
Recent Developments in Qucs-S Equation-Defined
Modelling of Semiconductor Devices and IC’s

Mike Brinson, and Vadim Kuznetsov

Abstract—The Qucs Equation-Defined Device was introduce
roughly ten years ago as a versatile behavioural simulation
component for modelling the non-linear static and dynamic
properties of passive components, semiconductor devices and IC
macromodels. Today, this component has become an established
element for building experimental device simulation models. It’s
inherent interactive properties make it ideal for device and cir-
cuit modelling via Qucs schematics. Moreover, Equation-Defined
Devices often promote a clearer understanding of the factors
involved in the construction of complex compact semiconductor
simulation models. This paper is concerned with recent advances
in Qucs-S/Ngspice/XSPICE modelling capabilities that improve
model construction and simulation run time performance of
Equation-Defined Devices using XSPICE model syntheses. To
illustrate the new Qucs-S modelling techniques an XSPICE
version of the EPFL EKV v2.6 long channel transistor model
together with other illustrative examples are described and their
performance simulated with Qucs-S and Ngspice.

Index Terms—Qucs, Qucs-S, Ngspice, XSPICE Code Models,
compact semiconductor device modelling, Equation-Defined De-
vices (EDD), macromodels.

I. INTRODUCTION

QUCS Equation-Defined Device (EDD) modelling of ex-

isting and emerging technology devices and IC’s has

become an established technique since the Qucs EDD was

first released roughly ten years ago [1][2]. The popularity of

the Qucs EDD component can be largely traced back to three

of it’s primary characteristics; firstly it can model the static

and dynamic properties of physical devices expressed as a set

of explicit compact model equations, secondly the structure

and properties of the Qucs EDD have a direct relationship

to Verilog-A hardware device language (HDL) statements

[3], making conversion of EDD models to Verilog-A straight

forward [4], and finally EDD model technology is both interac-

tive and integrates easily with conventional circuit simulation

components. At this time Qucs and it’s SPICE variant Qucs-

S [13] [14] appear to be the only open source simulators

to have implemented the EDD. Although EDD modelling

is easily applied to the construction of subcircuit models of

semiconductor devices and IC’s these models often tend to

simulate much slower than compiled C/C++ code models.

Hence, conversion of EDD derived models to HDL C/C++

models is recommended, particularly in those situations where

a model is to be distributed as part of a circuit simulator pack-

age. Unfortunately, the current popular SPICE derived General

Public License (GPL) circuit simulators do not implement the

M. Brinson is with the Centre for Communications Technology, London
Metropolitan University, UK, e-mail: mbrin72043@yahoo.co.uk

V. Kuznetsov is with the Department of Electronic Engineering, Bau-
man Moscow State Technical University, Kaluga branch, Russia; e-mail:
ra3xdh@gmail.com

Analogue Device Model Synthesizer (ADMS) [5] software in

a consistent way, making automatic conversion of behavioural

device models to compiled C/C++ versions either difficult,

or indeed sometimes not feasible. Although the Ngspice [6]

and Xyce c© [7] simulators both employ ADMS for Verilog-

A to C++/C code translation they require that the entire

simulator code is compiled and linked manually when adding

new models. The Qucs-S variant of Qucs overcomes EDD

simulation speed limitations by the addition of an ”XSPICE

CodeModel synthesizer”, which has been specifically devel-

oped for converting EDD model schematics into ”turn-key”

C code models. The purpose of this paper is to introduce a

number of recent improvements in Qucs-S EDD modelling of

semiconductor devices and IC’s. The improvements in Qucs-

S EDD modelling capabilities are also demonstrated by an

outline of (1) an XSPICE synthesized version of a basic EPFL

EKV v2.6 long channel compact transistor model [8], (2) an

RF inductance XSPICE CodeModel, and (3) other example

models and simulation data.

II. THE STRUCTURE OF QUCS-S EQUATION-DEFINED

DEVICE (EDD) MODELS

Qucs-S behavioural models of semiconductor devices and

IC’s can be constructed from Qucs EDD, SPICE B non-linear

voltage and current sources combined with linear components

to form user defined subcircuits. This approach provides

a convenient interactive way of building and testing new

experimental compact device models and IC macromodels.

When first introduced the Qucs EDD was conceived as an

eight branch two terminal non-linear modelling block where

individual terminal currents (Ij) and internal stored charge

(Qj) are given by equations 1 to 3.

Ij = Ij(Vj), gj =
dIj
dVj

(1)

Qj = Qj(Vj , Ij) (2)

Cj =
dQj

dVj
=

∂Qj(Vj)

∂Vj
+

∂Qj(Ij)

∂Ij
· gj (3)

where 1 <= j <= 8, Ij is the current flowing through

branch j, Vj is the voltage across branch j, Qj is branch

j internal stored charge, gj , and Cj are branch conductance

and capacitance respectively. One of the primary uses of Qucs

EDD is to evaluate non-linear algebraic/differential equations

which represent the physical properties of a device being

modelled. These fall into two main forms, firstly explicit alge-

braic equations which represent static quantities, for example

DC current, and secondly dynamic quantities, for example

capacitor current. In practice intermediate algebraic equations

are also often used in the calculation of the values of model

variables. As a general rule it is straight forward, and con-

venient, to calculate model equation values by representing

the individual model variables as the current flowing in one

of the EDD branches (Ij). Similarly, conversion of such

currents to voltages, prior to use in calculating further model

variables, is easily achieved by passing Ij through a one Ohm

resistor. EDD can also automatically calculate device dynamic

currents from the algebraic equations specifying the charge

(Qj) stored by each of the EDD branches. An example of

this style of fundamental EDD modelling is shown in Figure

1. Experience has shown that the limit of eight branches

per EDD is insufficient when constructing complex compact

semiconductor device models. As a consequence the original

Qucs EDD branch limit of 8 has been increased to 20.

Fig. 1. A template showing the application of EDD for the evaluation of
non-linear algebraic/differential equations that represent static and dynamic
compact model physical quantities which are a function of two or more voltage
or current variables.

III. THE SYNTHESIS OF XSPICE CODEMODELS

Versions of the XSPICE CodeModel development software

are distributed with the Ngspice and SPICE OPUS [9] cir-

cuit simulators, including implementations of the standard

”analog”, ”digital” and ”hybrid” CodeModel libraries. The

standard XSPICE CodeModel libraries are distributed as file

libname.cm with each model built from sets of files called

”name.ifs” and ”name.mod”. These contain model interface

and source code, respectively. The Qucs-S version of the

XSPICE CodeModel software is different to Ngspice and

SPICE OPUS distributions in that an XSPICE CodeModel

synthesizer now forms part of the circuit simulation package.

This extension automatically generates files ”name.ifs” and

”name.mod” files from an EDD schematic and an attached

Qucs Equation block. The synthesis process is similar to that

adopted by the Qucs-S Verilog-A synthesizer [10]. Moreover,

it is a full ”turn-key” package which does not require users

to manually patch the Qucs-S C++/C code. To synthesize an

XSPICE CodeModel an EDD schematic is drawn and branch

variables I1...In and Q1...Qn entered as algebraic/numeric

expressions, followed by any required Equation block values.

Selecting Qucs-S GUI commands ”Create XSPICE IFS” and

”Create XSPICE MOD” initiates automatic synthesis of the

XSPICE CodeModels under development.

The arrows shown in Figure 2(a) indicate the sequence

of the individual steps undertaken by Qucs-S/Ngspice to

synthesize an EDD C model from an initial EDD drawing

to attaching the synthesized C code to a Qucs-S schematic

component symbol. The C code generated by the XSPICE

CodeModelling software for the non-linear resistor example

is shown in Listing 1 (file Vcontrolc.mod), where the code

built by this process is in accordance with the XSPICE model

template structure, see the XSPICE documentation [11] for

the details. One point to note regarding the model C code

in Listing 1 is the fact that the partial derivatives of the

EDD branch currents have been automatically generated; in

the case of the non-linear resistor example, the first order

partial derivatives ∂I1/∂V1 and ∂I1/∂V2 are required. Unlike

the Qucs-S Verilog-A modelling tool the ADMS software

package is not used for the synthesis of model C code but

has been replaced by the Ginac C++ library [12]. The Ginac

GPL package is designed to allow the creation of integrated

software systems that embed symbolic manipulations, like for

example the generation of partial derivatives, with computa-

tional intensive numeric routines, see Listing 1.

/∗ XSPICE codemodel Vcon t ro lR ∗ /
/∗ au to−g e n e r a t e d t e m p l a t e ∗ /
i n c l u d e <math . h>
d e f i n e D 0 step (x) (0)
d e f i n e s t e p (x) ((x)>0.0

? 1 . 0
: (((x) = = 0) ? 0 . 5 : 0 . 0))

d e f i n e Xpow(x , p) pow (f a b s ((x)) , (p))
vo id cm VcontrolR (ARGS) {

Complex t ac ga in00 , ac ga in01 , ac ga in10 ,
a c g a i n 1 1 ;

s t a t i c do ub l e R0 , k1 , k2 , k3 ;
s t a t i c do ub l e V1 , V2 , V1 old , V2 old ;
do ub l e Q0 , cQ0 , Q1 , cQ1 , d e l t a t ;
i f (INIT) {
R0 = PARAM(r0) ; k1 = PARAM(k1) ;
k2 = PARAM(k2) ; k3 = PARAM(k3) ;
}
i f (ANALYSIS != AC) {

i f (TIME == 0) {
V1 old=V1=INPUT (nRp nRn) ;
V2 old=V2=INPUT (nV2 gnd) ;
Q0 = 0 . 0 ; cQ0 = 0 . 0 ;
} e l s e {

V1 = INPUT (nRp nRn) ; V2 = INPUT (nV2 gnd) ;
d e l t a t =TIME−T (1) ; V1 old=V1 ; V2 old=V2 ;
}

Fig. 2. Qucs-S EDD XSPICE CodeModel for s non-linear resistor model: (a)
synthesis flow diagram showing modelling stages, (b) test circuit and typical
simulation data.

OUTPUT(nRp nRn) = 1 . 0 / R0 / (V2∗ ((k2+k3∗V2)∗
V2+k1) + 1 . 0)∗V1+Q0 ;

OUTPUT(nV2 gnd) = 0 . 0 +Q1 ;
PARTIAL (nRp nRn , nRp nRn) = 1 . 0 /

((k1 +(k2+k3∗V2)∗V2)∗V2 + 1 . 0) / R0+cQ0 ;
PARTIAL (nRp nRn , nV2 gnd)=−(V2∗ (k3∗V2+k2)

+ k1+V2∗ (2 . 0∗ k3∗V2+k2)) ∗V1 /
Xpow ((V2∗ (k3∗V2+k2)+ k1)∗
V2 + 1 . 0 , 2 . 0) / R0 ;

} e l s e {

a c g a i n 0 0 . imag = (0 . 0)∗RAD FREQ;
AC GAIN(nRp nRn , nRp nRn)= a c g a i n 0 0 ;
a c g a i n 0 1 . r e a l =−(V2∗ (k3∗V2+k2)+ k1+

V2∗ (2 . 0∗ k3∗V2+k2)) ∗V1 / Xpow ((V2∗
(k3∗V2+k2)+ k1)∗V2 + 1 . 0 , 2 . 0) / R0 ;

a c g a i n 0 1 . imag = 0 . 0 ;
AC GAIN(nRp nRn , nV2 gnd)= a c g a i n 0 1 ;
}
}
Listing 1. The XSPICE synthesised C code for a non-linear resistor model
(file VcontrolR.mod).

Qucs-S EDD handles non-linear capacitors C(V) by eval-

uating capacitor current from EDD branch charge, expressed

as

I(t1) =
∂Q(V (t1 −Δt))

∂V (t1 −Δt)
· V (t1)− V (t1 −Δt)

Δt
(4)

where Δt = TIME−T (1), TIME is the current simulation

time and T (1) the time at the previous simulation time step.

The simple test circuit shown in Figure 3 illustrates the effect

that a non-linear capacitance has on the transfer function of

an RC low pass filter network when the DC bias is swept

through a series of values. Notice in this example that the DC

voltage across the capacitor is used to change C(V 1)) rather

than a separate control branch. Listing 2 gives the core of the

synthesized XSPICE CodeModel for the non-linear capacitor.

/∗ XSPICE codemodel nonLinQ ∗ /
/∗ au to−g e n e r a t e d t e m p l a t e ∗ /
i n c l u d e <math . h>
i n c l u d e ” x s p i c e m a t h f u n c . h ”
vo id cm nonLinQ (ARGS)
{

Complex t a c g a i n 0 0 ;
s t a t i c do ub l e c0 , k1 , k2 ;
s t a t i c do ub l e V1 , V1 old ;
d o u b l e Q0 , cQ0 ;
do ub l e d e l t a t ;
i f (INIT) {
c0 = PARAM(c0) ;
k1 = PARAM(k1) ;
k2 = PARAM(k2) ;
}
i f (ANALYSIS != AC) {

i f (TIME == 0) {
V1 old = V1 = INPUT (P1 P2) ;
Q0 = 0 . 0 ;
cQ0 = 0 . 0 ;

} e l s e {
V1 = INPUT (P1 P2) ;
d e l t a t =TIME−T (1) ;
Q0 = ((k1∗V1+k2 ∗ (V1∗V1) + 1 . 0)∗ c0)∗

(V1−V1 old) / (d e l t a t +1e−20);
cQ0 = ((k1∗V1+k2 ∗ (V1∗V1) + 1 . 0)∗ c0) /

(d e l t a t +1e−20);
V1 old = V1 ;
}
OUTPUT(P1 P2) = 0 . 0 + Q0 ;
PARTIAL (P1 P2 , P1 P2) = 0 . 0 + cQ0 ;
} e l s e {
a c g a i n 0 0 . r e a l = 0 . 0 ;
a c g a i n 0 0 . imag = (c0 ∗ (k1∗V1+k2 ∗ (V1∗V1)+

1 . 0)) ∗RAD FREQ;
AC GAIN(P1 P2 , P1 P2) = a c g a i n 0 0 ;
}
}
Listing 2. The XSPICE synthesised C code for a non-linear capacitor model.

Fig. 3. EDD/CodeModel non-linear compact model example: (a) EDD model
and Qucs-S schematic symbol, (b) RC low pass filter test circuit with swept
capacitance bias control.

IV. A BASIC QUCS-S LONG CHANNEL VERSION

OF THE EPFL-EKV V2.6 COMPACT DEVICE MODEL

FOR AN NMOS TRANSISTOR

The Qucs-S XSPICE synthesized CodeModel examples in-

troduced in the previous sections demonstrate the fundamental

concepts needed to take full advantage of the improved mod-

elling power and flexibility now built into the Qucs-S circuit

simulation and modelling package. When modelling semicon-

ductor devices the complexity of the task requires adoption

of a modular structure where individual parts of a model

can be developed, tested and finally assembled to produce a

finished model. Qucs-S encourages such an approach by the

use different modelling features, including Qucs EDD, SPICE

B type sources, XSPICE CodeModel synthesized blocks and

appropriate linear components linked together via a set of

internal nodes within the body of a subcicuit. A basic long

channel EPFL EKV v2.6 nMOS model can be represented by

the following set of simplified compact semiconductor device

equations 5. A detailed description of the meaning of the

variables in these equations is given in reference [8]. In this

paper equations 5 to 13 are used to demonstrate how EDD, and

XSPICE synthesized code models can be combined to develop

a basic functional, static I/V model of an nMOS transistor:

V g
′
= V g − V to+ φ+ β ·

√
φ (5)

V p = V g
′ − φ− γ · (

√
(V g′ + (γ/2)2)− γ/2) (6)

n = 1 + γ/(2 ·
√
(V p+ φ+ 4 · vt)) (7)

beta = (kp · w/l)/(1 + θ · V p) (8)

x1 = (V p− V s)/vt (9)

x2 = (V p− V d)/vt (10)

iff = ln(1 + exp(x1/2)) · ln(1 + exp(x1/2)) (11)

ir = ln(1 + exp(x2/2)) · ln(1 + exp(x2/2)) (12)

ids = 2 · n · β ∗ vt2 · (iff − ir) (13)

Figures 4 and 5 present the normal sequence for converting

Qucs-S EDD into XSPICE C code blocks. In order to represent

the EDD version of the EKVv2.6 nMOS transistor static I/V

equations (5) in an easily readable format that can be fitted

onto a double column page four EDD, labeled (a) to (d) are

used to build the long channel I/V model.

Fig. 4. EKV2.6 Qucs-S EDD long channel static I/V model for a long
channel nMOS transistor: D1 to D4 currents In represent the equations
listed in equations 5 to 13.

Fig. 5. EKV2.6 Qucs-S XSPICE long channel static I.V model for a nMOS
transistor: nodes labeled with the same name are connected.

Fig. 6. EKV2.6 Qucs-S long channel static I/V model test bench and typical
simulated I/V output characteristics.

V. MODELLING RF PASSIVE COMPONENTS

WITH XSPICE CODEMODELS

A high percentage of EDD models consist of two main

sections. Firstly, an inner core which represents the primary

and secondary physical effects that determine the functionality

of the device, and secondly an outer part which acts as a

wrapper around the inner core connecting it to the outside

world via passive components. These components often rep-

resent parasitic effects which are associated with the device

signal paths from the inner core to the external connection

device pins. At low frequencies parasitics normally have no

significant effect on simulation performance and are usually

neglected. However, at RF and higher frequencies, the reverse

is true, making it essential that the parasitic components are

included, otherwise significant simulation errors occur. The

recent XSPICE CodeModel improvements to EDD modelling

allow Qucs-S, for the first time, to include difference equations

in compact simulation models. Equation 14 shows an example

where Qucs-S models a non-linear capacitor current derived

from the time derivative of stored branch charge written as a

difference equation. In the case of an inductor, an equivalent

current equation is

I(t1) = I(t1 −Δt) +
V (t1)Δt

L
(14)

The expression for current I(t1) given in equation 14 is for an

ideal component without any high frequency parasitics. In con-

trast the electrical network shown in Figure 7 (a) is an RF in-

ductance with parasitics Rs,Cp,Rp added. Equation-defined

models for complex RCL networks can be easily handled by

Qucs-S using time dependent difference equations to transform

first order differential equations to simpler algebraic equations.

Equation 15 introduces the RF inductance algebraic/difference

equations that express the current I flowing in the model in

terms of applied voltage V and component values.

I(t1) = IL(t1) + ICp(t1) + IRp(t1) (15)

where

IL(t1) = (V (t1) + p1 · IL(t1 −Δt))/(Rs+ p1) (16)

p1 = L/Δt (17)

ICp(t1) = (V (t1)−Δt)/Δt (18)

IRp(t1) = V (t1)/Rp (19)

The expression for I(t1) is used by Qucs-S as the basis for an

XSPICE CodeModel. Listing 3 introduces part of the XSPICE

C code derived from the schematic and current function given

in Figure 7. Similarly, Figure 7 (c) presents a simple test bench

and an AC performance curve for the RF inductor. Notice at

frequencies above roughly 1e8Hz the inductor shows distinct

capacitive characteristics. This is a primary effect caused by

the parasitic components Rs,Cp,Rp.

i f (ANALYSIS == DC) {
v ind = INPUT (n ind) ;
i i n d d c = v in d / (PRS+1e−7) +

v ind / (PRP+1e−7);
OUTPUT(n ind) = i i n d d c ;
PARTIAL (nind , n ind) = 1 / (PRS+1e−7) +

1 / (PRP+1e−7);
i i n d d c o l d = i i n d d c ;
}
i f (ANALYSIS == AC) {
p1 =(PRS∗PRS+RAD FREQ∗RAD FREQ∗

l v a l u e ∗ l v a l u e) ;
a c g a i n . r e a l = PRS / p1 +1/PRP ;
a c g a i n . imag= RAD FREQ∗PCP − (l v a l u e ∗

RAD FREQ) / p1 ;
AC GAIN(nind , n ind) = a c g a i n ;
}

i f (ANALYSIS == TRANSIENT) {
v ind = INPUT (n ind) ; d e l t a = TIME − T (1) ;
p1 = l v a l u e / d e l t a ; p2 = p1+PRS ;
i i n d = (i i n d o l d ∗p1 / p2 + v ind) / p2 ;
i c p = i c p o l d +PCP∗ (v ind − v i n d o l d) /

d e l t a ;
i r p = v ind / PRP ;
OUTPUT(n ind) = i i n d + i c p + i r p ;
PARTIAL (nind , n ind) = 1 / p2 +

PCP / d e l t a + 1 / PRP ;
v i n d o l d = v ind ;
i i n d o l d = i i n d ; i c p o l d = i c p ;
}

Listing 3. Part of the XSPICE synthesised C code for an RF inductance
model.

Fig. 7. RF inductance Equation-Defined model: (a) schematic symbol and
(b) AC test bench and performance data

VI. EXTENDING EQUATION-DEFINED COMPONENT AND

DEVICE MODELS WITH USER DEFINED FUNCTIONS

When first released for modelling the Qucs EDD was

supported by a set of operators and mathematical functions

similar to those common to packages like Octave. Over the

last ten years the range of these functions has been steadily

improved, till today, they mirror a high percentage of the

functions defined in the Verilog-A standard [3]. With the

release of the Qucs-S version of EDD, and the supporting

XSPICE CodeModel tools, user defined functions have also

been added to the Equation-Defined modelling tool set. Qucs-

S user defined functions are stored by Qucs-S as a list in

a library which can be included, when needed, in XSPICE

CodeModels. The examples in Listing 4 give an indication of

the Qucs-S XSPICE user defined function syntax:

d e f i n e s t e p (x) ((x) > 0 . 0 ? 1 . 0 : (((x)==0)?
0 . 5 : 0 . 0))

d e f i n e Xpow(x , p) pow (f a b s ((x)) , (p))
d e f i n e l imexp (x) ((x) <80.0? exp (x) :

(exp (8 0 . 0) ∗ ((x) −8 0 . 0)))

Listing 4. Example user-defined XSPICE CodeModel functions.

VII. CONCLUSION

Qucs EDD were introduced roughly ten years ago as a

simple to use interactive non-linear modelling tool. Although

Verilog-A has emerged as one of the dominant hardware de-

scription languages for compact model development the strong

link between EDD and Verilog-A models has ensured that

EDD modelling retains it’s popularity amongst the compact

modelling community. This paper introduces a number of

improvements that have taken place in EDD modelling as

part of the release of the Qucs-S version of Qucs. Particular

emphasis being given to (1) automatic syntheses of C code

compact device models from Qucs EDD schematics, with

a newly developed XSPICE CodeModel synthesis tool, (2)

the introduction of user defined functions and (3) subcircuit

packaging of hybrid XSPICE CodeModel/EDD/linear com-

ponent models. To demonstrate the utility and performance

of the improved Qucs-S EDD modelling tools a number of

different model fragments are described and simulated with

Qucs-S/Ngspice. Given the success of the original Qucs EDD

it is expected that the recent improvements in the Qucs-

S non-linear modelling will over a period of time have a

corresponding impact.

REFERENCES

[1] S. Jahn, and M.E. Brinson, “Interactive Compact Modeling Using Qucs
Equation-Defined Devices”, Int. J. Numer. Model. 2008, vol 21, pp. 335-
349.

[2] M. Brinson, and S. Jahn,“Qucs: A GPL software package for simulation,
compact device modelling and circuit macromodelling from DC to RF
and beyond”, Int. J. Numer. Model. 2009, vol 22, pp. 297-319-349.

[3] Accellera, ”Verilog-AMS Language Manual”, Version 2.3.1, 2009. [On-
line] Available: http://www.accellera.org.

[4] M. E. Brinson, ”SPICE to QucsStudio via Qucs: An interna-
tional attempt to develop a freely available GPL RF design, com-
pact modeling, simulation, data processing and manufacturing de-
velopment environment for engineers”, MOS-AK/GSA Workshop,
March 16-18, 2012, India. [Online] Available: http://www.mos-
ak.org/india/presentations/Brinson MOS-AK India12.pdf.

[5] L. Lemaitre and B.Gu, ”ADMS- a fully customizable
Verilog-AMS compiler approach,” MOS-AK, Meeting,
Montreux, 2006, [Online] Available: http://www.mos-
ak.org/montreux/posters/17 Lemaitre MOS AK06.pdf.

[6] P Nenzi and H. Vogt, ”Ngspice-26 (Next generation SPICE version 26),
2015. [Online] Available: http://ngspice.sourceforge.net.

[7] Sandia National Laboratories US., ”Xyce parallel electronic simulator
version 6.4,” 2016, [Online] Available: http://xyce.sania.gov.

[8] M. Bucher, C. Lallememt, C. Enz. F Theodoloz and F. Krummencher,
”The EPFL-ELV MOSFET Model Equations for Simulation”, Technical
Report, Electronics Laboratories, Swiss Federal Institute of Technology
(EPFL), Lausanne, Switzerland, Model Version 2.6, June 1997.

[9] SPICE OPUS, ”SPICE OPUS: analog circuit simulator engine specifi-
cally suited for optimization tools, based on SPICE 3jf and XSPICE.”,
Faculty of Electrical Engineering at the University of Ljubljana, Slove-
nia., 2016. [Online] Available: http://fides.fe.uni-lj.si/spice/download/.

[10] M. E.Brinson and V. Kuznetsov, ”A new approach to compact semicon-
ductor modelling with Qucs Verilog-A analogue module synthesis, ”Int.
J. Numer. Model., 2016, vol. 29. pp. 1070-1088, November/December.

[11] F. Cox III, W.Kahn, J, Murry and S. TYnor, ”Code-level modeling in
XSPICE,” in Circuits and Systems, 1992 ISCAS ’92, Proceedings., 1992
IEEE International Symposium on., vol.2 , May 1992, PP. 871-874.

[12] GiNaC, ”GiNaC is Not a CAS: ” C++ library, designed to allow
the creation of integrated systems that embed symbolic manipulations
together with more established areas of computer science.”, [Online]
Available: http://www.ginac.de/.

[13] M. E. Brinson and V. Kuznetsov,‘Spice4qucs-help documentation,
user manual and reference material. [Online] Available: http://qucs-
help.readthedocs.org/en/spive-4qucs.

[14] M. E. Brinson and V. Kuznetsov, Qucs-0.0.19S: A new open-source cir-
cuit simulator and its application for hardware design”, in International
Siberian Conference on Control and Communications (SIBCON), May
2016, pp 1-5.

Mike Brinson received a first class honours BSc
degree in the Physics and Technology of Electronics
from the United Kingdom Council for National
Academic Awards in 1965, and a PhD in Solid State
Physics from London University in 1968. Since 1968
Dr. Brinson has held academic posts in Electronics
and Computer Science. From 1997 till 2000 he was
a visiting Professor of Analogue Microelectronics at
Hochschule, Breman, Germany. Currently, he is a
visiting Professor at the Centre for Communication
Technology Research, London Metropolitan Univer-

sity, UK. He is a Chartered Engineer (CEng) and a Fellow of the Institution
of Engineering and Technology (FIET), a Chartered Physicist (CPhys), and a
member of the Institute of Physics (MInstP). Prof. Brinson Joined the Qucs
project development team in 2006, specializing in device and circuit modeling,
testing and document preparation.

Vadim Kuznetsov was born in Kaluga, Russia
in 1988. He received dipl. engineer degree from
Moscow Bauman State University (BMSTU) in
2010. He received PhD degree from Higher school
of Economics in 2014. He is Associate Professor
of Electronic Engineering department of Kaluga
Branch of BMSTU. His research field is electrostatic
discharge simulation methods. His field of interest
is electronic design automation (EDA) CAD open-
source software development. He is core member of
Qucs circuit simulator development team.

