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Abstract — The Radial Basis Function-generated finite
differences became a popular variant of local meshless
strong form methods due to its robustness regarding the po-
sition of nodes and its controllable order of accuracy. In this
paper, we present a GPU accelerated numerical solution of
Poisson’s equation on scattered nodes in 2D for orders from
2 up to 6. We specifically study the effect of using different
orders on GPU acceleration efficiency.

I. INTRODUCTION

In contrast to the traditional numerical methods
for solving partial differential equations (PDE) that re-
quire connectivity between discretization nodes, mesh-
less methods can operate on scattered nodes. Although
seemingly minimal difference, this feature made mesh-
less methods popular [1] in various fields of science
and engineering ranging from computational fluid dynam-
ics [2, 3, 4] to option pricing [5]. The key to becom-
ing so popular is that discretization of arbitrary domain
with scattered nodes is considered much easier problem
in comparison with meshing. To some degree it can also
be automated in dimensionless sense [6].

From a historical point of view, meshless methods
were introduced in 1990s. Since then, many meshless
methods have been developed, e.g. the Element Free
Galerkin Method [7], the Diffuse Element Method [8], the
Partition of Unity Method [9], the Local Petrov-Galerkin
Methods [10], the h-p Cloud Methods [11], etc.

The radial basis function-generated finite differences
(RBF-FD) was first mentioned in [12] as a local strong
form meshless method for solving PDEs. The method
approximates differential operators only using scattered
nodes. However, often used RBFs, e.g. Gaussians, in-
clude a shape parameter that can be crucial to the over-
all method stability [13]. Stability issue has been recently
addressed by using Polyharmonic splines (PHS) and addi-
tionally augmenting them with polynomials [14].

The generality of the meshless methods comes with
the price, namely higher complexity. First, the shape func-
tions of stencil weights have to be computed every time
from scratch. Second, the support sizes are typically much
bigger than in mesh-based methods, especially in high or-
der RBF-FD methods. The natural way to accelerate most
computationally demanding parts of the solution proce-
dure is to employ parallel computing. There have been
several reports on parallel meshless solution procedures

in the past, including distributed computing as well as
shared memory approaches [4, 15, 16, 17, 18]. In this pa-
per we analyze the graphics processing unit (GPU) accel-
eration of RBF-FD explicit solution of Poisson problem
with Dirichlet boundary condition. We are especially in-
terested in the effect of using different polynomial orders.

The rest of the paper is organized as follows: in sec-
tion II a short presentation of local meshless methods is
given, in section III we present our workflow and how
GPU was included in our computations, in section IV
problem is explained, in section V results are presented,
and in section VI final conclusions are given.

II. LOCAL STRONG FORM MESHLESS METHODS

In general, the idea of meshless methods is the use of
local discretization points to construct an approximation
of the considered field and later use it for manipulation
with differential operators. Discretization points are re-
ferred to as computational nodes or just nodes. The nodes
are placed within the domain and on its boundary, and
their distribution can be scattered, as presented in Fig. 1.
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Figure 1. Solution of Poisson’s problem with Dirichlet boundary
conditions on scattered 2D nodes. Chosen highest polynomial degree
m = 2, support size n = 15 and number of nodes N = 1027.

Local strong form meshless methods approximate
derivatives in the form
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where N(z) is a set of neighboring nodes of = and L is
a differential operator. Different ways of computing the
weights w exists. We will use the RBF-FD method [19].

We have implemented the RBF-FD based solution
procedure using object oriented approach and C++’s
strong template system. Node positioning, support se-
lection, differential operator approximation and PDE dis-
cretization and other modules are all available in one
package, the Medusa library [20]. Please refer to our open
source Medusa library for more features and examples.

III. GPU IMPLEMENTATION

Compared to a CPU-based system, the memory band-
width in GPU based systems is often an order of magni-
tude higher, however at the price of higher memory la-
tency. A single access to on board GPU memory takes ap-
proximately 400-600 cycles compared to a floating point
operation which takes approximately 1-2 cycles. Current
GPUs support large numbers of processing elements and
must be programmed in a high data-parallel way in order
to observe the advantages of GPU programming and to
help hide the memory latency. Large data is also needed
to keep the processing units busy and good knowledge of
GPU systems is required to reduce the memory commu-
nication and optimize the kernel functions [17].

In this work only part of the problem was dumped to
the GPU. The illustration of the GPU implementation is
in Fig. 2. Green boxes are specific to GPU programming
while the yellow box presents the actual calculations done
on the GPU. Shapes, node positions and support nodes
were still tasks executed by the CPU, only the explicit
time loop (yellow box in Fig. 2) was ported to the GPU.
Time loop execution was also timed using high resolution
timer, enabling us to estimate the speedups and thus eval-
uate the performance of CPU and GPU.
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Figure 2. The implementation scheme.

A. Time loop implementation

Once the shapes, node positions and support nodes
computation was carried out on the host (CPU), memory
was allocated on the device (GPU) using cudaMalloc
memory allocation function. As necessary data struc-
tures for numerically feasible problem sizes on the on-
board GPU memory, we simply copied relevant data
to the host using the cudaMemcpy function with
cudaMemcpyHostToDevice argument and left the
data there during time loop execution.

Time loop computation on the GPU was executed by
introducing a solveOnGpu kernel function as shown in
code listing 1.

int tpb = 32;
int bpg = (N + tpb — 1) / tpb;

for (int step = 0; step < timeSteps; ++step) {
solveOnGpu <<<bpg, tpb>>> (d_ul, d_u2, ...);
cudaMemcpy(d_ul, d_u2, sizeof(double) = N,
cudaMemcpyDeviceToDevice);

}

Listing 1: Sample code of time loop execution on GPU.

In Compute Unified Device Architecture (CUDA) the
actual use of multi-processors and processing units is con-
trolled by block size [21]. This reflects in the number of
threads which act on each processor. In order to fully ex-
ploit the benefits of a GPU, proper definition of block size
is of great importance. When chosen to small, processing
units tend to stall, if chosen to large other effects (e.g. reg-
ister spilling) might interfere with top performance [17].

Several tests of block size of multiples of 32 were
made. Best time performance showed at Ny, = 32
threads per block and Ny, = (N +Nypp —1) /Ny, blocks
per grid with N nodes in the domain.

Once the time loop execution on the GPU is fin-
ished, cudaDeviceSynchronize function is used
for synchronization and results are copied from the
device to host using cudaMemcpy function with
the cudaMemcpyDeviceToHost argument. The
results are saved to a file and post-processing is
done with python 3. To prevent memory leakage,
cudaFree (varibaleName) was used before the
shutdown.

IV. PROBLEM DESCRIPTION

With the aim to analyze the performance of CPU and
GPU in terms of support size and highest augmented poly-
nomial degree, proposed solution procedure and its imple-
mentation is studied on a Poisson problem with Dirichlet
boundary conditions:
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u(p) = H sin(m;) ondf2, (3)
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where f(p) = dr? Hle sin(7p;) and domain space 2 is
a d = 2 dimensional unit disk with boundary 0f2.



The problem is discretized in both time and spatial do-
main space

uy(p) = ur(p) + dt(f(p) + Viur(p)), 4

where dt is an infinitesimal time step and V2 is approxi-
mated as described in section II.

The closed form solution of the above problem is

u(p) = Hle sin(7p;) allowing us to validate the numer-
ically obtained solution.

V. RESULTS
Numerical results are computed using RBF-FD with
PHS radial basis functions ®(r) = 73 and monomial

augmentation. Radial function was kept the same for all
cases. The convergence order is directly controlled by
the highest augmented polynomial degree m € {2,4,6},
however the larger the polynomial degree, the larger the
recommended support size n = (m:;d). Recommended
support size in terms of domain space dimensionality and
highest polynomial degree was first given by Bayona [14],
however larger supports can also be used [22]. In our test
n € {12, 15, 20, 30,45, 60}.

All computations were performed on a single core of a
computer with Intel (R) Xeon(R) CPU E5-2620
v3 @ 2.40GHz processor and 64 GB of DDR4 mem-
ory and graphical processing unit NVIDIA GeForce
RTX 2080 Ti, 11GB GDDR6 with 4352 CUDA
cores. Code was compiled using g++ (GCC) 8.1.0
on Linux with -O3 -DNDEBUG -std=c++11 flags
while GPU code was compiled using CUDA release
vV9.1.85.

An example of numerical solution is shown in Fig. 1.

A. Execution times

The discretized Poisson problem (4) was solved for
10° time steps with time step dt = 107% seconds, result-
ing in total simulation time ¢ = 0.1 seconds.

The polynomial degree takes an important role in the
shape computation stage. After shapes are stored the dif-
ferential operator only depends on the support. As illus-
trated on implementation scheme from Fig. 2, the shapes
and supports are in our case calculated on the CPU. Dif-
ferent time loop execution times for various polynomial
degrees m are therefore not expected neither are they ob-
served.

In Fig. 3 we observe how the performance from CPU-
only code is directly proportional to number of nodes,
while multiple regimes can be seen in the single-GPU im-
plementation.
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Figure 3. Time loop execution times on single CPU and GPU. Chosen
highest polynomial degree m = 2.

In the first regime it makes no significant difference
what portion of the available L2 cache is occupied by the
data set. There is just not enough data dumped to the GPU
to fully exploit the advantages of parallelization as most
of the time is spent on communication and data distribu-
tion rather than on computation itself. For larger data sets
(N > 10?), the computation part prevails and faster com-
putation times are observed. Increasing data set size even
further again leads to computation times proportional to
the number of nodes - similar to the CPU. As expected
generally higher execution times are observed for larger
support sizes.

Speedup is defined as ratio between the execution of
the time loop on a single CPU tcpy and single GPU
tgpu. Speedups are shown on Fig. 4. Similar regimes
as in Fig. 3 can be seen starting with low or zero benefit
from GPU implementation. Increasing the data exploits
the parallelization advantages which peak at certain data
set size dumped to the GPU.
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Figure 4. Observed speedups.

To explain the notable drop of speedup in Fig. 4, we
have to understand hardware structure in more detail. The
L2 cache size of the NVIDIA GeForce RTX 2080
Ti graphics processing unit is 5.5 MB [23]. Therefore in-
creasing the data set size exploits the advantages of GPU
implementation but only until the L2 cache of the GPU is



almost, but not yet, full. Once the L2 cache is filled, more
memory communication with higher latency is needed.

A rough estimation of how much data is copied to the
GPU can be made. In our implementation we used dou-
bles and integers, N (4+n) double-precision and V;+Nn
integer numbers, where NN; is number of nodes in inte-
rior. Knowing that size of double and integer is 8 and 4
bytes respectively, we can estimate when the L2 cache is
full and approximately estimate the speedup peak posi-
tion. The calculations are gathered in table 1. Note that
the estimated N5 5 mp is calculated by enforcing N; = V.
The larger the number of nodes, the more acceptable this
enforcement is. Estimated data size copied on GPU is also
shown in Fig. 5.

Support size  Estimated N5 5p [V speedup peak
12 30556 31085
15 25463 26601
20 19928 19527
30 13889 14313
45 9549 8991
60 7275 7707

TABLE 1. ESTIMATED AND OBSERVED PEAK PERFORMANCE AS
FUNCTION OF NUMBER OF NODES N.
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Figure 5. Estimated data set size copied to GPU.

Table 1 shows how observed speedup peaks are close
to the estimated calculations. We therefore conclude that
the drop of speedup performance is closely related to the
size of L2 cache.

VI. CONCLUSIONS

The execution performance of solution of a Poisson
problem on 2D scattered nodes with Dirichlet boundary
conditions was analyzed in this paper. We measured how
changing support sizes, a crucial parameter in using high
order RBF-FD, and total number of discretization nodes
affects the parallel execution performance. We observed
the speedup peaks, which can be explained by measuring
the data set size dumped to the GPU and comparing it with
the available L2 cache memory size.

In this paper only the execution of time loop was
considered as performance important, however some re-
searchers already reported on using GPUs to calculate the
shapes. The next step could therefore be to dump even
more computation to the GPU. Additional extension could
also be by solving the Poisson problem implicitly or by
comparing the computational performance using mulitple
CPU and GPU devices.
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