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Abstract—Channel estimation in mmWave and THz-range
wireless communications (producing Gb/Tb-range of data) is
critical to configuring system parameters related to transmission
signal quality, and yet it remains a daunting challenge both in
software and hardware. Current methods of channel estimations,
be it modeling- or data-based (machine learning (ML)), - use
and create big data. This in turn requires a large amount of
computational resources, read operations to prove if there is
some predefined channel configurations, e.g., QoS requirements,
in the database, as well as write operations to store the new
combinations of QoS parameters in the database. Especially the
ML-based approach requires high computational and storage
resources, low latency and a higher hardware flexibility. In
this paper, we engineer and study the offloading of the above
operations to edge and cloud computing systems to understand
the suitability of edge and cloud computing to provide rapid
response with channel and link configuration parameters on
the example of THz channel modeling. We evaluate the per-
formance of the engineered system when the computational
and storage resources are orchestrated based on: 1) monolithic
architecture, 2) microservices architectures, both in edge-cloud
based approach. For microservices approach, we engineer both
Docker Swarm and Kubernetes systems. The measurements show
a great promise of edge computing and microservices that can
quickly respond to properly configure parameters and improve
transmission distance and signal quality with ultra-high speed
wireless communications.

I. INTRODUCTION

The channel estimation in mmw and THz-range of frequen-
cies is a complex problem due to channel dependency on sev-
eral physical factors. With the increasing proliferation of ML,
the THz channel estimation especially can be performed by
learning the patterns from previous experiments and periodical
channel probing [1f]. To satisfy users’ special requirements on
quality and configurations of THz channel, a large amount
of THz system parameters and computationally complex ML
algorithms need to be controlled, managed and monitored. The
complexity of control, management and monitoring in such a
system also increases with the number of concurrent data used
for channel estimation, resulting in a huge number of read,
write and other computational operations. Currently, THz
channel modeling produces Tbytes of Data. Further on the
horizon, the control plane of THz networked systems are likely
to require much more computational power and memory as
compared to the local control computing units collocated with
antennas [2]]. To address these challenges, the design of novel
computation systems for control and management concepts
in high-speed wireless communications is indispensable to

provide real-time response and predictable performance of the
system parameters, such that the channel quality is guaranteed.

Offloading big data for channel estimation to edge and
cloud computing systems appears as a straightforward solution
idea. At the same time, however, data stored and processed
in the cloud can suffer from performance issues including
delays due to its centralized and remote locations, which in
turn can result in slower and non-real time response to THz
system’s needs to timely configure antennas and transmission
parameters. On the other hand, edge computing is envisioned
to provide compute, storage and network services as close as
possible to the transmission systems with a comparably lower
latency overall [3]]. Since the edge-cloud solutions however
require the orchestration middleware, one needs to consider
additional delays that can impact response times. This in turn
also requires innovation in suitable orchestration mechanisms
[4]. Today, all big-data approaches to channel estimation in
communications use the traditional monolithic engine, which
is easy to engineer as it is built as a single local unit, co-located
with the system. However, its limited scaling capability results
in a high blocking rate of requests as the system evolves.
The container-based architectures, in contrast, can address the
problem of scalability in case of channel modeling with a
large number of concurrent requests [S]]. Microservices can be
deployed in both cloud and edge using one of the two most
popular container management systems, i.e., Docker Swarm or
Kubernetes [[6]. To engineer a computing and storage concept
for channel estimation and other control plane functions, it
is necessary to benchmark the performance of cloud and
edge with different orchestration engines in terms of latency,
throughput and scalability.

We engineer an edge-cloud computing system for offloading
of big data for channel modeling, and focus on a case study
of THz-communications due to its abundant data and trans-
mission speeds. Specially, we focus on analyzing and studying
how the data-based (ML based) approach for dynamic channel
estimation could solve the issues related to signal quality
estimation of ultra-high speed communication systems. The
channel estimation parameters are used for a timely channel
configuration such that the system can dynamically configure
and improve the signal-to-noise ratio (SNR). We first engi-
neer a monolithic node to processing the requests from THz
transmission system. We then focus on Docker Swarm and
Kubernetes implementations. We experimentally benchmark
the performance in terms of latency and throughput. The



results indicate that edge node can provide a low latency
using monolithic architecture. Cloud solution outperforms
edge when the number of concurrent requests is limited. To the
best of our knowledge, this paper is the first one to address the
issues of engineering and offloading the THz channel modeling
related big-data into the edge and cloud, a necessary step
towards the feasibility of THz communications.

The rest of the paper is organized as follows. Section
IT describes the computing system architecture for the THz
channel modeling. Section III shows the offloading to edge and
cloud approach. Section IV shows the performance evaluation
of the proposed system and Section V concludes the paper.
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Fig. 1: (a) Today’s THz link, (b) Future THz mesh network.
II. CHANNEL MODELING IN THZ COMMUNICATIONS

Recent wireless communication systems aims at using high
frequencies in order to provide high bitrates. To this end, new
technologies have been considered to exploit high frequency
ranges and deal with channel modeling and estimation prob-
lems, such as AI/ML [7], beamforming and multiple-input
multiple-output (MIMO) [8]] systems. In Fig. [Th) and [Tp), we
illustrate how THz channel modeling is performed today, and
the vision. Today, channel modeling in short range (mostly
indoors) THz link is performed based on measurements, which
needs to be stored locally and processed by ML algorithms.
The ML algorithms are used to predict bit error rates (BER),
SNR [7] and also type of modulation [9]] that needs to be used
for a certain bandwidth request. In [7] ML algorithms are used
to estimate the channel state information which is used for data
detection in a communication system, where we measure the

received signal at the receiver side after sending a set of pilot
symbols. Afterwards, the data driven ML algorithms create
the channel state matrix and computes the expected BER and
SNR of the transmission system.

Figure [Tb) show how these systems are expected to evolve
in the future. We envision ultra-high bitrate THz network
systems, where multiple THz base stations (BS) are intercon-
nected building a mesh THz network. A large number of users
can simultaneously request a THz link by sending requests
for the desired Quality of Service (QoS) parameters. The BSs
receive users’ requests and need to process them before THz
link can be defined and established. That processing in the
compute nodes includes control, management and evaluation
steps enabling to decide which THz link is the most suitable
in regard to, e.g., bandwidth, transmission distance and bit
rate. The possible processing steps required are User and
Resource Management, Traffic Engineering, QoS evaluation,
collection and evaluation of measurements as well as Channel
Estimation. All these processing steps will trigger an amount
of read, write and computational operations. For channel
estimation which is based on computationally complex ML
algorithms and channel measurements in real time, Tbytes of
data that need to be processed. The data processing and ML
algorithms can be outsourced to an edge node or remote cloud.
With the help of virtual entities in the cloud, the cloud can
support the processing of Big data with on-demand elastic
storage, network and computing capability. Edge computing
can complement the cloud with a faster networking time.

A. Future THz Channel Control Model: An Example

The proposed THz channel control model consists of a con-
trol plane module implemented in an external computing node,
and illustrated in Fig. [Ip). To provide control, management
and channel estimation functions, the computing node can
consist of four components: User and Resource Management,
Traffic Engineering, Evaluation of Channel Quality using ML-
Algorithms (ML_Alg_1...n) and Database. User Management
is utilized to assign a new user to a specific THz channel.
The request for user management will trigger some read
operations from the database to define the number of users
already allocated to THz channels between certain pair of
BSs. The database will be also updated by write operation
when a new user is allocated to a certain channel. The
Resource Management is the next processing step, which
requires a read operation to access the information about the
available and occupied bandwidth of existing THz channels.
Since resource management request can contain information
about released bandwidth, the database needs to be updated
as well, resulting in several write operations. The Traffic
Engineering block will take care of all the communication
between different nodes inside the THz network providing
routing services. Thus, a set of suitable THz channels can be
defined to meet a certain requirements on the end-to-end path.
To this end, the traffic engineering request needs to contain
information about sources and final destination and results
in multiple read operations in computing node. To define



a suitable THz channel, the key module is Prediction and
modeling of channel quality. This module utilizes information
from all other control and management blocks as well as
incoming information from BS such as QoS requirements and
measurements of THz channel. The QoS requirements provide
information about requested quality of THz channel, e.g., bit
rate, bit error rate bounds or type of data that will be sent
over THz channel. The channel measurements can include a
current SNR values and environment state such as humidity,
temperature, etc. Both, incoming measurements and QoS, are
utilized for future channel quality evaluation and result in
numerous read and write operations.

The Prediction and modeling of channel quality is the main
control block to us, which requires to overcome an amount of
training data and measurements and thus needs an amount
of computational resources, read and write operations.
The read operations are required to prove, if there is some
predefined THz channel configurations in the database, which
relates to arrived QoS requirements and measured channel
state. If there is no pre-configurations, the evaluation of
channel quality uses machine learning (ML) techniques to
accurately estimate the modulation format, bandwidth, channel
coding, transmission distance to configure THz transceivers,
i.e., to define suitable THz link. Based on information from
database, other control blocks, the measurements provided
and user’s QoS requirements, the best ML algorithm with the
best combination of relevant parameters will be assigned. The
write operations are required to store the new combinations
of QoS parameters, channel state parameters and related THz
channel configuration in the database. The response to the BS
contain all required parameters for THz link configuration.

It should be noted that this is one of numerous possible
control plane architecture in future THz mesh network. In this
paper, since the focus is on big data, we emphasize the channel
prediction and modeling. A myriad of other scenarios can be
envisioned, where also other modules require data and ML-
based processing and are with no doubt equally relevant.

III. OFFLOADING TO EDGE AND CLOUD

This section describes three concepts to engineer computing
nodes for channel estimation, i.e., monolithic, microservices
with Docker Swarm and with Kubernetes. Generally, each
computing node requires two internal logical components to
be engineered, i.e., Data Retrieval and Processing Module
and Services Module. The Data Retrieval module allows to
pre-process incoming data and make them available for the
services used. The Services module contains applications to
provide different services, such as read or write oper-
ations from or to database, respectively, estimation of the
channel, evaluation of channel quality parameters, etc. The
orchestration engine defines the operating principles of these
modules and optimizes the usage of different services to
provide scalability, high throughput and short response time.

A. Monolithic Node Engineering

The monolithic architecture is a traditional way to run
services in computing nodes. In this implementation, the
traditional architecture shown in Fig. 2p) is simply offloaded
to edge or cloud. Here, a single virtual machine (VM) builds
a platform for data retrieval and processing, as well as for
services. The Data Retrieval and Processing Block has a
simple structure containing Data Manager and Service State
Information (SSI) file. Data Manager is a part of the Model
View Controller (MVC) middleware responsible for assign-
ment of different data to the suitable service triggering several
read and write operations, such as launching subsequently
services for evaluation of channel quality. Additionally, Data
Manager ensures the processing of requests during a prede-
fined time to guarantee the rapid response. The SSI is used to
define settings and preferences for building and running the
services, such as the minimum amount of computational and
storage resources allocated to each service, the number and
type of services. Generally in communication systems any
incoming request needs multiple evaluation and processing
steps. In typical systems we have a request to transmit a
high bandwidth data over a suitable THz link, among many
such links. This requires a network management including
resource management. Resource management allows an ac-
cess to database and, thus, to information about currently
available and allocated bandwidth, an other systems parametrs
that neeed to be configured and utilized for THz channel
estimation. To configure the THz transmitter, a request is sent
to the data manager, which collects, analyzes it and decides
the type of data required for the services, i.e., first read from
database and then write operation to update the database.
Thus, first, the data manager will send an alert to notify
the services component to activate the read service. The
read service will connect to the database to read the values
of configuration parameters and then send this value to the
data manager. Data manager analyses the returned value and
triggers further data retrieval and processing steps (if needed).
When the channel can be estimated and configured based on
available data, the data manager activates for instance the
write operation and starts the channel estimation service;
otherwise, a read retry starts after a certain time interval.
After the channel is estimated, the data manager sends a
response to the transmitter with all estimated configuration
parameters for a THz link to be setup. In general, a computing
node can receive many requests at the same time, which
can lead to overload. A request for channel estimation on a
certain link can also fail due to insufficient computational and
storage resources allocated. This is not only a problem for the
computational node serving a certain transmission system, but
can also create inconsistencies and blockages in high level
management functions of the system. Finally, it should be
noted that monolithic implementations require redundancy or
duplication of the entire code, to avoid services interruptions
in case of failures.



B. Microservices

In contrast to monolithic computing nodes, the microservice
concept allows implementation of independent, small, scalable
and flexible services allocated in different hosts and virtual
machines (VM) referred to as nodes. Each node owns an
amount of resources adapted to the number of concurrent re-
quests and the amount of requested computational and storage
resources. To implement services on VMs providing a certain
functionality, there is a need for so called containers which are
a software components with a code, runtime, system libraries
and settings required to run a certain service. Management
and orchestration of the services across different VMs are the
main challenges and require efficient orchestration tools such
as Docker Swarm and Kubernetes.

1) Docker Swarm: Docker Swarm is an orchestration tool
which allows to manage a group of virtual machines, i.e.,
Swarm nodes. Fig. ) illustrates this architecture, which
consists of Data Retrieval and Processing Block and Ser-
vices Block. This block contains one primary and three
secondary components. The primary component is Swarm
Manager which includes Register, Scheduler [10] and Service
Discovery. Scheduler analyses incoming requests and forward
them to the requested service using the BinPacking strategy
to decide in which node to run the requests. The Service
Discovery monitors the services, their number and state as
well as alerts administrator. The register buffers requests
that can not to be processed immediately and need to wait
for a service. The secondary components are Administration
Interface, Data Manager and SSI. Administration interface
allows an administrator an access to the Data Retrieval and
Processing block. The Data manager collects and analyzes
the received requests and decides the type of data required
for the services. The SSI is a configuration file that contains
information about the state of the services such as operating
system, amount of swarm nodes, service availability, the
allocated computational and storage resources, etc. The SSI
contains some constant configurations of initial system state
and dynamic part with configurations adapted to the system
requirements and updated on-demand. The Services block is
a set of VM, i.e., swarm nodes, installed on different servers,
whereby each VM allocates a certain service.

The request of a bandwidth in the Docker Swarm is for-
warded to Swarm Manager, which accesses SSI to obtain
information about types and state of services, while Scheduler
analyses the arrived request to determine the service, e.g.,
read. When the appropriate service exists and is ready to
process requests, the Scheduler will activate that service, i.e.,
reading the value of allocated bandwidth from the database.
The read service returns this value back to the same service,
which triggers further processing steps, e.g., write operation
to reserve the bandwidth for a new THz link and evaluation of
channel quality. When there is no available bandwidth, there
is a need for a read retry after predefined time interval.
After completion of processing, the Swarm Manager sends
a response to the THz BS.

2) Kubernetes: Kubernetes is an open-source orchestration
tool. Also here we implement Data Retrieval and Processing as
well as Services. The Services block is a set of VMs so called
Working nodes, allocated by different hosts. Each Working
node uses Docker container to allocate a service, e.g., read,
write, etc. In contrast to the Docker Swarm, Kubernetes de-
ploys Master Node for Data Retrieval and Processing allocated
in a separate VM. The main functions thereby are Service
Controller, Data Manager, Scheduler [|11] and Register. Similar
to docker swarm the Data manager will collects and analyzes
the received requests and decides the type of data required for
the services and send these informations to the Master Node.
The Scheduler receives all requests, evaluate them to predict
required type of services and communicate with register in
case a service is not ready . The Data Manager monitors a
number of waiting requests and is able to create new Working
nodes with required service using the Admin interface, as well
as remove unused Working nodes to release computational and
storage resources. The Scheduler forwards waiting requests
for a certain services to the responsible Working node. SSI
contains information such as type of services and container
configurations, allocated resources, number of working nodes,
etc. and is used by Data Manager.

As any request for a suitable THz link requires resource
management, i.e., information about available and allocated
bandwidth, the access to the database results in read and
write processing steps. Each incoming request is, first, sent
to the Data Manager for pre-processing then to the Master
node to allocated required service. Then, Scheduler forwards
the request to the working node with a certain service, e.g.,
read. The appropriate working node receives the read
request and activates the read service. After the read service
is completed, the service sends the value of available band-
width to the master node, which analyses the returned value
and triggers further processing steps, e.g., write service.
Otherwise there is a need for a read retry.

When a large number of requests for the same service arrive
and the service is overloaded, the Service Controller add an
additional pods with a service of the same type as overloaded
service or will use the autoscaling feature of the full cluster,
without any service interruption.

IV. IMPLEMENTATION AND MEASUREMENTS

We engineered an THz channel estimation offloading appli-
cation using the three architectures i.e., monolithic, microser-
vice with docker swarm and, kubernetes. Within we consider
five main components: (i) admin interface service that contains
a form to use by the users to insert the QoS parameters, (ii)
database service to store the channel measurement data, (iii)
read, (iv) write services, i.e., that read the data already
stored in the database service and store it in another PostgreSql
database. The last component is a NodeJs service to conduct
the measurements towards performance results.

For the monolithic architecture we used the MVC pattern
to offload our application. The MVC architectural pattern
contains three main parts Model, View and Controller. Using
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this pattern the application is divided into three logical parts,
the Model component and is connected to the database so
anything we do with the data is done in the model component,
the controller contains the data manager and the SSI of the data
retrieval and processing module, the SSI is a JSON file that
contains informations about the types of data allocated to each
service and the view is our admin interface that generates user
interface for the user and is created using the data collected
by the Model component. All these components are built as a
single and indivisible unit what make it simple to deploy but
hard to update its components.

For microservices we deploy our application in both Swarm
and Kubernetes clusters. The swarm cluster consists of 3 linux
host machines which can communicate over a network to-
gether: One act as a manager and the two others act as workers.
We created different services for different components already
described above. After initializing our clusters we deploy our
services to the swarm in the form of a Compose file. The
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swarm manager is the responsible of deploying the services
and allocating the desired service to the dessired node using
the scheduler. Each service is allocated in a specefic node
using a single virtual machine. For kubernetes we used the
same architecture as docker swarm and we created a cluster
of three nodes, i.e., master and two workers. We created
different Pods for different clustered services similar to docker
swarm. Each service is allocated to a specific node (virtual
machine). All components of the microservice architecture
are independent from each other. That significantly increase
robustness of control plane and service reliablity. For instance,
a failure of write service will not impact other services.

The testbed of our scenarios consists of two local desktop
(both with i15-7600 CPU and 16GB of RAM ). For the edge we
have two nodes one is running as an edge node and the other
one as a tester node. For the cloud we used GCP (Google
Cloud Platform) as real cloud. The edge node is running
the three architectures: Monolithic, microservice with docker



swarm and microservice with kubernetes. Each microservice
architecture running a cluster of three nodes one as a master
and two as workers . A total of 5 services are stack in
each cluster as described before in [IIIC. For the monolithic
architecture the services are deployed in one single machine.
The computer running as a tester node is running the siege
client [[12[] as an open source regression test and benchmarking
utility, and also stores the results of the measurements. We
evaluate these three architectures using the two machines and
the cloud. In both scenarios the tester node send HTTP POST
requests in case of writing operations and HTTP GET requests
in case of reading operations, to the cloud/Edge endpoint
and uses the master node as a receiver for the microservice
architectures, i.e., docker swarm and kubernetes, and the entire
application URL for the monolithic application.

We performed the tests to measure the response time, the
throughput and scalability. The response time is the time that
the data took to reach the destination (cloud or edge) from the
tester node. The throughput is the average number of bytes
transferred every second from the server to all the simulated
users. The scalability is estimated based on the response time
results, whereby the tester node simulates from 50 to 1300
concurrent requests.

For response time results, we measure read and write
operations. We then compare the results for all the three
architectures previously described. Fig. 3 and Fig. 4 show
the response time of the system for different number of users
(i.e., processes), respectively, for read and write operations
when performing requests with two different computing nodes
edge and cloud. The average latency increases exponentially
with the increasing number of users in the system when we
have read operations. For read operation, this behavior is
more evident above 500 concurrent users when deploy mono-
lithic in cloud and 900 users when deploy other architectures
in edge as well in cloud. The reason behind can be explained
by the early overload of the monolithic architecture and the
variation of response time for every request. The response
time, with 400 users or less, when using cloud, and with
600 users or less, when using edge, is similar in both cases
independently from the orchestration tool. The microservice
architectures in edge shows better results compared to the
monolithic in cloud and edge. This trend could be interpreted
by the fact that microservice architectures are more flexible
due to the independence of different services deployed.

In contrast, the results for the write operations show more
differences between architectures studied. The data offloaded
to cloud or using of kuberneets resukt in the largest reponse
time. However , the shortest response time can be reached by
data offloading to edge with monolithic architecture.

Fig. 5 and Fig. 6 shows the throughput for read and write
operations. The throughput results are showing similar results
under 900 users for the microservices architectures. Here, it
is important to notice that the system scales really well up
to 700 requests. Above 700 requests show how the increment
of number of requests exponentially increases the throughput
to compute them in all three architectures. Above the 900

users this trend became more obvious with kubernetes in
the cloud this due to the compatatiblity of GCP and the
Kubernetes architecture. In Fig. 6 we show throughput, but
in this case for the writing operations described in Fig. 2. The
differences between different architectures deployed are made
more clear here. In all the tests performed with high load the
microservices showed better results than monolithic.

V. CONCLUSION

We engineered and studied the offloading of THz channel
estimation problem to edge and cloud computing systems to
understand the suitability of edge and cloud computing to
provide rapid response with channel and link configuration
parameters on the example of THz channel modeling. The
measurements showed a great promise of edge computing and
microservices that can quickly respond to properly config-
ure parameters and improve transmission distance and signal
quality with ultra-high speed wireless communications. We
showed that edge based computing outperforms the cloud
based implementation in terms of latency using the microser-
vice architectures. In terms of throughput, the cloud with the
microservice architectures outperforms the edge when the load
is quite low. Future work needs to focus on computing needs
of mesh THz network and novel control plane architectures
for these critical systems in 6G communications.
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