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Abstract—Meshless methods are an active and modern branch
of numerical analysis with many intriguing benefits. One of
the main open research questions related to local meshless
methods is how to select the best possible stencil - a collection of
neighbouring nodes - to base the calculation on. In this paper, we
describe the procedure for generating a labelled stencil dataset
and use a variation of pointNet - a deep learning network based
on point clouds - to create a classifier for the quality of the
stencil. We exploit features of pointNet to implement a model
that can be used to classify differently sized stencils and compare
it against models dedicated to a single stencil size. The model is
particularly good at detecting the best and the worst stencils
with a respectable area under the curve (AUC) metric of around
0.90. There is much potential for further improvement and direct
application in the meshless domain.

Index Terms—meshless method; stencil analysis; neural net-
works; pointNet; classification

I. INTRODUCTION

Partial differential equations (PDE) are one of the most
common approaches to modelling natural phenomenon and
industrial processes. Closed-form solutions are rare, leaving
us to rely on numerical approaches. Meshless methods are a
relatively novel approach to PDE solving. They ease domain
discretisation by avoiding meshing problems that arise in
higher dimensions when using the traditional finite elements
and finite volume methods [1]. The Radial Basis Function
Generated Finite Differences (RBF-FD) [2] method is used
to calculate an approximation of a linear operator L applied
to field u. Discretisation is achieved by populating the domain
with computational nodes that hold field values ui. The
operator value in i-th node is calculated based on field values
in s neighbouring nodes that form its computational stencil Si

(Lu)i ≈
s∑

j=1

wi,juSi(j), (1)

where wi,j are the precomputed approximation coefficients.
The coefficients are determined by demanding the equation (1)
to be exact for a set of basis functions and solving the resulting
system.

The authors would like to acknowledge the financial support of the
Slovenian Research Agency (ARRS) research core funding No. P2-0095,
research project J2-3048, and the Young Researcher program PR-10468.

One of the factors contributing to the approximation accu-
racy are the positions of nodes in the computational stencil.
Due to the many confounding factors it is difficult to predict
the stencil’s quality before solving the weight system and
evaluating the operator. Stencil nodes are usually selected
as the s closest nodes to the one we are approximating the
operator in. This often proves to be inadequate, especially
when close to the domain boundary or dealing with varying
node density. Existing attempts that tackle the problem use,
amongst other things, linear programming [3] and geometric
assumptions [4].

In this paper, we use a machine learning approach to devise
a method that can estimate the approximation quality of the
stencil without solving the weight system. Such method, if
implemented efficiently, can be used to construct better stencils
and evaluate the quality of discretisation before proceeding to
the subsequent computationally demanding step of approxi-
mation building.

The rest of the paper is organised as follows. In Section II
we describe the dataset and explain how it was constructed,
followed by the description of the utilised machine learning
method in Section III. Next, we present the results in Sec-
tion IV. We conclude the paper with directions for future work
in Section V and the conclusion in Section VI.

II. DATA PREPARATION

The dataset is created algorithmically by generating a set
of random stencils that are still representative of the stencils
that could appear during a normal solution procedure. The
RBF-FD algorithm, using the polyhamonic r3 radial basis
function (RBF) with 2-nd order monomial augmentation [5],
is implemented in Medusa [6] C++ library for meshless
PDE solving and used to approximate the gradient and the
Laplace operator applied to a selection of fields with known
analytic derivatives. The sum of absolute offsets between the
approximated and the exact operator values for both operators
on all test fields is then used as the measure of error ε that is
used as a label for the stencil’s fitness, with a lower number
signifying a better node configuration.

Examples of the best and the worst stencils with size s = 15
are shown in Fig. 1. Good stencils are relatively centred and
symmetric as expected, while the bad ones exhibit lines of
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Fig. 1: The best 3 stencils with s = 15 in the top row and the
worst 3 in the bottom. The red point marks the central node
where we approximate the operator. Positions are centred and
normalised.

nodes that are unable to provide a good description of the
underlying field.

We generate 105 stencils and corresponding labels for sizes
of s ∈ {6, 7, 9, 12, 15} and combine them into a mixed size
dataset that will be denoted as ”mix”. Then, we generate
additional 5 · 105 stencils for sizes of s ∈ {9, 15} as single-
sized stencil datasets. The automatically generated dataset
allows us to extend the size of the dataset in future work as
far as required within the computational and time constraints.
Creating larger datasets might be beneficial because choosing
even the best among 5 · 105 nodes, as shown in Fig. 1, does
not yield even close to perfect stencils.

The distributions of resulting ε labels for different stencil
size datasets are shown in Fig. 2. The distributions on the left
figures for s = 6 and s = 7 provide an additional motivation
for this endeavour. Small stencil size is preferred for meshless
approximation due to the inherently lower computational costs
that are a function of s at every operator evaluation. As this
graph shows, small stencils exhibit a much higher variance
in quality when compared to their larger counterparts. That
makes them less stable and harder to construct when not aided
by advanced algorithms.

We discretise the continuous error label into 4 quartiles with
equal number of stencils that guarantee a balanced dataset.
Some care needs to be taken when determining classes for the
”mix” dataset to maintain consistency. Quartile borders have to
be created separately for each of the constituent stencil sizes to
account for the different ranges of error labels seen in Fig. 2.

A. Stencil generation

Random stencil selection needs to be designed in a way
that replicates the stencils that are likely to appear in actual
use. Purely random node placement is unsuitable due to the
possibility of extremely close nodes that would cause instabil-
ities for the approximation. This is established knowledge in
the field [7] and the availability of fast and efficient algorithms

for generation of candidate nodes prevents this from occurring
in practice. On the other hand, using available algorithms
for node placement leads to stencils that are too uniform to
provide any insight for machine learning.

We circumvent this problem by using an established mesh-
less node positioning algorithm [7] to generate a dense dis-
cretization of candidate nodes. The central node is randomly
selected from the candidates. The rest of the stencil is then
randomly sampled from the candidate nodes with a slightly
radially decreasing probability to encourage some extent of
aggregation. All s nodes from this stencil are then alternately
used as centres when constructing the approximation to in-
troduce more non-symmetric stencils into the mix. We are
specially interested in non-symmetric stencils as those are
commonly found close to the domain boundaries where stencil
construction is the most problematic.

This process is repeated until a desired number of stencils
is generated. Stencil coordinates are then transformed into
a coordinate representation with origin in the central node
and normalized with the distance between the central and the
farthest node.

B. Test fields

As mentioned in the beginning of this section, analytically
differentiable fields are required as a benchmark for the RBF-
FD approximation. The fields need to be diverse enough to
provide a satisfactory proxy for fields encountered during the
normal PDE solving and still simple enough to implement a
general derivative in C++. We use a benchmark that consists
of three fields:

• Monomial

f(x, y) = xnym, n = 2,m = 3; (2)

• Sinusoidal

f(x, y) = sin(kxx) sin(kyy), kx = 2, ky = 1; (3)

• Exponential

f(x, y) = e−
x2+y2

2σ , σ = 1. (4)

III. METHOD

PointNet [9] was a groundbreaking deep learning algorithm
that has opened the field for working with point cloud data.
It is mainly used in 3D for classification and segmentation
of LiDAR data. The point-based representation offers a much
better storage efficiency compared to previously used methods
such as voxel grids. The architecture of PointNet is relatively
simple. The initial transformations of data lead into a single
symmetric max-pooling layer, which is responsible for most
of the many beneficial properties that led us to choose this
model. In our case, the permutation invariance and the support
for internodal interactions were the most important properties.

Initially, we modified the final dense layers of PointNet
to work for the task of regression, but the results were
underwhelming and comparable to multilayer perceptrons. We
settled on discretising our dataset and proceeding with a
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Fig. 2: Distribution of error measure ε in datasets for stencils with different sizes s. The smaller stencils have a much higher
variation.
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Fig. 3: Modified PointNet neural network architecture for s = 15. Visualisation created directly from the Keras model using
the Net2Vis [8] framework.

variation of the standard classification pointNet. The beneficial
feature of the max-pooling layer to ignore the contribution
of duplicate input coordinates, allowed us to pad the stencil
dataset to the same size and utilise the same network for
different stencil sizes.

We used a slightly modified version of PointNet with the
architecture shown in Fig. 3. The network consists of one-
dimensional convolutional layers (Conv1D) with a kernel size
of 1 and an increasing number of filters to increase the
dimensionality of the input data. The convolutional layers are
followed by a max-pooling layer (GlobalMaxPooling1D) that
aggregates information from all stencil nodes and constructs
a global feature vector used as an input for the dense (Dense)
layers. The dense layers utilise dropout (Dropout) layers that
randomly drop part of the coefficients and help against over-
fitting. The convolutional and the dense layers are augmented
with batch normalization and activation layers (NormAct).
This version, named vanilla PointNet in the original paper,
omits the two transformational layers in the steps before max-
pooling. These layers were superfluous based on our testing
and only added to the complexity without providing much
benefit. This is most likely the case because the stencil data is
already translated and well aligned. Instead, we doubled the
size of all the other layers. The result is a similar number of
weights as in the original network with transformation layers,

but with better results in our use-case.
We implemented the modified PointNet in TensorFlow using

the Adam optimiser and the sparse categorical crossentrophy
loss function. We use ReLu on the intermediate activation
layers and softmax on the output. A 0.3 dropout is used with
the dense layers. The model was trained with a batch size of
1024 for 20 epochs. The stencil data was split into training
and test partitions with 20% intended for testing.

IV. RESULTS

The results section focuses on the comparison between the
unified mixed stencil size model, implemented by padding
smaller stencils, as mentioned in the previous chapter, and
three single-size models. All models were trained with iden-
tically sized datasets with 5 · 105 stencils.

First, the training loss and accuracy curves are compared in
Fig. 4. The unified model does have slightly worse results,
but not drastically so. The accuracy for individual models
increases with stencil size. Training is stopped at the arbitrarily
selected 20th epoch. A fixed end point is used instead of a
stopping criterion based on a validation dataset to ensure a
direct comparison between the different models.

We take a closer look at the unified model and its confusion
matrix shown in Fig. 5. The columns show what true classes
were correctly or incorrectly attributed to the given predicted
class. The following discussion shows that the model performs
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Fig. 4: Decrease in loss function and increase in accuracy
during the training for three individual stencil sizes and the
mix.

much better than the 60% accuracy would initially suggest.
When analysing stencils, we are most interested in the best Q1

class of stencils that we definitely want to use and the worst
Q4 class that we want to avoid at all cost. The classification
accuracy is significantly higher for Q1 and especially for Q4

stencils, which are actually the two classes we are interested in.
Additionally, most of the misclassifications for the predicted
Q1 were actually true Q2 and thus still better than the median
stencil and vice versa for Q4. By definition of equal count
quartiles, the stencil with median error falls onto the border
between Q2 and Q3. Its error ε is still relatively small due
to the shape of the distributions shown in Figure 2. When
accounting for this kind of a misclassification, 92% of stencils
classified as Q1 were better, and 93% of those classified as
Q4 were worse than the median stencil.

We also look at the receiver operating characteristic (ROC)
curve in Fig. 6. The model does not return a class directly
but a probability that the stencil belongs to any of the classes.
The ROC curve plots the true positive rate (TPR) and the
false positive rate (FPR) as the threshold probability for
classification is varied. A perfect model would be a step
function jumping to 1 TPR as soon as the threshold becomes
non-zero. We compare how close our models come to this
ideal with a metric called area under the curve (AUC) [10]
that confirms that our model is particularly good at detecting
the bad Q4 stencils with a respectable AUC metric of 0.94,
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0.65 0.29 0.063 0.022

0.27 0.46 0.25 0.051

0.061 0.22 0.52 0.18

0.02 0.031 0.17 0.75

Fig. 5: Confusion matrix with normalized columns for the
mixed stencil size model with s ∈ {6, 7, 9, 12, 15}. Values
on the diagonal are the correctly identified classes.

and the good Q1 stencils with a respectable AUC metric of
0.89.

The main comparison between mixed and single stencil
size models is presented in Table I that holds the extended
classification metrics for different variations of test and train
datasets. We use four metrics:

• Accuracy is the overall fraction of predictions that were
correct;

• Precision is the fraction of the predicted class that was
correctly classified;

• Recall is the fraction of the true class that was correctly
classified;

• F1 is the harmonic mean of precision and recall;
We notice two trends: (1) the classification results are signifi-
cantly better for larger stencil sizes; (2) the mixed size model is
consistently worse than the dedicated ones, with discrepancy
increasing for smaller stencil size. The effect of increasing
stencil size is stronger, with s = 15 classification on the mixed
model achieving better overall results than either s = 6 or
s = 9 on the dedicated models.

The extreme classes remain favoured in classification ac-
curacy but there is a reversal for the small s = 6 stencil.
The best Q1 is the most accurately classified class for this
dataset achieving the best Q1 precision among all the test
cases. This could again be explained by the large range of
error labels in Fig. 2 making the best quartile more distinct.
This is encouraging because the small stencils, as mentioned
previously, offer the biggest promise for direct application of
this methodology.
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The mixed size model provides consistently worse results
than the dedicated models and involves additional frivolous
computation when padding is required. But still, even with all
of the aforementioned caveats, we consider it to be beneficial
as it simplifies the stencil building procedure by streamlining
the comparison of quality with and without a specific node.

Finally, the confusion matrix for the best model for s = 15
is shown in Fig. 7. The results are very good and could be
used in practice with 97% of nodes classified as Q1 below the
median stencil error of ε = 3.9 · 10−2 and practically 100%
of those classified as Q4 above it.

V. FUTURE WORK

This is still a relatively untouched problem, so there is a
plethora of future work remaining. We need to incorporate
the machine learning based stencil evaluation into a node
positioning algorithm and verify that the model can be used
to improve the solution procedure and results on a benchmark
PDE case. Additionally, steps should be taken to improve the
model itself.

The first step would be to improve upon this work and
achieve higher classification accuracies by utilising newer and
more advanced models [11], as the current results leave much
to be desired if we were to use this classifier in practi-
cal stencil construction. Furthermore, for direct comparison
between differently sized stencils, it would be beneficial if
regression replaced classification, as we initially set out to do
when starting this work, but neither attempts with multi layer
perceptrons nor regressive modification for pointNet returned
satisfactory results. Further work is required to determine

TABLE I: Comparison of metrics between the single and
multi-size training

Test Train Quartile Precision Recall F1 Accuracy

mix mix

Q1 0.65 0.66 0.65

0.60
Q2 0.46 0.41 0.43
Q3 0.52 0.55 0.54
Q4 0.75 0.78 0.76

6 mix

Q1 0.70 0.64 0.67

0.56
Q2 0.47 0.46 0.46
Q3 0.50 0.41 0.45
Q4 0.56 0.71 0.63

6 6

Q1 0.76 0.72 0.74

0.64
Q2 0.55 0.52 0.53
Q3 0.57 0.55 0.56
Q4 0.66 0.77 0.71

9 mix

Q1 0.66 0.67 0.67

0.61
Q2 0.49 0.41 0.44
Q3 0.52 0.57 0.54
Q4 0.77 0.79 0.79

9 9

Q1 0.66 0.76 0.71

0.64
Q2 0.51 0.42 0.46
Q3 0.55 0.57 0.56
Q4 0.82 0.81 0.81

15 mix

Q1 0.63 0.74 0.68

0.67
Q2 0.50 0.40 0.44
Q3 0.63 0.69 0.66
Q4 0.91 0.85 0.88

15 15

Q1 0.67 0.77 0.72

0.70
Q2 0.54 0.51 0.52
Q3 0.68 0.66 0.67
Q4 0.92 0.85 0.88

Q1 Q2 Q3 Q4

Predicted label

Q1

Q2

Q3

Q4

Tr
ue

 la
be

l

0.67 0.22 0.015 0.00026

0.3 0.54 0.16 0.002

0.03 0.24 0.68 0.08

0.0001 0.0023 0.15 0.92

Fig. 7: Confusion matrix with normalized columns for the best
single stencil size model with s = 15. Values on the diagonal
are the correctly identified classes.



whether regression would be feasible with the mentioned
algorithms or if an alternative approach is required.

The second and probably larger task is to depart from
deep learning towards something more explainable that could
help us with deeper understanding of the many interconnected
factors that contribute to a good stencil. This approach would
require some work with feature engineering, but we believe
that the benefits would be threefold: faster algorithm, better
explainability and higher accuracy.

VI. CONCLUSIONS

We have presented a methodology for computational gen-
eration of labelled stencil datasets that can be used for further
data mining endeavours in stencil quality estimation. We
have used the pointNet deep learning network to classify
the quality of stencils, showing that it performs satisfactory
as a proof of concept, but further work would be required
before such classifier could be used to build new stencils. The
most encouraging aspect of this approach is that the pointNet
architecture allows for input padding without a negative impact
on the results and thus allows us to use the same network for
multiple stencil sizes with worse, but not drastically so, results.
This could prove to be very beneficial as it avoids the necessity
of having a dedicated network for each stencil size and could
allow for cross-size optimisation.
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[5] M. Jančič, J. Slak, and G. Kosec, “Monomial augmentation guidelines
for rbf-fd from accuracy versus computational time perspective,” Journal
of Scientific Computing, vol. 87, no. 1, p. 9, Feb 2021.

[6] J. Slak and G. Kosec, “Medusa: A c++ library for solving pdes using
strong form mesh-free methods,” ACM Trans. Math. Softw., vol. 47,
no. 3, Jun. 2021.

[7] ——, “On generation of node distributions for meshless PDE discretiza-
tions,” SIAM Journal on Scientific Computing, vol. 41, no. 5, pp. A3202–
A3229, Oct. 2019.
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