy, precision, recall, and
F1-score  for  Dataset  1,  and  also  the  same  model
achieved only 92% to 93% of accuracy, precision, recall,
and F1-score  for  Dataset  2.  When  comparing  with  all
existing  models,  DBN  achieved  only  77% to  78% of
accuracy, precision, recall, and F1-score for Dataset 2.
The  SVM  and  AE  achieved  nearly  84% to  86% of
accuracy,  precision,  recall,  and F1-score,  where  other
models  such  as  RNN,  CNN,  and  MSDA-CNN
achieved  90% to  91% of  accuracy,  precision,  recall,
and F1-score. Figures  2−5 present  the  graphical
analysis of proposed model with existing models.

5    Conclusion

Five  steps,  including  data  cleaning,  normalisation,

 

Table 2    Analysis of existing models and proposed model without GSO.

Method
Dataset 1 Dataset 2

ACC (%) PRE (%) REC (%) F1 (%) ACC (%) PRE (%) REC (%) F1 (%)
SVM 78.78 80.44 78.91 78.60 73.15 74.00 73.15 72.97
DBN 78.95 82.70 78.95 78.34 74.17 75.68 75.50 65.70
AE 74.76 78.02 74.76 74.03 81.86 81.88 81.86 81.66

RNN 87.83 87.83 87.83 87.83 81.33 81.60 81.33 81.27
CNN 88.48 88.48 88.48 88.48 82.10 82.63 82.10 82.05

MSDA-CNN 91.22 90.07 91.99 91.99 82.35 82.93 82.35 82.30
MLH-CNN 92.24 92.39 92.24 92.24 83.12 83.85 83.12 83.06

 

Table 3    Comparative analysis of proposed model with GSO.

Method
Dataset 1 Dataset 2

ACC (%) PRE (%) REC (%) F1 (%) ACC (%) PRE (%) REC (%) F1 (%)
SVM 87.51 87.63 87.51 87.50 86.09 86.13 86.09 86.09
DBN 84.23 85.10 84.23 84.10 77.91 78.95 77.91 77.43
AE 87.12 87.12 87.12 87.12 84.05 86.79 84.05 82.45

RNN 94.92 94.92 94.92 94.92 90.18 90.18 90.18 90.17
CNN 96.96 96.90 95.71 95.03 91.89 91.90 91.89 91.89

MSDA-CNN 94.89 94.87 94.87 94.87 91.60 92.61 90.60 90.76
MLH-CNN 98.08 98.09 98.08 98.08 92.22 93.23 92.22 93.22
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Fig. 2    Accuracy comparison with and without GSO on two
datasets.
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Fig. 3    Precision  validation  with  and  without  GSO  on  two
datasets.

  Karnam Shanmugam et al.:   Developing an Integrated IoT Cloud Based Predictive Conservation Model for Asset ... 147    

 



optimal  feature  selection,  precision  network  decision-
making,  and  forecast,  make  up  the  intelligent  PdM
planning  model  presented  in  this  research.  Predictive
maintenance  helps  boost  production  sustainability  by
decreasing  the  frequency  of  breakdowns,  the  severity
of failures, and the amount of material wasted. To that
end, an effective PdM can cut down time and material
waste.  Two  datasets  were  used  in  the  study:  one
pertaining  to  aviation  engines  and  the  other  to  Li-ion
batteries. In the beginning, PdM data were cleaned, and
then  the  cleaned  data  were  normalised.  The  proposed
GSO was used to pick features optimally, which helped
to cut down redundant information. It was challenging
for the DL algorithm to give optimal results because of
the wide range of  predicted values.  To find a  network
that could deal with a wide variety of prediction values,
MLH-CNN  was  used.  Analysis  shows  that  the
suggested model outdid the state-of-the-art models by a
wide margin, with an accuracy of 98.08% for Dataset 1
and  92.22% for  Dataset  2,  respectively.  Hence,  the
suggested  GSO-MLH-CNN  was  validated  and  shown
to be effective for  PdM planning.  Combining multiple
DL  models  is  an  area  for  potential  improvement  over
using a single model.
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