
 

Enhancing Next-Item Recommendation Through
Adaptive User Group Modeling
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Abstract:    Session-based  recommender  systems  are  increasingly  applied  to  next-item  recommendations.
However,  existing  approaches  encode  the  session  information  of  each  user  independently  and  do  not
consider the interrelationship between users. This work is based on the intuition that dynamic groups of like-
minded  users  exist  over  time.  By  considering  the  impact  of  latent  user  groups,  we  can  learn  a  user’s
preference  in  a  better  way.  To  this  end,  we  propose  a  recommendation  model  based  on  learning  user
embeddings  by  modeling  long  and  short-term  dynamic  latent  user  groups.  Specifically,  we  utilize  two
network  units  to  learn  users’ long  and  short-term  sessions,  respectively.  Meanwhile,  we  employ  two
additional units to determine the affiliation of users with specific latent groups, followed by an aggregation
of these latent group representations. Finally, user preference representations are shaped comprehensively by
considering all these four aspects, based on an attention mechanism. Moreover, to avoid setting the number
of  groups  manually,  we  further  incorporate  an  adaptive  learning  unit  to  assess  the  necessity  for  creating  a
new group and learn the representation of emerging groups automatically. Extensive experiments prove our
model outperforms multiple state-of-the-art methods in terms of Recall, mean average precision (mAP), and
area under curve (AUC) metrics.
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1    Introduction

Session-based  recommender  systems  (SBRSs)  have
attracted  increasing  attention  due  to  their  highly
practical  value[2, 3].  A  session  in  SBRSs  specifies  a
scope  of  encapsulation  of  items,  such  as  a  set  of

products  in  a  shopping  cart,  a  set  of  viewed  websites
within a time window, and so forth. Different sessions
reflect  users’ diverse  preferences  and  requirements
because  users’ interests  keep  changing  in  various
periods[4]. Some SBRSs such as Refs. [5−7] distinguish
the contribution of each session to depict users’ current
interests.  Meanwhile,  there  are  also  some  SBRSs[8, 9]

exploiting  the  connections  between  sessions  and
transferring  shared  knowledge  across  similar  sessions.
These  systems  have  demonstrated  a  decent
improvement  in  recommendation  performances
compared to conventional approaches.

The  stable  long-term  interests  and  dynamic  short-
term  requirements  are  two  key  factors  affecting  user
decisions.  Some  existing  SBRSs  assume  the  two
factors are associated differently with long- and short-
term  sessions.  For  instance,  to  learn  more  complete
representations of users, SHAN[7] adopts a hierarchical
structure to fuse the pooling results of long- and short-
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term  sessions.  Similarly,  KA-MemNN[5, 10] encodes
each  session  from  two  perspectives:  users’ intentions
and  preferences,  followed  by  a  more  precisely
weighted  combination  of  long- and  short-term  session
representations.  Besides,  AttRec[6] and  CAN[11]

combine conventional and sequential recommenders to
model  user  interests  by  treating  long- and  short-term
sessions  differently.  To  further  attain  disentanglement
of  long- and  short-term interests,  CLSR[12] proposes  a
contrastive learning framework with self-supervision.

In  all  these  approaches,  user  representations  are
summarized  based  on  their  sessions  independently,
causing the learned models to be built on a per-user basis.
There  is  no  explicit  information  sharing  between  the
models  of  users.  However,  in  real-world  applications,
groups of like-minded users exist in different contexts.
The  users  in  the  same  group  usually  share  similar
preferences  and  thus  might  behave  similarly.
Unfortunately,  group information is  often neglected in
existing SBRSs.

If  the  data  of  all  related  items  and  users  are  treated

indiscriminately,  it  is  a  global  model.  Instead,  more
emphasis  can  be  put  on  some  of  the  related  items  or
users to make the model more targeted, and it is a local
model. For example, in Refs. [13, 14], to capture users’
more  specific  preferences,  user  representations  are
learned from currently visited items. At the same time,
many  local  non-session-aware  recommender  systems
(NSRSs)  have  been  widely  explored.  For  instance,
based on truncated singular value decomposition (SVD),
the work in Ref. [15] learnt a global model for a shared
aspect set as well as a set of user subset-specific models.
CMN[16] took users’ neighbors as the values in memory
network banks, and the values are further accumulated
to  model  users’ preferences.  Although  by  considering
the  stable  local  influences  NSRSs  can  improve
recommendation performance,  they still  fail  to capture
users’ dynamic preferences and evolving latent groups
and  thus  are  not  effective  for  next-item
recommendations. Figure  1 further  exhibits  the
difference between local NSRSs and local SBRSs.

To this end, in this paper, we aim to propose a local
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Fig. 1    An  example  of  two  different  approaches  of  modeling  influences  of  grouping:  our  dynamic  grouping  mechanism and
conventional static grouping mechanism. The central user belongs to two latent groups represented by orange and green frames.
In  conventional  static  grouping mechanism,  groups  influence  the  user  equally,  and thus  the  visited  items denoted by  orange
cuboid and green cylinder should be recommended with no difference. In our dynamic grouping mechanism, the two groups
are treated differently since the central user has switched his group from the green one to the orange one. Up-to-date groups
might have a larger impact on him, and thus items represented by orange cuboid are more in line with his taste.
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SBRS.  However,  due  to  users’ complicated  behavior
patterns,  local  SBRSs  face  several  challenges.  (1)
Instead  of  being  assigned  a  static  group  like
conventional local approaches, in practice, a user might
belong to multiple groups. For example, a user can be a
cartoon fan and a tech fan simultaneously. In such a case,
when  he  purchases  a  comic  book,  the  taste  of  cartoon
fans  would  have  a  more  significant  impact  on  him
compared to  that  of  tech fans,  and vice  versa.  (2)  The
interest  of  each  user  group  can  be  updated  over  time.
For  example,  a  hot  cake  can  disturb  the  widespread
tendency inside the group. (3) The number of groups is
hard  to  determine.  The  emergence  of  new  trends  may
form a new group. (4) Users can switch their groups for
multiple  reasons,  such  as  the  evolution  of  preferences
and requirements. How to capture the dynamics of each
user group and evolving grouping is not trivial.

To address the mentioned problems, we design LSUG,
which is a next-item recommendation system based on
Long- and  Short-term  latent  User  Group  modeling.
Specifically,  we  employ  a  hierarchical  neural  network
to build an end-end representation learning mechanism.
We  first  split  the  sessions  into  long- and  short-term
sessions,  then  we  embed  each  item  in  sessions  into  a
dense  representation.  Based  on  item  embeddings,  we
abstract  critical  information  to  form  long- and  short-
term session representations by a  pooling layer.  These
representations  reflect  users’ preferences  and
requirements. By analyzing the relations between them
and  latent  user  group  embeddings,  we  can  assign  the
target  user  to  multiple  user  groups  with  different
probabilities.  Groups  with  higher  probability  have  a
greater  impact  on  user  preferences.  Considering  that
users’ interests  may  be  updated  over  time,  as  well  as
their long- and short-term preferences, the probabilities
of  users  in  groups  are  dynamic.  Then,  we  can
summarize the influences from different user groups by
a weighted combination of group embeddings. Finally,
the long- and short-term session representations and the
user  group  influences  are  further  aggregated  to  more
comprehensive  user  representations  based  on  an
attention  model.  These  representations  replace  user
latent  vectors  in  a  pairwise  model,  i.e.,  Bayesian
personalized  ranking  (BPR)[17],  to  estimate  the
probability of an item being the next visited one.

We  also  utilize  adaptive  learning  to  assess  the
necessity  for  creating  a  new  group.  If  it  is  necessary,

then  the  representation  of  emerging  groups  can  be
learned  automatically.  Thus,  the  model  can  avoid
setting the number of groups manually.

Our contributions are summarized as follows:
●  We  reveal  that  dynamic  groups  of  like-minded

users  exist  over  time,  and  users  in  the  same  group
might  share  a  similar  preference.  By  considering  the
impact  of  latent  user  groups,  we  can  capture  a  user’s
preference in a better way.

●  We  propose  a  recommendation  model  for  next-
item  recommendations,  i.e.,  LSUG,  which  learns  user
embeddings  by  modeling  long- and  short-term  latent
user groups.

● We propose an adaptive learning unit to create new
groups.  Thus  rather  than  being  tuned  by  hand,  the
number  of  groups  can  be  increased  automatically
according to modeling requirements.

● The extensive experiments prove the superiority of
our  model  compared  to  multiple  state-of-the-art
approaches in terms of Recall, area under curve (AUC),
and mean average precision (mAP) metrics.

2    Related Work

Traditional approaches, e.g., collaborative filtering (CF),
model the relations between users and items in a static
way.  They  neglect  the  sequential  dependencies  inside
the  user-item  interactions.  To  tackle  such  a  problem,
Markov  chain  based  (MC-based)  methods,  such  as
Ref.  [18],  are  developed.  The  work  in  Ref.  [19]
incorporated  hidden  Markov  models  into  matrix
factorization  to  deal  with  temporal  dynamics  in
recommender  systems.  However,  MC-based  models
only  consider  the  first-order  dependency.  Thus,  they
usually  fail  to  capture  more  complex  high-order  user
sequential patterns.

Neural  networks  (NNs)  are  widely  explored  and
applied in recent years thanks to their ability to handle
highly  complex  users’ behaviors.  Different  from  MC-
based methods, RNN-based technologies like HRNN[20]

can  model  higher-order  sequential  dependencies  while
avoiding the exponential growth of parameters existing
in  higher-order  MCs[18].  However,  RNN  models
suppose  that  items  in  a  session  follow  a  rigid  order,
which  dose  not  match  the  real-world  session  based
settings,  as  a  user  might  buy  or  look  through  these
items randomly in a short time. Attention mechanism is
incorporated into the neural network to distinguish the
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importance  of  different  items  within  a  session.  Co-
CoRec[21] leverages category information to capture the
context-aware  action  dependence  and  uses  a  self-
attention  network  to  capture  item-to-item  transition
patterns  within  each  category-specific  subsequence.
DPAN[22] applies  an  attention  network  to  model  both
the collective and sequential information within sessions.
There  are  some works[23, 24] regarding  the  last  item as
the user’s main preference at the present period, so the
last item is utilized to calculate the weight of other items.
However,  they  have  limited  ability  to  explicitly  learn
user  preference,  as  the  selected  item  could  be  a  noisy
click.

The  effectiveness  of  graph  neural  networks  (GNNs)
has  been  reported[25, 26] in  recommendation  domains.
MixGCF[27] utilizes  the  underlying  GNN-based
recommenders to synthesize negative samples. GHCF[28]

uses graph convolutional network (GCN) to explore the
high-hop  user-item  interactions.  MB-GMN[29] is  an
integrative  neural  architecture  with  a  meta-knowledge
learner and a meta-graph neural network to capture the
personalized  multi-behavior  characteristics.  MDSR[30]

aims  to  improve  the  diversification  of  the
recommendation by exploring the multi-intent of users.
These models are usually trained in a pairwise manner,
i.e., one item has priority over the other. But in reality,
items  in  the  same  session  can  not  always  have  such
partial  order  relations.  Thus,  these  approaches  might
lead  to  false  dependencies.  Besides,  RNN- and  MC-
based  approaches  are  apt  to  forget  long-term
information  and  are  biased  to  recently  visited  items
according to their structures.

Recently, many SBRSs rely on NNs to model users’
long- and  short-term  interests.  They  pursue  this  task
from  two  perspectives:  (1)  using  an  attention
mechanism  to  learn  explicit  session-specific
weights[5, 7, 31] and (2) exploiting different prototypes to
model  long- and  short-term  sessions[9, 14, 15].  Both  of
these two techniques have been proven very successful
in SBRSs. Our work follows the first pipeline. However,
these  SBRSs  treat  each  user  independently  and  learn
from  users’ personal  behaviors  to  make
recommendations,  causing  no  explicit  information
sharing between similar users. Therefore, user and item
representations are learned from a global view. In reality,
there  might  be  strong  local  associations  inside  users
and  items,  which  has  been  validated  in  many  local

NSRSs  such  as  CMN[16] and  r(s)GLSVD[15].
Unfortunately,  NSRSs  do  not  take  temporal  orders  of
user  behaviors  into  account,  which  limits  their
performances. To this end, we propose local SBRSs to
combine  the  advantages  of  SBRSs  and  local  fusion
settings.

3    LSUG Model

3.1    Problem formulation

u
v U = {u1,u2, . . . ,u|U|}

V = {v1,v2, . . . ,v|V|} s = {v1,v2, . . . ,

v|s|} ⊂ V
∆t

Su
t = {su

1, s
u
2, . . . , s

u
t } t

In  a  recommender  system,  we  have  a  user  and  an
item  in a user set  and an item set

,  respectively.  Let 
 be an item set clicked by a target user within a

session,  i.e., .  Throughout  the  history  of  user
behaviors,  we  have  a  session  sequence  denoted  by

 for  each  user,  where  indicates  the
index of sessions following timestamps.

u Su
t

st u

Formally, given a user  and his session sequence ,
we aim to build a model to predict  the next items that
have high probabilities belonging to the current session

, by taking the consideration of user ’s long- and short-
term sessions, as well as his long- and short-term latent
groups’ influences.

3.2    Overview

Our model (the framework based on Long- and Short-
term  latent  User  Group  modeling,  LSUG)  shown  in
Fig.  2 is  a  hierarchical  end-end  framework.  It  splits
user behaviors into long- and short-term ones. For each
part,  we  aggregate  item  embeddings  to  form  a  user’s
preference representation. Then, based on the long- and
short-term representations, we calculate the probability
distribution  of  groups  that  users  might  belong  to,
followed by an aggregation of group features to capture
the  impact  from  users’ neighbors  as  well  as  the
differences  in  preference  between  subsets  of  like-
minded  users.  Finally,  we  construct  a  hybrid  user
representation using users’ long- and short-term session
representations and group influences. Next, we give an
introduction to each part of the model.

3.3    General embedding construction

U ∈ RN×K V ∈ RM×K

N = |U|
M = |V|

We use two matrices  and  with fully-
connected NNs to transform one-hot encoding of users
and  items  to  dense  vectors,  in  which  (resp.

) denotes the number of users (resp. items) and
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K u ∈ RK v ∈ RK

u v
 is  the  latent  dimensionality.  Let  and 

represent  an  embedding  vector  of  user  and  item ,
respectively. They capture static features since they do
not change with time.

L L
Gv ∈ RL×K Gv

Gk ∈ RL×K

Gk Gv

Inspired  by  key-value  memory  networks  (KV-
MemNN)[32],  to  determine  the  influence  of  groups  to
each  user,  we  assume  user  groups  with  latent
anchor  representations  denoted  by . 
describes  the  preferences  of  latent  user  groups.  At  the
same  time,  latent  groups  have  an  additional
representation  matrix  denoted  by  deciding
the  relations  with  users.  and  are  similar  to  the
key  and  value  elements  in  KV-MemNN,  respectively.
In  this  way,  we  can  assign  a  user  to  multiple  groups
and accumulate influences of user grouping for him.

3.4    Context-aware input embedding

su
t = {v1,v2, . . . ,v|su

t ||(u, t)}

su
1:t−1 = {v1,v2, . . . ,

v|su
1:t−1 ||(u, t)}

We split the sessions of a user into two parts and utilize
his current session  to construct
his  context-aware  input  embeddings,  which  captures
his short-term demands,  and 

 as the long-term preference. Each session
has  a  related  embedding  matrix  which  is  computed
according to the representations of the items in it.

xu
s and xu

l ∈ R
K

Here,  we  feed  these  matrices  to  an  aggregation
function  to  learn  semantic  input  embeddings

 as follows:
 

xu
s = pooling(Eu

t ),

xu
l = pooling(Eu

1:t−1)
(1)

We  explore  three  different  pooling  methods  to

aggregate  item features,  i.e.,  mean,  max,  and attention
pooling functions.

● Mean  pooling: It  averages  the  values  at  each
dimension of features. Each item has equal importance
in contributing to the final result.

● Max  pooling: It  takes  the  max  value  for  each
dimension and captures item set features in an extreme
way.

u
v

● Attention pooling: It is a weighted average pooling,
and we calculate the weights according to the relations
between the general representation of the target user 
and the item  as follows:
 

wu,v =
exp(uTv)∑

vi∈su
t

exp(uTvi)
,

xu
t =
∑
v∈su

t

wu,vv

(2)

xu
t t ∈ {s, l} u

u xu
t

The input embedding , where , reflects user ’s
status  at  different  timestamps,  such  as  his  purchase
requirements and related groups. Thus, it is reasonable
to justify the relations between the groups, i.e., anchor
points and user  according to this input embedding .

3.5    Latent user group influence modeling

xu
s and xu

l

Gk

bu
s and bu

l

We  first  calculate  the  similarity  between  the  input
embeddings,  i.e., ,  and  key  embeddings  of
latent groups ,  to assess a user’s current probability
distribution  to  determine  the  affiliation  of
users with specific latent groups as
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Fig. 2    Framework of LSUG.
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bu
s = softmax(Gk xu

s),

bu
l = softmax(Gk xu

l )
(3)

bu
s , bu

l ∈ R
L softmax(·)

Gk xu

Gv

where  and we utilize  function to
convert  the  vector  to  a  pseudo  probability
distribution vector. Then, we aggregate group features,
i.e., ,  according  to  the  distributions  to  construct
aggregated group feature vectors as
 

gu
l = Gvbu

l ,

gu
s = Gvbu

s
(4)

gu
l ∈ R

K gu
s ∈ RK

u
where  and  represent the long- and short-
term latent group influences to the user , respectively.

3.6    Hybrid user representation modeling

{xu
s , xu

l , g
u
s , gu

l } F

This part yields a hybrid user representation from four
aspects:  two  personal  preference  representations,  i.e.,
users’ long- and short-term context-aware input session
embeddings,  and  two  group  influence  representations,
i.e.,  the  impacts  from  users’ current  groups  and
historical groups. To combine these four components in
a dynamic way, we investigate two approaches to fuse
them. For simplicity, we denote  as .

● MLP  hybrid: We  use  a  multi-layer  perception
(MLP) to map each feature vector to a scalar, followed
by a softmax layer converting the scalar to a weight for
each component.
 

w f =
exp(MLP( f ))∑

f ′∈F
exp(MLP( f ′))

,

hu =
∑
f ′∈F

w f ′ f ′
(5)

u

● Attention  hybrid: We  calculate  the  weights
according to the relations between the components and
the embedding of the target user .
 

w f =
exp(uT f )∑

f ′∈F
exp(uT f ′)

,

hu =
∑
f ′∈F

w f ′ f ′
(6)

3.7    Model learning

The  total  training  procedure  is  shown in  Algorithm 1.
After  the  final  user  representation  is  learned,  we
compute  the  inner  product  of  user  representations  and
item  embedding  as  their  similarities  or  users’
preferences for items:

 

R̂u,v = (hu)Tv (7)

u

u
v+

v−

We  utilize  a  ranking  and  pairwise  loss  function
proposed  in  Ref.  [17]  to  train  the  model.  For  positive
sampling,  we  randomly  pick  an  item  from  user ’s
current session. And for negative sampling, we choose
an item that the user  never bought or visited before.
We  denote  the  positive  item  and  negative  item  as 
and ,  respectively.  Then,  we  calculate  the  final  loss
as follows:
 

argmin
Θ

∑
(u,S u

t ,v
+,v−)∈D

−ln σ(R̂u,v+ − R̂u,v− ) (8)

D
σ(x) =

1
1+ e−x

where  is  the  train  set  containing  all  samples,  and

 is a sigmoid function.

4    Experiment

4.1    Experimental setup

Datasets. We use the Tmall dataset[33], which contains
the purchase behaviors of users on the Tmall online shop,
and  the  Gowalla  dataset[34],  which  collects  check-in
behaviors of users. Following the settings in Ref. [10],
we  keep  the  last  seven  months  of  data  and  items  that
have  been  observed  by  no  less  than  20  users.  We
aggregate items purchased in one day by the same user
into a session and remove the sessions that only contain
a single item. We randomly pick 20% of total users for
test and randomly select an item in their last session as

 

Algorithm 1   Traning process

K L0
L S

η

Input: embedding dimension , initial number of group ,
maximum number of group , sessions data , and
initial learning rate 

ΘOutput: trained model with parameters 

do initialization;

Sshuffle the sessions data 

while not convergence do

S         for batch in  do

t′                    randomly select  for each session sequence and
                     split sessions into long- and short-term;

                    do positive sampling in the last session;

                    do negative sampling in unvisited items;

                    compute loss according to Formula (8);

Θ                    do backpropagation and update parameters ;

          end

end
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the  target  item  to  be  predicted.  Then,  the  statistics  of
datasets are shown in Table 1.

Baselines. We  compare  our  model  with  the
following  baselines,  including  SBRSs,  NSRSs,  and
local NSRSs. (1) BPR[17] is a classic NSRS that learns
how  to  rank  from  users’ feedback  data  by  pairwise
optimization. (2) GRU4Rec-bpr and (3) GRU4Rec-ce[35]

are  outstanding  algorithms  that  use  gated  recurrent
unit (GRU)  to  model  the  sequential  data.  The  former
uses  BPR as  the  ranking  loss  function  while  the  latter
takes cross-entropy as the loss function. (4) CMN[16] is
a kind of local NSRSs that takes users’ neighbors as the
values in the memory bank. (5) SHAN[7] is a state-of-the-
art  SBRS,  which  also  utilizes  a  hierarchical  neural
network.

Metrics. We use Recall, AUC, and mAP to evaluate
models.  Recall  measures  how  much  the  prediction
covers  the  ground  truth.  AUC  evaluates  how  highly
positive  examples  have  been  ranked  over  negative
examples.  mAP  evaluates  the  location  of  the  real
visited items in the predicted list.

K L
Parameters  settings. Without  specification,  we  set
 to  150  and  to  512  for  both  datasets.  The  initial

learning  rate  is  set  to  0.03  with  a  0.8  decay  rate  in
every  eight  steps.  We  train  the  model  until  the
convergence is reached. In the final models, we choose
{pooling layer: mean pooling} and {hybrid layer: MLP
hybrid} for Tmall dataset, while choosing {pooling layer:
attention pooling} and {hybrid layer: attention hybrid}
for  Gowalla  dataset  since  they  perform  best  in  our
experiments.

4.2    Comparison of performance

Figure  3 shows  the  performance  of  LSUG  and  other
baselines on both Tmall and Gowalla datasets under all
metrics. From Fig. 3, we can observe that:

(1)  Our  LSUG  outperforms  all  the  baselines,
including  a  latent  factor  CF  model,  i.e.,  BPR,  a  local
NSRS,  i.e.,  CMN,  two  sequential  models,  i.e.,  GRU-
bpr and GRU-ce, and a hierarchical SBRS, i.e., SHAN,
with  a  large  margin,  especially  on  Tmall  dataset.  For
example,  LSUG  improves  16.9% compared  with
SHAN (15.9% vs.  13.6%)  at  Recall@20 and 4.16% at

 

Table 1    Statistics of datasets.

Dataset Number of
users

Number of
items

Average session
length

Number of train
sessions

Number of test
sessions

User-item matrix
density (%)

Tmall 20 202 24 774 2.72 70 895 4040 0.039

Gowalla 15 076 12 419 2.95 128 374 3015 0.15
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Fig. 3    Performance comparison of 6 methods on different datasets.
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Recall@100  (22.5% vs.  21.6%),  although  SHAN
outperforms  other  baselines.  Since  both  LSUG  and
SHAN split the sessions into long- and short-term ones
as  well  as  both  of  them  are  a  hierarchical  model,  the
gain of performance might come from group influence
components  (GICs),  which  indicates  the  GICs  are
beneficial  to model user preferences and help to make
better recommendations.

(2)  Both  GRU4Rec-bpr  and  GRU4Rec-ce  perform
well, the reason is that they might successfully capture
sequential  patterns,  i.e.,  the  dependency  relation
between  items.  Moreover,  GRU4Rec-ce  is  better  than
GRU4Rec-bpr under Recall@N and AUC metrics. The
reason  might  be  that  the  softmax  layer  computes  the
probability  of  positive  items  over  all  negative  ones,
while the BPR loss only uses the sampled item pairs.

(3) Although CMN and BPR are both NSRSs, CMN
outperforms  BPR.  It  may  be  because  CMN  collects
user  neighbors’ preferences  for  the  current  user.  It
further  proves  that  local  information  helps  model  user
preferences.

4.3    Influence of components
4.3.1    Influence of latent user group

xu
s xu

l

To further investigate the effectiveness of user groups,
we remove the group features from the model and only
combine  and . It leads to the results shown in Fig. 4,
in which LSUG-d denotes LSUG deleting group features.
We  could  see  that,  without  group  features,  the
performance  of  the  model  becomes  worse,  which
proves that the group features are important.
4.3.2    Influence of pooling and hybrid methods.
To  show  the  influence  of  aggregation  methods,  we
exhibit  the  performance  of  all  combinations  of
{pooling  layer:  mean  pooling,  max  pooling,  and

×

u

attention  pooling}  {hybrid  layer:  attention  hybrid
and MLP hybrid}. As shown in Table 2, for combining
item features, i.e., the pooling layer in our model, mean
pooling  is  better  than  max  pooling  under  all
experimental  settings,  e.g.,  mean-MLP  vs.  max-MLP.
The  reason  might  be  that  mean  pooling  takes  all  item
features  into  consideration  and  passes  the  information
to  the  downstream  network,  while  max  pooling  only
picks  the  most  extreme  features.  Attention  pooling
sometimes obtains worse results than mean pooling. A
possible explanation is that sometimes the target item is
not similar to a user’s general preference representation,
i.e., , and thus the model pays false attention.

For hybrid methods, i.e., the hybrid layer in our model,
attention  and  MLP  get  comparable  results,  and  we
could not conclude which one is better. However, most
combinations  achieve  better  results  than  SHAN
steadily  on  both  datasets,  which  shows  the  power  of
user  group  modeling.  On  the  Tmall  dataset,  attn-MLP
outperforms  attn-attn  by  a  large  margin,  while  on  the
Gowalla  dataset,  the  observation  is  the  opposite.  We
note  that  the  Gowalla  dataset  records  users’ check-in
data, and a user could visit one place repeatedly, while
a user purchases already bought items with much lower
frequency  on  the  Tmall  dataset.  Under  such  a
circumstance, user embeddings on the Gowalla dataset
might  be  more  similar  to  the  frequently  visited  items.
These items occur a lot in the test set as well. As a result,
on  the  Gowalla  dataset,  the  attention  mechanism
considers  general  user  preferences,  leading  to  better
performance.  On  the  contrary,  MLP  only  considers
current  features  and  thus  gets  worse  results  on  the
Gowalla dataset but yields a better performance on the
Tmall dataset.

We  randomly  sample  several  users  from  both
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Fig. 4    Recall@20 under different sizes of the recommendation list of LSUG and LSUG-d.
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datasets and visualize their weights of long- and short-
term  personal  preferences  (i.e.,  LP  &  SP),  and  long-
and  short-term  group  influences  (i.e.,  LG  &  SG),  as
shown in Fig.  5.  We  can  observe  that  the  weights  are
customized for different users.

4.4    Influence of hyper-parameters

L
L

We  study  the  influence  of  the  number  of  groups  in
our  model.  Specifically,  the  value  of  changes  from
100  to  1000,  and  we  only  record  Recall@20  values

L = 500
L = 600

since  the  other  metrics  have  similar  observations.  As
shown  in Fig.  6,  as  the  number  of  groups  grows,  the
value  of  metric  increases  gradually  at  first  on  both
datasets.  This indicates that a small  size is not enough
to  cover  all  potential  latent  user  groups.  However,  the
too larger size also decreases the performance because
it  might  cause  overfitting  problems.  Thus,  a  proper
group  size,  e.g.,  on  the  Tmall  dataset  and

 on the Gowalla dataset, should be tuned to gain
remarkable results.

4.5    Adaptive user group modeling

L

The previous results show that the number of groups L
greatly  impacts  our  model’s  performance.  However,
empirically tuning the value of  is a traditional but not
wise  choice.  Next,  we  will  incorporate  an  adaptive
learning  unit  into  LSUG  to  maintain  the  number  of
groups and learn the representation of emerging groups
automatically.  The revised  version of  LSUG is  named
adaptive  LSUG  (A-LSUG).  We  will  also  conduct
related  ablation  studies  and  hyper-parametric  analysis
to explore the effectiveness of this new unit.

 

Table  2    Comparison  results  of  different  pooling  functions
and hybrid methods.

Pooling and
hybrid method

Tmall Gowalla
Recall@20 mAP Recall@20 AUC

SHAN 0.136 0.037 0.424 0.956
Max-attn 0.146 0.045 0.412 0.957

Max-MLP 0.136 0.039 0.399 0.944
Mean-attn 0.153 0.047 0.429 0.961

Mean-MLP 0.159 0.042 0.424 0.957
Attn-attn 0.141 0.041 0.433 0.962

Attn-MLP 0.155 0.042 0.400 0.954
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Fig. 5    Weights visualization.
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Fig. 6    Results of experiments exploring the impact of the number of groups L on LSUG.
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4.5.1    Adaptive learning unit
The  adaptive  learning  unit  should  address  two  issues:
(1) how to determine the number of groups and (2) how
to  determine  the  representation  of  new  groups.  The
solution  is  that  the  model  first  has  initial  user  groups
with a small number. Then, it assesses the necessity for
creating a new group when determining the group of a
target user. If the assessment result is positive, then the
target user is viewed as the pivot of the new group. Also,
the new group has the same representation as the target
user.

Specifically,  we first  aggregate  the  correlation  score
between  the  current  user’s  session  representation  and
all  existing  latent  user  group  features.  Then,  the
necessity  for  creating  a  new  group  depends  on  the
following possibility:
 

pu
l = sigmoid(

∑
k

Gkxu
l ),

pu
s = sigmoid(

∑
k

Gkxu
s)

(9)

pu
l pu

s

sigmoid(·)

pu

α

key value

where  and  are  scalars,  and  we  utilize  the
 function  to  convert  the  accumulated  scores

to  a  probability  distribution.  Intuitively,  a  user’s
session  representation  should  have  a  relatively  large
accumulated  similarity  with  all  group  representations,
i.e., the value of  is larger than a threshold. If not, the
user  may  be  far  from  the  groups.  In  such  a  case,  the
current  user  should  be  viewed  as  a  pivot  member  to
form a new group. We thus introduce a threshold  to
control  this  process,  and  the  and  of  groups
are updated as follows, respectively:
 

Gk =

Gk, pu ⩾ α;

Gk
⊕

xu, pu < α
(10)

 

Gv =

Gv, pu ⩾ α;

Gv
⊕

xu, pu < α
(11)

⊕
where  is  a  concatenation  operator  appending  a
vector to a matrix.

4.5.2    Effectiveness of A-LSUG
To analyze the effectiveness of the adaptive learning unit,
we  compare  A-LSUG  with  LSUG  and  observe  their
performance  on  the  Tmall  and  Gowalla  datasets.  In
these  experiments,  the  user  group size  in  LSUG is  set
to 512, which is a fixed value in the training process of
the  model.  While  user  group  size  of  A-LSUG  is
initially set to 64, which changes adaptively during the
training process. Then, the results are shown in Table 3.

Compared with LSUG, the adaptive learning unit (i.e.,
A-LSUG)  improves  the  predictive  accuracy  under
Recall@20  and  mAP  in  both  datasets,  indicating  the
effectiveness  of  the  adaptive  learning  unit.  However,
the results of A-LSUG are worse than LSUG under AUC.
One  possible  reason  is  that  the  BPR  loss  function  is
optimized to maximize the ranking of positive samples,
while  the  AUC  considers  the  ranking  of  all  candidate
items.  Therefore,  the  improved  adaptive  learning  unit
models user preferences in a more flexible way, which
may  have  a  positive  influence  on  the  model’s
performance  under  recall  metric  but  may  lead  to  a
decrease in performance under AUC metric.
4.5.3    Ablation study

gu
s

gu
l xu

s

xu
l

Like the  experiment  settings  in  LSUG, we conduct  an
ablation  study  and  remove  the  group  features,  i.e., 
and ,  from the model.  Then,  the  model  only has 
and .  The  revised  version  of  A-LSUG is  named  A-
LUSG-d.

The  results  are  shown  in Fig.  7.  We  could  see  that
removing  group  features  dramatically  reduces  the
predictive accuracy in Tmall, indicating the importance
of  adaptive  user  group  modeling.  The  performance  of
A-LSUG at Recall@N is higher than that of A-LSUG-d
before  Top-50  in  Gowalla.  However,  its  performance
improvement  trend  is  relatively  slow  when  the
recommendation  list  size  exceeds  50.  One  possible
reason  is  that  the  adaptive  learning  unit  makes  the
model  better  at  recommending  highly  related  items.
Specifically,  A-LSUG  may  have  already  ranked  most
of  the  items  that  meet  users’ preferences  at  the  top  of
the  recommendation  list.  A  larger  size  of
recommendation list would bring more unrelated items.

 

Table 3    Performance comparison between LSUG and A-LSUG.

Method
Recall@20 AUC mAP

Tmall Gowalla Tmall Gowalla Tmall Gowalla

LSUG 0.159 0.454 0.795 0.964 0.042 0.273

A-LSUG 0.184 0.485 0.766 0.937 0.082 0.279
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Thus,  the  model’s  performance  at  Recall@N will
increase  slowly  when  the  size  of  the  recommendation
list becomes larger. Besides, the model training process
uses  the  Top-20  recommendation  list  for  validation.
Therefore,  when  the  recommendation  list  is  too  large,
the model’s performance will be limited.
4.5.4    Influence of maximum group number

L
L

L

L ⩽ 512 L ⩽ 256

L

To constrain the number of groups infinitely increasing,
we  introduce  a  hyper-parameter  named  maximum
number  of  user  groups .  When  the  number  of  user
groups reaches , the model stops the adaptive learning.
This  part  explores  the  influence  of  on  model
performance.  The  results  are  summarized  in Fig.  8.
We  find  that  increasing  the  maximum  value  of  user
groups  enhances  performance.  However,  the  settings

 on  the  Tmall  dataset  and  on  the
Gowalla  dataset  impair  the  accuracy.  One  possible
reason  is  that  increasing  the  value  of  not  only
encourages  irrelevance  among  groups  but  also  makes
the  interests  of  some  user  groups  too  fine-grained  to
hinder the modeling of users’ interests.

5    Conclusion

In this paper, we proposed a next-item recommendation
model  based  on  learning  long- and  short-term  user
groups. Specifically, we split user behaviors into long-
and  short-term  sessions.  For  all  sessions,  we  abstract
their representations according to their items. After that,
the designed GICs detect users’ latent long- and short-
term  groups  and  incorporate  the  influences  from
different  latent  groups  to  form  the  final  user
representations. Moreover, to avoid setting the number
of  groups  manually,  we  further  incorporated  an
adaptive  learning  unit  to  assess  the  necessity  for
creating  a  new  group  and  learn  the  representation  of
emerging  groups  automatically.  The  extensive
experiments  on  two  real-world  datasets  demonstrate
that  our  model  outperforms  several  state-of-the-art
models regarding multiple metrics.

There are some points for future work. For example,
in  our  settings,  the  number  of  user  groups  can  only
increase  automatically.  However,  the  user  groups  can
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Fig. 7    Recall@N under different sizes of the recommendation list of A-LSUG and A-LSUG-d.
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also  fade  away  with  time.  Thus,  we  will  explore  a
mechanism  to  decrease  the  number  of  user  groups.
Besides,  we  can  utilize  contrast  learning  to  encourage
the  difference  between  user  groups  explicitly,  making
the representation of user groups more representative.
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