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Abstract—Smart grid applications typically use cloud
computing to address the computational requirements for
efficient electricity delivery. Recently, the emerging Internet
of Things (IoT) has resulted in increased number of devices
connected to the smart grid, including consumer gadgets,
measurement equipment, and electrical and electronic de-
vices such as smart power converters, phasor measurement
units, and smart meters. These heterogeneous devices that are
present in all the four stages of a smart grid—generation,
transmission, distribution, and consumption—generate huge
amount of structured, semi structured and unstructured
data. Gathering, storing, and processing such huge data
volumes using cloud computing creates problems of band-
width, latency, disaster recovery, and cost. To overcome these
problems, we present a theoretical discussion on the usage
of IoT, edge computing and big data to collect the data
from smart grid, process the data using edge computing and
big-data analytics, and use the data for smart grid main-
tenance, energy information and future decisions. Further,
we highlight how edge computing and big-data approaches
have mitigated the above mentioned problems by shifting the
control, intelligence, and trust to the edge of the network.

Keywords— IoT, Smart grid, big data, edge computing,
cloud computing

I. INTRODUCTION

The renewable energy-based smart grid (SG) concept
emerged in the early 21st century, motivated by the
necessity to increase renewable energy production in the
electricity grid. The transformation of the 20th century
traditional electric grid to modern 21st century smart
electric grids was enabled by remarkable advancements
in power electronics and internet and communication
technologies (ICT). The integration of the new technolo-
gies enables efficient utilization of the energy produc-
tion and consumption, providing opportunities for new
energy resources like wind and solar etc., allowing the
exchange of generated power from different sources and
also bi-directional flow of power and communication. As
a result, both utility companies and customers have been
installing renewable energy sources (RES), such as solar
and wind energies, inside the distribution grid [1]. Further,
new technological paradigms such as Internet of Things
(IoT) are influencing modern SG operations by improving
communication, achieving better customer relationships,
and handling the huge amount of data generated from the
smart devices. In this sense, IoT is increasingly being used
in SG applications for data gathering, communication, and
smart analytics. For example, energy-based data analytics
from the user to the utility can highly improve efficiency,

reduce congestion, and improve power-supply reliability
in 100% renewable-energy-based SGs in the future [1].

Recently, many industries across sectors have shifted
their business operations to some form of cloud comput-
ing since cloud computing provides some benefits such
as flexibility, operability, and cost savings. As a result,
enormous amounts of data generated by devices are being
sent to the cloud servers for processing and analysis [2].
In the industrial environment, such an increase in data
from devices create many problems. First, a large amount
of data is transferred to the cloud for analysis, but most
of it may be irrelevant to the operations. Thus, this data
transmission ends up creating high traffic to a central
repository and increases costs due to extra unnecessary
storage. Second, important data that need to be sent with
small latency’s of between seconds and millisecond can
be very important for crucial industrial operations may
experience costly delays. Third, sending data to cloud and
retrieving that data can be very costly [3].

Edge computing is used to overcome the aforemen-
tioned problems in cloud computing [4]. The benefits
of edge computing are that it moves data analysis and
services away from centralized servers and a lot of data
analysis is performed at the source of data collection [3].
Edge computing analyze data on the spot and filters the
important data in real time; this improves the speed of
data analysis and the decision-making process [5]. Edge
computing is proving huge benefits to (IoT)-enabled busi-
ness, but nevertheless, cloud computing remains important
because having a centralized location for the data storage
and analysis still has many benefits. In particular, non-
time-sensitive data can be sent to the cloud, for example,
for deep analysis post-hoc using machine learning (ML)
methods to improve industrial operations and strategies
[6]. Table I shows some differences between cloud and
edge computing [6], [7].

The comprehensive sensing and processing abilities
of IoT support many technologies in SG. Further, the
rapid increase in IoT-enabled devices can cause explosive
growth in data generation, resulting in the so-called “big
data” regime, where the system generates data that is so
large, fast, or complex that non-traditional methods are
required for processing it. The generation of big data in
SGs makes the existing data-processing capacities inef-
fective as edge computing does not have all the resources
sufficient for the complex and intelligent big-data analytics
tasks [8]. Hence, it is important to include more modern



TABLE I
DIFFERENCE BETWEEN CLOUD COMPUTING AND EDGE COMPUTING.

Point of Difference Cloud Computing Edge Computing

Operations Happens on the cloud platforms
such as AWS, Azure, Google

Happens on the device itself
or at the gateways

Benefits
Can store massive amount of data on scalable

hosting on the cloud which can accessable
anytime on the Internet

Network can be scalable independently
with each new device that is added to the
system, possibly working as a federation

Suitable use case
Suitable for the operations with more tolerance

in terms of latency and requires high
levels of computing power

This is suitable for low latency applications and that
allows for distributed data storage, leading to a

scalable and cost effective hosting providers

big-data analytics to improve the data-processing capacity
of IoT data [9]. Big-data analytics can be defined as the
process by which the variety of IoT data are analyzed to
find the trends, hidden patterns, unseen correlations and
new information. This huge amount of data analysis and
information gathering will provide benefits to companies
for current and future effective decisions and will also
provide benefits to the individual users [10].

In this paper, we present a theoretical framework using
a combination of IoT, edge computing, big data, and
analytics for the efficient collection of data from the
huge number of devices connected to SG as well as the
processing, storage, and visualization of the collected data.
We elaborate on some benefits of edge computing and and
big data, such as latency, bandwidth, disaster recovery, and
price in the entire SG system, starting from data collection
to data visualization. The rest of this paper is organized
as follows. In Section II, we describe related studies on
big-data analytics in smart grids and explain the concepts
of IoT, edge computing, and big data. In Section III, we
explain how these technologies—IoT, edge computing,
big data, and big-data analytics—work together. Finally,
Section IV concludes the paper.

II. RELATED RESEARCH

In this section, we use systematic literature review struc-
ture, similar to [11], to answer the question “what type of
technologies can be used to handle the massive amount of
data from SG and obtain meaningful information from it,
so that it can be used for better business decisions?” The
main objectives are to identify technologies that can work
together to effectively extract information from big data
to fulfil the requirements of SG business and operations.

A. Smart Grid

The SG technology concept has emerged to improve
the flexibility and efficiency of the traditional grid and
provide new opportunities for new generation methods
such as wind, solar, and other RES based generation.
The SG is essentially an electrical network that consists
of infrastructure, software, and hardware, which enables
it for two-way communication between all parts of the
system and participants and efficiently generate power and
enable distribution in the supply chain. As a self-sufficient
distributed system that can provide energy from different
sources including renewable and storage, SG also enables
the suppliers and consumers access to the control and
management capabilities [12].

SG allows two-way communication between the gener-
ation and consumption side with the help of devices such
as smart meters, smart appliances, battery energy storage
systems, power electronics converters, and other energy
efficient resources. SG uses computer technologies for
the improvements in automation, communications such as
information exchange between consumers, transformers,
and generation plants, and connectivity between many
components of the power network, e.g., power gathered
from different generation plants [13].

The SG works differently than the traditional grid; the
network structure of the smart grid is complex having two-
way communication and two-way interactions between
the devices and the participant in the supply chain. The
operations involves many steps from power generation to
consumption, as explained below [14].

Generation: Power is generated from distributed
sources that can include traditional power plants and
renewable sources such as solar and wind. Electric storage
can be used for generation-side management, including
consumption-integrated storage such as electric vehicles.

Transmission: The generated power is transmitted us-
ing a network of transmission lines substations, and
distribution systems. In the SG, transmission comprises
three interactive components—smart control centers, smart
power transmission networks, and smart substations. The
smart transmission networks are conceptually built on
the existing electric transmission infrastructure and the
current advanced technologies—sensing, computing, com-
munication and signal processing—provide services such
as power utilization, power quality, network security, and
reliability.

Distribution: The generated power is transmitted using
a network of transmission lines that connects via sub-
stations to distribution systems that cover smaller areas
and deliver power directly to the consumer. Because of
the presence of both centralized and distributed power
generators in modern SGs, the distribution networks have
two-way electricity transmission, or, in other words, bidi-
rectional power flow.

Consumption: The power consumption in modern SGs
is often controllable and manageable by the end user
using smart meters, sensors in appliances, plugs, and smart
sockets. The user can control and manage their electricity
consumption by using mobile phone applications or web-
site applications to monitor and control the power usage.

Control and management: SGs have the capability



Fig. 1. Structure of Smart Grid (modified from [14]).

of control and management, and consumers, utility com-
panies, and others in the energy industry can have a
strong control on the energy usage and management. Data
about the consumption and loads is generated from the
connected homes, smart cities etc., and the information
generated from that data is used by the companies and
customers for their current and future decisions (using
data analytics and visualization tools). For example, the
energy companies can use the information for predictive
maintenance; utility companies can use the information for
demand and response programs; and residential users can
use the information to reduce the energy consumption at
the peak loads and reduce energy bills.

Storage: Electric storage is an important SG technology
that enables generation-side management—households can
store either extra produced energy or cheaper priced elec-
tricity, and later use it in the case of outage or when
electricity is more expensive. Independent residential grids
that are totally dependent on the renewable energy and
generate a surplus of energy can store the surplus energy
for future use.

B. Internet of Things

The term “Internet of Things”, or “IoT”, was introduced
by the British technology entrepreneur Kevin Ashton in
1999 as the title of a presentation at Procter and Gamble.
IoT and can be defined as small and complex systems
that allow businesses, governments, and citizens to adopt
and interconnect physical objects and virtual objects based
on existing and evolving interoperable information and
communication technologies [15]. IoT is a new technology
paradigm that has emerged as a global network of ma-
chines and devices capable of interacting with each other
and with the platform for collecting, analyzing, storing and
visualizing data generated from the devices and machines
using sensors, actuators, communications, and analytical
tools. IoT is now playing a main role in SG by collecting
data from all the main phases of SG, including generation,
transmission, distribution, and consumption [16], [17].

C. Edge computing

Edge computing refers to the enabling technologies that
allow computations to be performed at the edge of the net-
work; from the cloud viewpoint, edge data is downstream
data, and from the IoT services viewpoint, it is upstream
data. In such a scenario, edge can be defined as any
computing and networking resource that is between the
data source and cloud. Smart phone is a simple example
of an edge device, because it lies between the human user
and the cloud. The aim of edge computing is to ensure
that computations are performed at the proximity of data
sources [2], [18].

The nodes at the network edge are performing many
tasks such as data processing, caching, device manage-
ment, and privacy protection to reduce the traffic from
the devices to the cloud. In order to perform all these
tasks in the network, the edge should be well designed
to effectively meet the security, reliability and privacy
protection requirements.

D. Big Data

In simple terms, big data can be defined as the collec-
tion of unstructured, structured, and semi-structured data
generated by the social media, devices, sensors, software
applications, and digital devices that are continuously
generating data [19]. The data collected is so large
that the normal conventional data processing software
and techniques are not able to process it. Big data is
characterized by the three main determinants, called as
3Vs of big data—volume, velocity, and variety. Volume is
the huge amount of data generated that make the datasets
too large for the normal database technology. This type of
data is measured in larger units of data, such as terabytes,
petabytes, and exabytes. Velocity is the speed with which
the data is generated, processed, and moved around in
real time. Variety is the type of data (nature of data), i.e.,
whether the data is structured or unstructured [20].

The main idea of IoT is to connect heterogeneous
objects to the internet and collect data from these devices,
analyze the collected data, and make future decisions.
Recently, due to dramatic improvements in the technology
and business digitization, the number of devices connected



Fig. 2. IoT and Edge computing in Smart grids using Big data Analytic.

to IoT has increased tremendously; as a result, the amount
of data has also increased tremendously so that there is a
need to apply big data and big-data analytics to IoT. Big
data and big-data analytics have high potential to extract
meaningful information from the huge amount of data and
improve the decision processes. The main requirements
(functional and non-functional) of big data and analytics
in IoT are explained below.

Connectivity: Connectivity in IoT is mostly ubiquitous
with the heterogeneous objects in the network. Many
objects are connected to internet via sensors in a smart
environment. IoT services are mostly based on machine-
to-machine (M2M) communication protocols that are re-
quired to handle a large number of streams, and it takes
benefits directly from the cloud distributed storage and
computing infrastructure [21]. The first and most important
requirement of IoT is to provide reliable connectivity for
big data and analytics. Reliable connectivity will provide
big data and analytics the opportunity to efficiently com-
bine and integrate the massive amounts of machine gen-
erated sensor data. Using the advanced wireless networks
such as Wi-Fi and 4G/5G, many objects around us are
able to connect to the computing and high performance
infrastructure and facilitate the IoT services [22].

Storage: The amount of storage required for huge
amounts of heterogeneous data in a low-cost hardware
on a real-time basis has increased tremendously. The
requirements of big-data storage in IoT are to handle
massive amount of unstructured data and provide low
latency for analytics. A challenge is that many sources of
IoT data exist, for example, sensors’ data, social media,
etc., and they are modeled in various ways using different
communication protocols and interfaces. Big-data technol-
ogy provides some IoT-efficient data storage capabilities,
but more robust solutions are required.

Quality of services: The ability to provide guarantee of
a specific level of performance to the data flow is called
Quality of service (QoS). The QoS provided by the IoT is
that the IoT network should be reliable and should provide
the guarantee of an efficient transfer of data from the

sources that generates the big data. The QoS in the IoT
network is very important to big data and analytics [23].

Real time analytics: IoT is growing rapidly and taking
key steps to improve streaming analytics and provide
timely decision processes. Real-time information about
the IoT-connected objects are communicated and need to
be analyzed in real time. Big data uses an operational
database for the streaming data, and for most of the
streaming data from web-enabled objects, big-data ana-
lytics performs real-time queries to extract information
quickly, make decisions, and interact with the devices and
people in real time [24].

Benchmark: Due to the fast digitization of businesses,
many organizations have started to shift their business
online using IoT. Many organizations are now facing
challenges in storing and analyzing the huge amount of
data connected through the IoT devices. Finding solutions
to those challenges requires some deep understanding of
the problems. Benchmark plays an important role in this
situation by allowing the organizations to compare the
quality of the big data and analytics solutions [25].

III. THE ROLE OF IOT, EDGE COMPUTING,AND BIG
DATA IN SMART GRIDS

To spur growth in businesses, effective business deci-
sions are very important, and they are often made possible
by getting information from collected data. IoT is a major
source of data; by some estimates, there are currently
more than ten billion devices connected to IoT networks1,
generating around trillions GB of data. These devices
gather, analyze, share, and transmit data in real time. To
handle such massive amounts of data, IoT needs edge
computing and big data, making them the key to improve
decision making [26].

In our this work, we have designed an architecture for
getting the smart grid data using IoT and edge nodes as
shown in Figure 2. The life-cycle of SG data starting from
data generation to data analytics. The data is generated

1https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/. Last access March 1, 2021.



from numerous smart meters, sensors, and digital devices
with a specific time scale. The generated data may be from
generation plants (wind farms, solar panels, conventional
power plants, etc.), transmission and distribution networks
(phasor measurement units, etc.), or customers (residential
homes, electric vehicles, commercial buildings, factories,
etc.). Data, such as weather, humidity, temperature, and
pressure data, can also be collected from the environment.
Some usable data, e.g., information about external events,
can be collected from social media. Data generated from
many sources increase the grid reliability. The generated
data are transmitted to the IoT network using IoT devices
such as sensors and actuators through the network tech-
nologies 3G/4G/5G, ZigBee, wi-fi, bluetooth, and wired
communication.

The important data that needs to be processed quickly
(requiring low latency) is processed by the edge nodes.
The edge nodes are close to the data collection points,
and therefore, require very low latency [3]. However, there
are some cases in which the benefits may not be achieved,
since the latency not only depends on the distance between
the data collection point and edge processing server, but
also on the edge server’s processing power, tasks’ compu-
tational complexity, and edge traffic [4]. Figure 3 shows
the latency versus central processing unit (CPU) cycles
that are required by a single device per bit in wireless
communication by either the cloud or edge computing.
To achieve the latency requirements efficiently, the edge
network should be designed by keeping in mind factors
such as task complexity, processing power of the servers,
and the network topology used. Regarding the bandwidth,
edge computing reduces the data traffic by distributing
the data among different edge servers for computational
workload, and thus, lower amount of data is required to
be shifted to the cloud.

The cooperation between cloud and edge computing
provides high bandwidth as the bits are transmitted to the
cloud server when the sum of the tasks exceeds the com-
bined computational capacity of the edge servers. Another
benefit of using edge computing in SG is the reduction
in failure—if there is an electricity outage problem in a
particular area of the grid, the edge computing services of
the other areas will operate normally, without any problem.
On the other hand, if the grid relies solely on cloud
computing, and there is a power supply failure due to
any natural disaster in the cloud infrastructure, then the
whole network will fail [27]. As shown in the Figure 4,
cloud computing shows the best performance when the
signal to noise ratio (SNR) is low, but the edge computing
performs the best even at high-SNR regime as the number
of edge servers increases, outperforming the cloud-assisted
counterpart.

The data from IoT devices that is not handled by the
edge nodes are directly send to the cloud storage. The huge
amount of data generated by these devices is stored in a
low-cost storage at the cloud. In the second phase of data
acquisition, the generated big data based on the volume,
velocity, and variety is stored in a shared distributed fault
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tolerant database. The collected data is then transferred
into the master node(s) in the Hadoop cluster. As the
data is collected from multiple heterogeneous devices,
it may have different data formats and information, and
therefore, data preprocessing will be required. In the data
preprocessing, inaccurate and incomplete data are handled.
Flume is used to perform the data acquisition process.
The main function of Flume is to collect, aggregate, and
transfer the large amount of data to Hadoop master node.
The data received by Flume is stored in a single or multiple
channel. The data is then sent to the external HDFS repos-
itory, where the data is written in a desired format using
plug-in serializers. The serializers change and restructure
the Flume data into the desired format. The data is pre-
processed and a unified view of the data is achieved. The
data is stored in the HDFS multiple clusters for processing.
The HDFS clusters consists of DataNodes. The actual data
and file system meta data are stored in those DataNodes.
The data analysis is performed by the YARN on the data



stored in HDFS; these two run on the same set of nodes
that allows tasks to be processed on the nodes in which
the SG data is present. Hive and Impala are the tools to
perform SQL queries on data residing on HDFS. HIVE
is used for data querying, to select, analyze and make
calculations on the data of interest. The last phase is the
data analytics; the tools used in Hadoop for data analytics
is Scalable Advanced Massive Online Analysis (SAMOA),
a distributed streaming ML framework consisting of pro-
gramming abstraction for distributed streaming algorithms
for data mining and ML tasks. Data visualization (graphs,
reports, etc.) is done using Tableau, a common tool for
interactive data visualization and sharing of information
and dashboards.

IV. CONCLUSIONS

The modern SG incorporates numerous heterogeneous
devices. Due to this increase in the volume of struc-
tured, semi structured, and unstructured data, information
retrieval from such a huge amount of data is a hard
task. The collection, transmission, storage, processing,
transformation, and analysis of large amount of data at
a high rate are important for the efficient and effective
function of modern SGs. The main aim of this research is
to highlight the importance of IoT, edge computing, and
big data for dealing with the high volume of SG data. In
this paper, we have first presented the importance and re-
quirements for big-data analytics in the SG. Subsequently,
we have explained the applications of edge computing
to the big data generated by the IoT devices in the SG.
Edge computing is beneficial for SG in terms of latency,
bandwidth, robustness to failure, and cost. In the future,
we will apply big-data analytics to huge volumes of SG
data and demonstrate the key requirements quantitatively.
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