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Abstract—Intent-based networking (IBN) solutions to manag-
ing complex ICT systems have become one of the key enablers
of intelligent and autonomous network management. As the
number of machine learning (ML) techniques deployed in IBN
increases, it becomes increasingly important to understand their
expected performance. Whereas IBN concepts are generally
specific to the use case envisioned, the underlying platforms are
generally heterogenous, comprised of complex processing units,
including CPU/GPU, CPU/FPGA and CPU/TPU combinations,
which needs to be considered when running the ML techniques
chosen. We focus on a case study of IBNs in the so-called ICT
supply chain systems, where multiple ICT artifacts are integrated
in one system based on heterogeneous hardware platforms.
Here, we are interested in the problem of benchmarking the
computational performance of ML technique defined by the
intents. Our benchmarking method is based on collaborative
filtering techniques, relying on ML-based methods like Singular
Value Decomposition and Stochastic Gradient Descent, assuming
initial lack of explicit knowledge about the expected number of
operations, framework, or the device processing characteristics.
We show that it is possible to engineer a practical IBN system
with various ML techniques with an accurate estimated perfor-
mance based on data from a few benchmarks only.

I. INTRODUCTION

Managing, orchestrating and controlling environments
which include distributed devices spanning highly heteroge-
neous networks is becoming an increasingly complex task. For
this reason, the interest in more intelligent and automation
geared management methods, such as utilization of intent
based network (IBN) management, has also been on the
rise, and is significantly improving both the automation and
management process in wide spectrum of application domains
and complex ICT systems. IBN systems are designed to
translate high-level intents into a structured format with the
help of natural language processing techniques, thus easing
the system management also for non-experts. Structured spec-
ifications translated from the intent configure the systems in a
policy-based fashion, without the need to manually check the
conflicts in a large-scale system. IBN typically deploy various
ML techniques not only for natural language processing, but
also for the entire suite of network management functions,
such as resource management or security.

Whereas IBN concepts are generally specific to the use case
envisioned, the underlying ICT platforms are generally het-
erogenous, comprised of complex processing units, including
CPU/GPU, CPU/FPGA and CPU/TPU combinations. Hence,
for the system to choose between multiple potentially new

ML model configurations is not only potentially time-critical,
but can also result in computationally ineffective choice of
ML techniques on a specific hardware. Moreover, intents are
useful precisely because they enable system configurations
where a problem can be solved by choosing from a set of
candidate ML-based solutions, whereby each of the candidates
can give the comparable output, but with different accuracy
and run-time. Hence, an efficient IBN system needs to be
able to predict how long it takes for a potential ML solution
to execute for a given intent, while preserving a threshold
of accuracy. This brings into question of what the optimal
way of estimating performance of ML solutions in an IBN
system is, and whether it is possible to learn and extract
features that relate the performance of a specific intent to
the hardware in an implicit way. What is needed is an intent-
based networking paradigm that would allow administrators
to choose and deploy best ML models on the most suited
hardware platform, through simple use of high level intents.

The objective of this paper is three-fold. Firstly, we in-
troduce a specific case study of complex IBN management
systems implemented in ICT supply chain systems. The
implementation of intents in a specific case study enables
us to define meaningful intents, which in turn allows for an
easier system administration. Second, we focus on the design
of the ML benchmarking solution for intents, using a specific
module within IBN-based management system, we refer to as
ML Recommender. This module estimates the computational
performance of ML-based techniques on heterogeneous hard-
ware devices in the system, without explicit knowledge about
the number of operations, framework, or the device processing
characteristics of each ML technique. To discover and learn
the features that link the performance of a specific ML model
to the hardware in an implicit way we will use Collaborative
Filtering (CF), as a commonly used tool in recommendation
systems [1]. Finally, we evaluate the system performance by
measuring the quality of forecasting using a small number
of tests on some devices, and the information from previous
execution of other ML techniques on existing hardwares. The
information collected about the performance is represented as
a sparse matrix. The matrix would contain information about
the computational performance of certain ML tasks, such as
Deep Learning models, which were hosted on specific hard-
ware devices in previous executions. After that, ML algorithm
called Singular Value Decomposition (SVD), will be used in
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order to estimate the missing values of the input matrix, which
will in turn be used as valid ML-performance estimation.
We show how the estimated outcome effectively enhances
IBN-based management systems capabilities of scheduling,
planning or hardware provisioning.

The rest of this paper is organized as follows. Section II
describes the related work. Section III describes the case study
of intent-based management in ICT supply chains. The ML
benchmarking solution is presented in IV. Section V evaluates
the performance. We conclude the paper in Section VI.

II. RELATED WORK

With a rise of complex network environments and system
architectures, there has also been an increased interest in
more intelligent and autonomous management methods, with
intent based networking as one of the leading trends. Intent
based networking is a practical concept used in specific
reference scenarios. In [2] and [3], multi-platform 5G and IoT
network infrastructures are studies with IBN solutions. In [4]
distributed, multi-technology, and multi-stakeholder network
infrastructures are taken as examples to drive the need for
intelligent automation and orchestration. Our previous work
in [5] introduced and motivated intent-based networking in
the so-called ICT supply chain system, defined as a system
integrating ICT products and services, transforming raw ma-
terials, and components into a finished product or service
from supplier to the end user.. Similarly, a part of closed-
loop automation was analyzed in supply chains, with different
management system requirements formulated with intents [6].

Every IBN architecture deploys ML techniques, which in
general need to run on rich heterogeneous hardware plat-
form environments. Hence, for an intent to be executed
effectively, it is critical to understand the performance of
the ML solution deployed. In [7], an ML approach based
on artificial neural network was proposed, with the aim of
predicting the performance of different applications and with
that advancing the effectiveness of scheduling on a CPU
hardware. In [8], the execution time of an application on
a specific FPGA is used to predict the execution time on
other hardware without making a real implementation, using
neural networks as a tool for estimation. In addition, software
developers need to define some system characteristics of their
developed components before deploying in production. In
[9], a methodology is presented that estimates the execution
time of software components on a specific architecture using
simulation and analytical tools that uses parts of system
information. The paper compared the estimated execution
times of certain software components using the simulation
based system and the real benchmarks. The work presented
in [1] proposes an online and scalable datacenter scheduler,
considering the heterogeneity of hardware and the interference
between executed workloads, using the collaborative filtering
prediction technique. The same technique will be used in this
paper, due to its wide use in recommendation systems. One
of the most famous applications of CF is Netflix Challenge

[10], which will also be used as a reference method in our
work, as well as the framework developed in [1].

III. A CASE STUDY OF INTENT-BASED MANAGEMENT IN
ICT SUPPLY CHAINS

As ICT supply chain networks are comprised of hetero-
geneous and complex infrastructures, with the high inter-
operability requirements. Here, managing, orchestrating and
enforcing policies at scale is a challenge. To tackle this
challenge and develop an intelligent management strategy, we
employ the paradigm of intent-based networking in order to
allow administrators to set high level intents that instruct the
system of what to do instead of how a task should be executed.

A. IBN Reference Architecture

The case study of IBN based management system design
is illustrated in Fig. 1, with the ML-based intelligence as the
key enabler of the proposed solution, considering the need for
automation of system configurations. The ICT supply chain
network typically consists of several domains, such as facto-
ries, transportation facilities, warehouses, and retailers. Each
domain can have its own computing servers, which are used
for various computational functionalities, such as networking,
security, system optimization, and system management. Tasks
can be forwarded to dedicated servers depending on the
required computation, memory, throughput etc.

The reference architectural design of the intelligent intent
based management system is illustrated in Fig. 1. The system
consists of ICT supply chain network infrastructure, including
various IoT devices such as security cameras, RFIDs, and
sensors, edge computing nodes located geographically close
to the IoT devices, a centralized ICT supply chain network
controller to monitor and manage the infrastructure, and a
high-level intent-based orchestrator. The network controller
collects telemetry from the infrastructure, manage and enforce
policies in the system. The intent-based orchestrator is a
high-level layer that interacts with the network administrator
in order to provide an easy-to-use management interface.
It includes different modules that insures the translation
of user, i.e., system administrator, intents into configured
policies to be applied by the network controller: a dashboard,
intent-based interface, intent manager, policy configurator,
knowledge base, monitoring, and ML recommender. The
dashboard provides a user interface, where the intents
given by the network administrator are read and then
parsed by an intent-based interface. An intent manager
component is designed to translate high-level intents into
a structured format with the help of natural language
processing techniques. Structured specifications translated
from the intent are then forwarded to the policy configurator
component, which matches the user requirements with
possible predefined policies stored in a knowledge base,
and more specifically in a policy store. After configuring
these policies, conflicts are checked and verified. Then the
policy configurator triggers the network controller to apply
changes in the network infrastructure. Monitoring tools
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Fig. 1: Reference architecture of an intelligent intent based management system in ICT supply chain

are used by the network controller to collect metrics and
provide the real time state of the network. The Monitoring
component in the intent-based orchestrator filters the
telemetry collected from the network and uses the knowledge
base to store some selected telemetry such as CPU/GPU
performance, memory, latency, throughput, security state
of links and devices, application logs, and security camera
results etc. One important telemetry information is the the
ML techniques performance on different hardware, which
is saved in an ML techniques store. In order to use this
telemetry and improve policy configuration methods such as
scheduling of functions on servers, routing, and enhancing
access control configuration, we design an intelligent
module called ML Recommender. This module will tackle
one of the most important challenges related to choosing
and deploying the best ML-based algorithms in the most
suitable server of the supply chain infrastructure, using the
performance information collected in the ML techniques store.

B. Benchmarking ML Solutions in IBN Systems

ML solutions are widely used for various tasks in ICT
supply chains, such as threat detection, demand forecasting,
and face detection. When a new device joins the network, it
has no performance history, which makes the system enable
to accurately take several decisions such as ML techniques
allocation. To solve this problem, the ML Recommender
is introduced, which is responsible on benchmarking the
performance of ML techniques on new coming device or the
performance of new ML techniques on existing devices. (The
next section describes the design of the ML recommender in

detail.) From a system design side, in order to trigger the ML
Recommender, we propose two intent types that can be used
by the system administrator, as follows:

• For adding a new hardware device: ”add device device id
to domain domain id”

• For adding a new ML technique: ”add ML-technique
ML-tech id to ML-technique type ML-tech type name”

The intent manager then discovers the intent types from
the input text and parse it in a structured JSON format as:
{intent name : ”adding device”, device: ”device id”, domain:
”domain id”}, and {intent name : ”adding ML-technique”,
ML-technique: ”ML-tech id”, ML-technique type: ”ML-
tech type name”}. After that the policy configurator matches
the given intent with the required policies. For instance,
this can be defined as follow: check the connectivity of
device (”device id”), or check the existence of ML-technique
(”ML-tech id”) in an ML techniques store using its ”ML-
tech type name”, alert the user if the checking operation
fails, trigger the ML Recommender with the provided
information, or similar.

IV. ML BENCHMARKING

As a part of the intelligent intent based management system,
ML Recommender module will have the task of benchmarking
and estimating the performance of different ML techniques on
heterogeneous ICT supply chain hardware platforms. Instead
of running all existing ML techniques on each device, to link
the performances of a specific ML model to the hardware we
will use Collaborative Filtering. This section first explains the



CF techniques envisioned, after which we present how they
are being applied to estimate technique-device benchmarks.

A. Collaborative Filtering Techniques

We adopt a single rating CF system for product recom-
mendation, where the input is modeled as a sparse matrix
E ∈ Rm,n, where m is the number of users and n is the
number of items. Each user i is represented by one row and
each item j by one column. In this example, we denote by
ei,j the rating of item j by user i. A new incoming user will
rate a limited number of items, then the existing user rating
is used to estimate the ratings for other missing items. CF
algorithms ensure that the predicted value is always in the
same range used by all users. After obtaining the complete
rating information, a recommendation system recommends the
list of Top-N most likable items by the user.

One of the efficient methods of CF, which among many
other recommender systems was also used in the Netflix
Challenge [10], is the Singular Value Decomposition SVD,
that we will adopt as a first step of our estimation approach.
SVD is a technique of dimensionality reduction used to
decompose a matrix into three matrices U , V , and Σ, in order
to find lower bi-dimensional feature space.

SV D(E) =


e1,1 . . . e1,n
e2,1 . . . e2,n
. . . . .
. . ei,j . .
. . . . .

em,1 . . . em,n

 = UΣV T (1)

Where U and V are m× rand n× r orthogonal matrices,
representing the left and right singular vectors respectively,
and Σ is an r × r diagonal matrix, representing the singu-
lar values, r denotes the rank of matrix E, and expresses
the number of features of similarity resulted by SVD. The
application of SVD requires the factorization of our input
matrix E, which is a complex problem due the sparsity of
the matrix. Traditional SVD algorithms cannot work with
incomplete information about the entries and in addition they
cause the issue of overfitting, meaning that the estimation will
converge to some known values from the given input.
In order to recover missing entries of the matrix E, PQ-
reconstruction method [1] will be used. To that end we define
the matrices Q = U , PT = ΣV T , and R = Q × PT as
the approximation of A, including the missing entries. The
vector associated to the item j is denoted by qj ∈ Rr, which
expresses the features representation of item j. Similarly for
users, pi ∈ Rr denotes the vector associated to the user i, to
express its features representation. Therefore, the elements of
the approximation matrix R can be represented as:

ri,j = qTj pi (2)
The estimation of any rating of a user i to an item j can be
easily obtained, once we have the feature vectors pi and qj .

In matrix reconstruction, the estimation model is built
using the observed ratings and avoiding the missing entries,

represented by zero values in the sparse matrix E. For
the overfitting problem, a regularization term is used while
minimizing the error during the learning phase. The following
minimization formulation of the problem tries to minimize
the squared error between the rating and the estimation,
considering the regularization term:

min
q,p

∑
(i,j)∈S

(ri,j − qTj pi)2 + λ(||qj ||2 + (||pi||2) (3)

Where S represents the set of non-zero values of matrix E,
and λ is a regularization parameter. The non-zero values are
considered to model the previously observed ratings in order
to create a general fitting function able to predict unknown
ratings, while minimizing the error. The regularization param-
eter λ is used to adjust the minimization function and prevent
overfitting the model with known values.

Next, we adopt the Stochastic Gradient Descent as a
learning algorithm that processes the matrix E to improve
the estimation. The feature vectors pi and qj are initialized
randomly and iterated over all the training set of ratings. In
each iteration the value of the rating using eq. (2) is predicted
and computed as follows:

εi,j = ri,j − qTj pi (4)
Afterwards, we update the feature vectors qj and pi using a
learning rate σ, considering the regularization factor λ, as
follows:

qj = qj + σ · (εi,j · pi − λ · qj) (5)

pi = pi + σ · (εi,j · qj − λ · pi) (6)

The algorithm iterates over all matrix entries s times, where
s is a parameter to be defined, as well as the learning
rate σ, regularization factor λ, and the number of features
r (called latent factors). The utilization of the previously
described algorithm to estimate the performance of a ML-
based technique is described in the next subsection.

B. Predicting Performance of Various ML Techniques

In proposed intelligent intent based management system,
we assume the existence of M ML techniques, that can be
executed on N hardware devices. Example of ML-based
techniques can be various object detection algorithms
used to monitor security cameras, executing different tasks
like employee detection, threat detection, product quality
monitoring, etc. Different ML models can do the same
task, while having different speed performance in inference,
memory consumption, and accuracy of results. One of the
most important factors that need to be measured is the
inference performance, which will be the main objective
of our proposed solution to predict. Fig. 2 represents an
abstraction of our problem, where we assume the existence
of an ML techniques store containing ML models and several
heterogeneous computing devices. The previously explained
matrix E of user-item ratings in this system represents the
execution performance of matching pairs of devices and ML
technique pairs. When a new ML technique is registered
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throught the intent-based orchestrator, as described in section
III-B e.g. ”add ML-technique MobileNet-V2-threat 1 to
ML-technique type threat-detection”, we add a new raw
to the performance matrix E with empty zeros. After that,
the ML Recommender chooses randomly a set of devices
for the benchmarking of new ML technique. The collected
performance information is then added to E as shown in
Fig. 3. a., then the SVD method is used to estimate the
performance on the rest of devices using eq.1, 6, 5, and 4 in
order to minimize the error defined in eq. 3. Finally the ML
Recommender saves the new performance entries into the
ML techniques store.

C. System Scaling

An important factor to be considered in an IBN system
design, which also is its salient feature, is the scalability. To
this end, we consider a scenario where a new hardware device
is added to the system. We start with the assumption that
there is no any prior knowledge about the performance of
ML techniques on a newly added device. The procedure of
performance estimation in this case, is similar to the procedure
used for a new incoming technique, triggered by the user from
the intent-based orchestrator, e.g. ”add device edge 100 to
domain warehouse 5”. The estimation process again follows
two phases, warm-up and online, where the warm-up phase is
the same as used previously in Fig. 2. When a new device is
added, the performance of existing ML-based techniques on
that device needs to be benchmarked. In Fig.3.b, an illustration
of this process is shown. Assuming that k techniques are
chosen from the ML techniques store, they are executed one
by one on the new device, and with their performance results
collected. After this, a new column is added to the matrix E
associated to the new device, with the entries corresponding
to each benchmarked technique filled. Next, the new matrix
is normalized, followed by applying the previously explained
SVD algorithm IV-A, where eq.1, 6, 5, and 4 are used for error
minimization in eq. 3. The missing performance estimation
is then obtained, out of all the registered techniques in the
system, saved in the ML techniques store, which allows us to
scale up, migrate or replicate using the new hardware device.

Register a new
 ML technique

Add a new
 device

a. Similarity Prediction b. Scaling

Estimation
Estimation

Fig. 3: Performance estimation of a ML techniques on a newly added device.

V. PERFORMANCE EVALUATION

To evaluate the performance of our proposed ML algorithm,
an online store of AI benchmark experiments is used [11].
It contains numerous AI tasks and deep learning architec-
tures, tested on multiple hardware platforms. Most popular
DL architecture like MobileNet-V2 (classification), Inception-
V3 (classification), VGG-19 (image-to-image mapping) and
LSTM (sentence sentiment analysis), and DeepLab (image
segmentation) are evaluated in terms of training time and
inference time (per one image), as well as memory utilization.
An updated dataset from 2019 containing 42 different AI tasks
built for desktops is used in our work [12]. Popular hardware
platforms, such as CPUs, GPUs and TPUs, are configured to
run deep learning models. In the store, 192 different hardware
platforms are tested, e.g. Tesla V100 SXM2 32Gb, NVIDIA
TITAN V, GeForce GTX 1080 Ti, AMD Threadripper 3970X,
Intel Xeon Gold 6130, etc.

To emulate the behavior of the proposed ML recommender,
we assume that our system consists of 191 heterogeneous
hardware units, and an ML techniques store of 42 AI tasks.
A new hardware is added to our network, which needs to be
tested in order to collect the performance of all the existing
AI tasks in the store. The knowledge base of the intent-based
orchestrator is initialized with a subset of the existing AI
tasks and a subset of the existing hardware platforms. The
ML Recommender is triggered throught the dashboard using
the following intents: ”add ML-technique MobileNet-V2 to
ML-technique type threat-detection”, where the ML-tech-
id is replaced by a different ML technique from the store
for every replication e.g. Inception-V3, VGG-19, etc. After
that SVD algorithm runs to predict the benchmark values
of missing hardware devices. The metric used to evaluate
the machine learning algorithm is the normalized root mean
squared error (RMSE) and can be expressed as follows:

RMSE =

√∑N
i=1

∑N
j=1 ε

2
i,j

N2
(7)
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normalized RMSE =
RMSE

maxR−minR
(8)

where R is the matrix that contains predictions, maxR and
minR represent the maximum and minimum values in the
matrix.

The number of iterations is set to 5000, the latent factors
are set to 10, learning rate is 0.04, and β = 5 ·10−6. In figure
4 the percentage of missing benchmark is varied from 30%
to 90%. For each test, 5 replications are evaluated where a
random device is chosen for benchmark prediction for every
replication. Then the average normalized RMSE is calculated
and plotted. The performance of prediction is expected to
decrease (normalized RMSE increase) when the percentage
of missing values increases. Thus, the more benchmarks we
obtain from real measurements, the better our estimation of
the AI tasks performance on other hardware devices. For a
30% of missing devices, the normalized RMSE is equal to
0.03, which is a promising results. However the normalized
RMSE for 90% of missing benchmarks is very high around
0.2, which needs to be improved, in order to use our system
for practical applications, where benchmarking techniques are
time consuming, and when scheduling must happen in real
time using accurate performance evaluations.

VI. CONCLUSION AND FUTURE WORK

With the rise of heterogeneous devices in complex ICT
systems and the rise of machine learning based solutions that
are implemented to solve problems in every domain of appli-
cation, it is becoming an imperative to study the challenges
of managing ML solutions running in such systems in an
innovative way. We first proposed intent-based networking
(IBN) solution as the approach for intelligent managing of
ICT supply chain systems. Afterwards, we studied the prob-
lem of benchmarking these ML solutions, through a module
called ML Recommender. This module is used for estimating
the computational performance of ML-based techniques on
heterogeneous hardware devices, considering the lack of ex-
plicit knowledge about the number of operations, framework,
or the device processing characteristics for each ML-based
technique. Collaborative Filtering techniques like Singular

Value Decomposition (SVD) are used to estimate the missing
values of the benchmark input matrices, which is planned
to be used to enhance the management system capabilities
of scheduling, planning or hardware provisioning. A dataset
of 42 ML model benchmarked on 196 different hardware
platform were used for testing the proposed algorithm, where
the results are promising in terms of estimation correctness.
As a future work, we plan to extend our system design of the
ML recommender to consider the scheduling and planning
problem, and to show how can a user requirement given as
a high-level intent be automatically translated into scheduling
decisions using our benchmarking solution.
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