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Abstract—In this paper we construct preimage attack on the
truncated variant of the MD4 hash function. Specifically, we
study the MD4-39 function defined by the first 39 steps of the
MD4 algorithm. We suggest a new attack on MD4-39, which
develops the ideas proposed by H. Dobbertin in 1998. Namely,
the special relaxation constraints are introduced in order to
simplify the equations corresponding to the problem of finding
a preimage for an arbitrary MD4-39 hash value. The equations
supplemented with the relaxation constraints are then reduced
to the Boolean Satisfiability Problem (SAT) and solved using the
state-of-the-art SAT solvers. We show that the effectiveness of a
set of relaxation constraints can be evaluated using the black-box
function of a special kind. Thus, we suggest automatic method
of relaxation constraints generation by applying the black-box
optimization to this function. The proposed method made it
possible to find new relaxation constraints that contribute to
a SAT-based preimage attack on MD4-39 which significantly
outperforms the competition.

Keywords—cryptographic hash functions; MD4; preimage at-

tack; SAT; black-box optimization.

I. INTRODUCTION

Cryptographic hash functions have a wide range of appli-

cations: starting from various data security [1] and cryptocur-

rency protocols [2] to theoretical methods for cryptographic

resistance justification of different cryptosystems [3], [4]. The

Merkle-Damgard construction [5], [6] is considered to be one

of the most successful paradigms for constructing crypto-

graphically resistant hash functions. The MD4 hash function

[7] is one of the first examples of hash functions based on

the Merkle-Damgard construction. The widely known works

[8], [9] demonstrated the possibility of constructing collisions

for hash functions MD4 and MD5. Thus, these functions

have been compromised with respect to the collision attack.

However, today even MD4 remains resistant to the so called

preimage attack, which consists in the following: for a known

hash value to find a corresponding input message. In this

context, the implementation of preimage attacks on truncated

variants of MD4 hash function is of interest. The truncated

variant of the MD4 hash function is a variant of the original

algorithm, which contains fewer steps (non-truncated variant

consists of 48 steps). Hereinafter by MD4-k we denote a

truncated variant of MD4 with k steps, k < 48.

The first successful attack on truncated variant of MD4

with a relatively large number of steps was described by H.

Dobbertin in [10]. In this work it was showed that two-round

version of MD4, i.e. MD4-32, is not one-way. The main idea of

Dobbertin’s attack is to use additional constraints on chaining

variables at the certain steps of the MD4 algorithm to derive

additional information, which leads to fast resolution of the

corresponding cryptanalysis equations.

To the best of our knowledge, the attack described in [11]

is currently the best known attack on truncated variants of

MD4. This attack is a SAT-variant of Dobbertin’s attack which

used the constraints of Dobbertin’s type, in the sense that they

were applied to the same chaining variables as in [10]. The

resulting system of cryptanalysis equations was reduced to the

Boolean Satisfiability Problem (SAT) and then solved using

the MINISAT [12] SAT solver. For MD4-32 the SAT variant

of the Dobbertin’s attack turned out to be very effective. The

main novelty of [11] is to use Dobbertin’s constraints and

state-of-the-art SAT solvers to find preimages for MD4-k,

k = {36, 37, 39}, within a reasonable time. However, it should

be noted that the corresponding computational experiment for

MD4-39 took a lot of time (about 8 hours on one processor

core). In addition, in [11] only the hash values of special

kinds were considered. It is surprising that until 2017 there

was, apparently, no progress in the practical implementation

of the preimage attacks, which would be more effective than

the attack from [11].

In [13] we presented a parallel SAT-variant of Dobbertin’s

attack on MD4-k, k ≤ 39. One of the main results of [13]

is the automatic search procedure of Dobbertin’s constraints.

For MD4-39 it was achieved a relatively fast solving of the

preimage finding problem for the hash value 1128 (hereinafter

an denotes a word which consists of n a symbols).

In the present paper we improve the results from [13] in

the following directions. First, we consider the problem of

finding relaxation constraints of Dobbertin’s type as a problem

of black-box optimization over Boolean hypercube. To solve

this problem we develop metaheuristic algorithm related to

the class of Tabu Search algorithms. Using this algorithm

we construct new relaxation constraints of Dobbertin’s type

for the MD4-39 preimage finding problem. These constraints,

which are different from the ones presented in [10] and [11],

make it possible to find the MD4-39 preimages for 65-75%

of randomly generated 128-bit vectors within one minute of

the MINISAT2.2 SAT solver runtime on a single processor core
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Intel i7-3770K (3.5 GHz). Whereas using constraints from [10]

and [11] MINISAT2.2 is not capable to solve these tasks in

several hours.

II. PRELIMINARIES

As it was mentioned above, the MD4 hash function is a

cryptographic hash function based on the Merkle-Damgard

construction. This hash function can be used to calculate hash

values for messages of an arbitrary length. The input message

is split into 512-bit blocks. The resulting hash value is written

in a special 128-bit register called hash register. The hash

register is divided into four parts of 32-bit length. According to

the Merkle-Damgard construction, the fixed Initial Value (IV)

is written to the hash register before hashing the first block

of input message. Further, the contents of the hash register is

iteratively modified. Thus, before hashing the 512-bit block

with number t + 1, the hash register contains the result of

hashing of message blocks with numbers from 1 to t. The

process of hashing of one 512-bit block is divided into 3

rounds with 16 steps each (thus, 48 steps in total). The contents

of the hash register is mixed with the input message using the

round functions. In total, MD4 uses three round functions,

detailed descriptions of which can be found in a variety of

sources (i.e. [8]). On each step with number k = 1, . . . , 48
a variable called chaining variable is associated with one of

four parts of the hash register.

Hereinafter, we consider the problem of finding preimage

(preimage attack) for the function of the kind:

fMD4−k : {0, 1}512 → {0, 1}128, (1)

assuming that at the initial moment of time the hash register

contains IV, corresponding to the specification of MD4. In fact,

we consider the problem of finding 512-bit MD4-k preimage

for known 128-bit hash value. Herein the main object of

further interest is the function fMD4−39.

Let us briefly recall the idea of the Dobbertin’s attack [10].

Based on the analysis of the round functions properties, H.

Dobbertin proposed to fix with constant K the values of certain

chaining variables corresponding to the steps of the algorithm

with numbers:

13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27. (2)

The substitution of corresponding values into the cryptanal-

ysis equations makes it possible to derive a significant part

of the values of variables, which encode the unknown 512-bit

input message. This, in turn, leads to a further simplification

of the problem. As a result, in 1998 H. Dobbertin managed to

find preimages for the MD4-32 hash function on a personal

computer. We will refer to Dobbertin’s constraints to denote

the additional constraints of the form vi = K , where vi
is chaining variable at i-th step and i goes through the set

of numbers from (2). In general case, similar constraints on

various steps of the MD4 algorithm different from (2) can

be used. For all such constraints we use the term relaxation

constraints.

The next step is to use a powerful combinatorial algorithm

for solving the cryptanalysis equations with additional relax-

ation constraints. As it was mentioned above, this idea was

proposed in [11] where Dobbertin’s constraints were used with

constant K = 0 and the corresponding cryptanalysis equations

were solved using the MINISAT [12] SAT solver.

Let us recall, that SAT (short for ”Satisfiability”) is a

problem of satisfiability of an arbitrary Boolean formula,

which consists in the following: for an arbitrary formula F

over the set of Boolean variables X to decide if there exists

such an assignment of variables from X that makes this

formula true. It is usually considered in the variant where F

is presented in conjunctive normal form (CNF).

The approach in which modern SAT solvers are used

to solve cryptanalysis problems is called SAT-based crypt-

analysis. To reduce the preimage finding problem (inversion

problem) of an arbitrary total discrete function of the kind

f : {0, 1}n → {0, 1}m to SAT one can use various automatic

translation systems, like CRYPTOL [14] or URSA [15]. In

our work we use software system TRANSALG [16] specially

designed to produce SAT encodings for the inversion problems

of cryptographic functions. TRANSALG performs a symbolic

execution [17] of a program, which specifies the considered

function f . The result of such execution is a CNF C(f)
called template CNF. By C(f, y) we denote the result of the

substitution of a known image y of function f , y ∈ Rangef ,

into CNF C(f). It can be shown that C(f, y) is satisfiable.

Asumming that satisfying assignment for C(f, y) is found

using SAT solver, a preimage x ∈ {0, 1}n such that f(x) = y

can be extracted from this assignment. Using the methods of

SAT-based cryptanalysis to find preimages of cryptographic

hash functions is called a SAT-based preimage attack on this

function.

As it was mentioned above, in [13] the parallel version of

SAT-based preimage attack on MD4-k (k ≤ 39) from [11] was

proposed. However, in the role of relaxation constraints the

same Dobbertin’s constraints were used. In the next section we

consider the generation of relaxation constrains as a problem

of block-box optimization over Boolean hypercube. We also

present computational results obtained using new relaxation

constraints.

III. THE GENERATION OF RELAXATION CONSTRAINS AS A

PROBLEM OF BLACK-BOX OPTIMIZATION

Let us consider the preimage finding problem for the

function of the kind (1) with fixed k and reduce this problem

to SAT. Let C(fMD4−k) be template CNF for this problem

and X be a set of all Boolean variables in C(fMD4−k). By

C(fMD4−k, χ) we denote a CNF obtained by substitution of

a hash value χ ∈ {0, 1}128 into C(fMD4−k).
Below we briefly describe the idea of switching variables

introduced in [13]. Suppose that there is some set of relaxation

constraints ℜ = {R1, . . . , RQ}, where an arbitrary constraint

Rj , j ∈ {1, . . . , Q} is usually a conjunction of some literals,

i.e. a formula of the kind:

l1(xj1 ) ∧ . . . ∧ ltj (xjtj
), {xj1 , . . . , xjtj

} ⊆ X (3)



(note that literal l(x) is a formula of the kind x or ¬x, where

x is a Boolean variable).

Consider a new set of Boolean variables S = {s1, . . . , sQ},
S ∩ X = ∅. We call such variables switching variables. Let

us associate with an arbitrary Rj , j ∈ {1, . . . , Q} of the kind

(3) the following CNF:

CRj
= (¬sj ∨ l1(xj1)) ∧ . . . ∧ (¬sj ∨ ltj (xjtj

)).

It should be noted that the literals l1(xj1 ), . . . , ltj (xjtj
) can

be derived from CNF sj ∧ CRj
using the Unit Propagation

(UP) rule [18]. Then, this new information will be further

propagated according to UP. On the other hand, it’s obvious

that ¬sj ∧CRj
≡ ¬sj . In this case the constraint Rj does not

give any additional information. We say that the constraint Rj

is active if sj = 1 and inactive if sj = 0.

Let S be the set of switching variables. The set of all

possible values of variables from S is {0, 1}Q. Thus, each

nonzero Boolean vector λ ∈ {0, 1}Q specifies some set of

active relaxation constraints from set ℜ. Our first goal is to

learn how to distinguish more effective sets of relaxation con-

straints from less effective ones (in the sence of increasing the

efficiency of the corresponding SAT-based preimage attack).

To solve this problem we use the approach similar to that

applied in [19], [20] for searching SAT partitionings [21] of

SAT-instances arising in cryptanalysis problems. In particular,

we introduce a measure of efficiency for an arbitrary set of

relaxation constraints from ℜ and consider the problem of

finding sets of relaxation constrains with good efficiency as a

problem of maximization of a specially defined function over

Boolean hypercube {0, 1}Q.

The problem of choosing the adequate measure of efficiency

for relaxation constraints is quite non-trivial. At this stage,

after a large number of experiments, the measure was defined

as follows. Consider an arbitrary vector λ ∈ {0, 1}Q, where

{λh1
, . . . , λhd

} is a set of components equal to 1. Taking into

account the above, these components define a set of active

relaxation constraints from ℜ = {R1, . . . , RQ}, namely, the

constraints with numbers h1, . . . , hd. Consider the following

CNF:

C̃(λ) = C(fMD4−k, χ) ∧ (∧j∈{h1,...,hd}CRj
). (4)

Everywhere below, we will use notation C̃(λ) →UP l(x)
to denote that literal l(x) is derived from CNF (4) using

UP. By X in ⊂ X we denote a set of Boolean variables in

C(fMD4−k, χ), which encode an unknown 512-bit input of

fMD4−k function.

For an arbitrary λ ∈ {0, 1}Q we consider the function:

µ(λ) = #{l(x)|C̃(λ)→UP l(x) : x ∈ X in}. (5)

In other words µ(λ) is the number of literals from X in, which

were derived by UP from CNF (4) as a result of activation of

relaxation constraints corresponding to vector λ.

We will consider the maximization problem of (5) over

Boolean hypercube {0, 1}Q. It’s obvious that function (5)

is a function of black-box type and its analitical properties

are unknown. Thereby it is justified to use metaheuristic

algorithms for the maximization problem of (5). At this stage,

we implemented a special variant of Tabu Search algorithm

[22]. In the computational experiments, discussed further, we

considered the Hamming neighborhoods of the radius 1 in

{0, 1}Q. The pseudocode of the algorithm is presented below.

Algorithm 1 Tabu Search Algorithm (A1)

1: 〈λcenter , µbest〉 ← 〈λstart, µ(λstart)〉
2: initializeLists(L1, L2)

3: repeat

4: bestValueUpdated ← false

5: repeat

6: λ← getNewPoint(N(λcenter))
7: markPointInTabuLists(λ, L1, L2)

8: if isCorrectPoint(λ) then

9: compute µ(λ)
10: if µ(λ) > µbest then

11: 〈λbest, µbest〉 ← 〈λ, µ(λ)〉
12: bestValueUpdated ← true

13: end if

14: end if

15: until N(λcenter) is checked

16: if bestValueUpdated then

17: λcenter ← λbest

18: else

19: λcenter ← getNewCenter(L2)

20: end if

21: until timeExceeded() or L2 = ∅
22: return 〈λbest, µbest〉

Let us give more detailed description of the A1 algorithm.

The input of A1 algorithm is CNF C(fMD4−39, χ) encoding

the MD4-39 preimage finding problem for a known hash value

and starting point λstart with a corresponding set of relaxation

constraints of the kind (3). As a starting point, either a random

point or some known point can be chosen. The contents of the

L1 and L2 lists are initialized using function initializeLists.

At the initial moment the L1 list is empty, L2 contains point

λstart, λcenter is equal to λstart and µbest is the value of the

objective function µ(λstart).
In the main loop of the algorithm the neighborhood of the

point λcenter , denoted by N(λcenter), is considered. Function

getNewPoint chooses any unchecked point from N(λcenter) as

a current point λ. Function markPointInTabuLists adds point

λ to L2 and then marks λ as checked in all neighborhoods

of points from L2 which contain λ. This allows to avoid re-

processing of the same points. If the neighborhood of some

point contains only checked points, then this point is moved

to L1.

For current point λ and corresponding CNF C̃(λ) of the

kind (4) function isCorrectPoint runs a SAT solver for a short

period of time. If, as the result, CNF C̃(λ) is proven to be

unsatisfiable, then the algorithm moves to the next point from

the neighborhood N(λcenter). Otherwise, the value µ(λ) is

computed and compared with the value µbest.



In case if we did not improve µbest value in the neighbor-

hood of λcenter , new point λcenter must be selected from L2.

Function getNewCenter chooses a point from L2 with a value

of the objective function which is closest to the known µbest.

The algorithm is completed if a certain time limit is ex-

ceeded or the entire search space is processed (in this case L2

is empty). The output of the algorithm is the point λbest and

the corresponding value of the objective function µ(λbest).

IV. COMPUTATIONAL EXPERIMENTS

In this section we describe computational results for MD4-

39 preimage attack using the method of relaxation constraints

generation described above. At the current stage, the A1

algorithm is implemented as a single-threaded application. To

calculate the value of the function (5) the Unit Propagation

procedure, implemented in all modern CDCL solvers, is used.

Everywhere below, the constraints of the kind (3), consisting

only of literals with negation, were used as relaxation con-

straints. Thus, we used constraints of Dobbertin’s type with

constant K = 0.

Let us note here that the structure of the MD4-39 hash

function makes it impossible to impose constraints on the first

four and the last (preceding the calculation of the final hash

value) four steps of the MD4-39 algorithm. According to this,

the sets of new relaxation constraints were selected (using the

values of the corresponding switching variables) from the set

ℜ of power Q = 31. Thus, the problem of maximization of the

function (5) over Boolean hypercube {0, 1}31 was considered.

In the early experiments it was found that some sets of

relaxation constraints produce CNFs, for which the UNSAT

can be proven quite quickly (within a few seconds). In

practical implementation of the algorithm for each set of

values of switching variables that specifies a set of relaxation

constraints, not only the value of function (5) was calculated,

but also short time limit was given to solve the corresponding

SAT instance. This step allows to screen out some points

without the computation of the objective function.

In the A1 algorithm the following actions are performed:

selection of starting search point; screening out the points for

which unsatisfiability is proven quickly; accumulation of all

record points; exit from local maxima.

The A1 algorithm was run on one core of Intel i7-3770K

(3.5 GHz) processor under Linux OS (Ubuntu 16.04). In

all computational experiments the MD4-39 preimage finding

problem for χ = 0128 was considered. For the points, obtained

using the A1 algorithm, with the value of the objective

function close to the maximal possible value (i.e. 512), we

established that corresponding sets of relaxation constraints

define unsatisfiable CNFs. The satisfiability problems of such

CNFs were considered as a separate problems, which in some

cases required a significant amount of time. Thus, it was

necessary to select points from {0, 1}31 for which there was

a good chance for the corresponding CNF of the kind (4) to

be satisfiable. To find such points the following heuristic was

used: first, to select only those points where the value of the

function µ(λ) was improved (i.e., record points); second, to

select the points with the value of the function µ(λ) from

the interval [256, 320]. The total number of record points

from the number of all points processed in several hours was

approximately 2%. The total number of perspective points

identified by the heuristic described above was 0.5%. For each

point from the perspective set of points the MINISAT2.2 SAT

solver was applied to the corresponding CNFs with a small

time limit (60 seconds).

As a result of the above actions, two new sets of relaxation

constraints were obtained. These sets are specified by the fol-

lowing vectors of values of switching variables from {0, 1}31:

ρ1 : 0000000001101110111011101000000
ρ2 : 0000000000101110111011101100000

The application of these sets allows one to find preimages

of the MD4-39 hash function for known hash values 0128

and 1128 within a minute of MINISAT2.2 runtime (whereas

using constraints from [11] the solution of the preimage

finding problem for 1128 requires about 2 hours, and the

preimage finding problem for 0128 cannot be solved in 8

hours). Corresponding results are presented in Table I, where

ρDe denotes the set of relaxation constraints described in [11]

and ρDobbertin denotes the variant of Dobbertin’s constraints

from [10] with constant K = 0. Below these relaxation

constraints are specified by the vectors of values of switching

variables from {0, 1}31 (in the similar notation to that of ρ1
and ρ2):

ρDobbertin : 0000000011101110111011100000000
ρDe : 0000000001101110111011100000000

What is particularly interesting is that the application of

new sets of relaxation constraints ρ1 and ρ2 also allows one

to find preimages of MD4-39 for randomly generated 128-bit

hash values persistently. To obtain this result, we considered

a test set consisting of 500 randomly generated vectors from

{0, 1}128. Each vector from this set was taken as a hash value

of the MD4-39 hash function. After that the preimage finding

problem for this value was solved using constraints ρ1 and

ρ2. For the prevailing part of the tasks (65-75%) the solutions

were successfully found using the MINISAT2.2 SAT solver.

The average time of finding one preimage was less than 1

minute. The rest ones (25-35% of the tasks) corresponded to

128-bit vectors for which there were no MD4-39 preimages

under constraints ρ1 and ρ2. These results are presented in

Table II. Note that even in a few hours we did not manage to

solve the preimage finding problem for any vector from the

test set using constraints from [10] or [11].

V. CONCLUSION

In the present paper a new SAT-based preimage attack on

the 39-step variant of the MD4 cryptographic hash function

is suggested. This attack makes it possible to solve the MD4-

39 preimage finding problem for a very significant percent-

age of randomly generated 128-bit vectors, spending on one

such vector less than a minute of MINISAT2.2 runtime. The

proposed attack is much more effective than the best known



TABLE I
FINDING THE MD4-39 PREIMAGES FOR HASH VALUES 0128 AND 1128

Relaxation
µ(λ)

Solving time (s)
constraints

χ = 0128 χ = 1128

ρ1 288 20 10

ρ2 288 60 UNSAT

ρDobbertin 288 20 > 8 hours

ρDe 256 > 8 hours 7000

TABLE II
FINDING THE MD4-39 PREIMAGES FOR 500 RANDOMLY GENERATED

128-BIT HASH VALUES

Relaxation Avg. Max. Solved instances (in % of total
constraints solving solving number of instances)

time (s) time (s) with preimages
(SAT)

with no preim-
ages (UNSAT)

ρ1 12 80 65 35

ρ2 46 250 75 25

attack on the considered truncated variant of the MD4 hash

function presented about 10 years ago in [11].

We intend to develop the approach described in this paper

in the direction of studying the preimage finding problem of

MD4-k, where k ≥ 40. The preliminary results show that

the corresponding problem for MD4-40 demands significantly

more computational resources in comparison with MD4-39:

the relaxation constrains constructed using the method de-

scribed in this paper do not make it possible to solve the MD4-

40 preimage finding problem on a single processor core. At the

same time, this effect is not observed between the preimage

attacks on MD4-38 and MD4-39. In the nearest future we plan

to apply the parallel SAT solvers to the inversion problems of

MD4-k, k ≥ 40 with relaxation constraints constructed using

the method presented in this paper.

VI. RELATED WORK

The first mention of the approach to the construction of

hash functions, which is widely known today as the Merkle-

Damgard construction, can be found in [23]. In [5] and

[6] R. Merkle and I. Damgard independently described a

number of important properties of hash functions based on

this construction. One of the first practical implementations

of Merkle-Damgard construction was the MD4 hash function

[7] developed by R.Rivest. In [8] the MD4 hash function

was completely compromised with respect to the collision

attack. The collision search problem for the functions from

MD family in the form of SAT was first proposed in [24].

However, real practical results in this direction were obtained

later in [25]. The use of propositional encodings presented in

[16] made it possible to find collisions for MD4 hash function

(with the help of modern SAT solvers) about 1000 times faster

than it was done in [25].

In a number of works the resistance of MD4 hash function to

the preimage attack was studied. Today it is generally accepted

that MD4 is not resistant to the preimage attack, although

the best known preimage attack on the full-round version of

MD4 is theoretical [26]. The first practical preimage attack on

truncated variant of MD4 was implemented by H.Dobbertin:

the algorithm presented in [10] allows one to find preimages

of MD4-32 on a personal computer. As far as we know,

in the last 10 years the best practical attack on truncated

variants of MD4 was attack described in [11]. In this attack

the MINISAT [12] SAT solver was used to find preimages of

MD4-39 weakened by the additional constraints. In the present

paper we significantly improve the results presented in [11].
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