
ar
X

iv
:1

61
2.

06
93

3v
1 

 [
cs

.C
V

] 
 2

1 
D

ec
 2

01
6

Unsupervised Place Discovery for Visual Place Classification

Fei Xiaoxiao Tanaka Kanji Inamoto Kouya

Univ. of FUKUI

3-9-1, bunkyo, fukui, fukui, Japan

e-mail tnkknj@u-fukui.ac.jp

Abstract

In this study, we explore the use of deep convolu-
tional neural networks (DCNNs) in visual place clas-
sification for robotic mapping and localization. An
open question is how to partition the robot’s workspace
into places to maximize the performance (e.g., accu-
racy, precision, recall) of potential DCNN classifiers.
This is a chicken and egg problem: If we had a well-
trained DCNN classifier, it is rather easy to parti-
tion the robot’s workspace into places, but the train-
ing of a DCNN classifier requires a set of pre-defined
place classes. In this study, we address this problem
and present several strategies for unsupervised discov-
ery of place classes (“time cue,” “location cue,” “time-
appearance cue,” and “location-appearance cue”). We
also evaluate the efficacy of the proposed methods us-
ing the publicly available University of Michigan North
Campus Long-Term (NCLT) Dataset.

1 Introduction

Visual place classification (VPC) is a fundamental
task in robotic mapping and localization [1]. In VPC,
a mapper robot collects a set of training images with
ground-truth viewpoint information, assigns a class la-
bel (place ID) to each image, and learns an environ-
ment map from the labeled training data. Then, a map
user robot takes a visual image without viewpoint in-
formation, and classifies it into one of the learned place
classes. In this paper, we are motivated by the recent
success of deep convolutional neural network (DCNN)
[2] in various classification tasks, and to explore the
use of a DCNN classifier as an environment map.
An open question is how to partition the robot’s

workspace into places. This is an important problem as
the definition of place classes strongly influences per-
formance (e.g., accuracy, precision, recall) of a VPC
task. Intuitively, each place class should be defined as a
continuous region in the robot’s workspace with similar
DCNN features. The main difficulty is a chicken and
egg problem: If we had a well-trained DCNN classifier,
it is rather easy to partition the robot’s workspace into
place regions, but the training of a DCNN classifier re-
quires a set of pre-defined place classes.
In this study, we formulate this problem and present

several strategies. It is assumed that we are given a col-
lection of visual images with ground-truth viewpoint as
a guide, which can be independent from training and
test data. The goal is to search for an effective parti-
tion of the workspace into places to maximize perfor-

mance of potential DCNN classifiers. We propose to
use three different types of information: time cue, lo-
cation cue, and appearance cue that is available from
the pre-trained DCNN. We then present four differ-
ent strategies for workspace partitioning by combining
them: “time cue,” “location cue,” “time-appearance
cue,” and “location-appearance cue”. Finally, we eval-
uate the efficacy of the proposed methods using the
publicly available University of Michigan North Cam-
pus Long-Term (NCLT) Dataset [3].
This work is inspired by our previous work on the

use of DCNNs in visual place classification [4]. In [5],
we address the issue of unsupervised place discovery.
In it, we view places (i.e., mapped images) as indepen-
dent classes, and for each class, we form a class-specific
set of training features, by mining the visual experience
to find the relevant library features that effectively ex-
plain the input scenes. In contrast, this study focuses
on the use of DCNNs for unsupervised place discovery.
The issue has not been explored in the above works.

2 Approach

2.1 System Overview

Fig. 1 shows an overview of our approach. We
assume a typical supervised classification framework
for VPC. The entire VPC framework consists of two
phases: (1) training, and (2) testing. The training
phase (“Train” in Fig. 1) takes as input a set of la-
beled training images for each place class and trains a
classifier that classifies an image into one of the pre-
defined place classes. We represent the place class ID
with a label. The testing phase (“Test” in Fig. 1)
takes as input a novel unseen image (“Query image”
in Fig. 1) and predicts its place class by using the
trained classifier. Our use of DCNN for learning and
testing follows typical transfer learning [6], where the
DCNN is pre-trained on Big Data and then fine-tuned
to adapt to the target domain [2]. Our experimen-
tal system is based on Alexnet pre-trained on the Im-
ageNet LSVRC-2012 dataset and fine-tuned (“Fine-
tuning” in Fig. 1) on the relatively small training
dataset (“Dataset” in Fig. 1), which our algorithm
creates from the NCLT Dataset (“Build dataset” in
Fig. 1).
Although our approach is sufficiently general and ap-

plicable to various types of environments (e.g., indoor
and outdoor) and sensor modalities, in experiments, we
focus on the NCLT Dataset [3]. The NCLT Dataset is a
large scale, long-term autonomy dataset for robotics re-
search collected on the University of Michigan’s North
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Figure 1. System overview.

Campus by a Segway robotic platform. The Segway
was outfitted with: a Ladybug3 omnidirectional cam-
era, a Velodyne HDL-32E 3D lidar, two Hokuyo planar
lidars, an inertial measurement unit (IMU), a single-
axis fiber optic gyro (FOG), a consumer grade global
positioning system (GPS), and a real-time kinematic
(RTK) GPS. The data we used in our research includes
image and navigation data from the NCLT Dataset.
The image data is from the front facing camera (cam-
era#5) of the Ladybug3 omnidirectional camera. Fig.
2 shows a bird’s eye view of the experimental environ-
ment and an example robot trajectory.
Every test image is assigned a place label. For ev-

ery test image, a set of training images with sufficiently
similar viewing directions is selected. From these train-
ing image sets, the one with nearest location is selected
and its place label is assigned to the test image. We
set the threshold on orientation similarity to 20 deg. If
the distance from the ground-truth viewpoint of a test
image to that of any training image is larger than a
pre-defined threshold of 18 m, the image is considered
invalid as a test image and not used in our classification
experiments.

2.2 Problem Formulation

The workspace partitioning problem is formulated as
follows. The goal is to partition the robot’s workspace
into continuous place regions to maximize the perfor-
mance of potential DCNN classifiers. The input is a set
of images and viewpoints collected by the mobile robot
in the target environment, which can be independent
from training and testing data. The output is a set of
clusters of images, and we assign a place ID to each
cluster. It is natural that the workspace partitioning

Figure 2. The experimental environment and an
example robot trajectory.

takes place prior to the training phases, and influences
performance of both the training and classification.

2.3 Performance Index

We evaluate the performance of a workspace par-
titioning algorithm using simulated VPC tasks. The
evaluation procedure consists of three distinct steps.
First, the training dataset is partitioned into K clus-
ters using the algorithm of interest. Second, the DCNN
classifier (pre-trained on the ImageNet LSVRC-2012
dataset) is fine-tuned using the corresponding K im-
age sets as training data. Third, each test image in
the test set is fed to the trained DCNN classifier to
obtain the classification result, and the performance is



time cue location cue

time-appearance cue location-appearance cue

Figure 3. Example results for workspace partitioning.

evaluated by success rate (SR) in the form:

p =
1

K

K
∑

n=1

[an ∈ rn], (1)

n is the ID of test image. rn is the top-X classification
result of the n-th test image (e.g., X = 1, X = 5),
which is represented by a size X set of training image
IDs. an is the ground truth classification result, which
is represented by a single training image ID. [·] is an
indicator function:

[an ∈ rn] =

{

1 (if an ∈ rn)
0 (otherwise)

. (2)

A limitation of the above evaluation function (1) is
that it ignores the size |C(rn)| of image sets that be-
long to each image class C(rn). From the perspective
of robotic mapping and localization, the accuracy of
the VPC should reflect the cluster size |C(rn)|, as the
robot’s final goal is to localize a single test image rather
than a cluster of test images. To address this issue, we
also introduce a normalized version of the success rate
(NSR) in the form:

p =
1

K

K
∑

n=1

[an ∈ rn]

|C(rn)|
. (3)

Note that |C(xn)| serves as a regularizer to avoid mean-
ingless solutions in which all the training images be-
long to a single place class and other place classes are
empty. Intuitively, p represents the probability of a
given image being correctly classified into the ground-
truth place class.

2.4 Workspace Partitioning Strategies

We developed four different strategies for workspace
partitioning. Fig. 3 shows examples of place classes
found by each strategy. In the figure, different col-
ors indicate different place classes. We can see that
all the strategies create a set of clusters with similar
cluster sizes, although the performance difference be-
tween them is significant as shown in the experimental
section, Section 3.
The first is a simple time cue strategy. It partitions

a sequence of images into classes by their time stamps
or image IDs. Thus, the partitioning result is a set
of clusters with K− 1 intervals of approximately equal
duration. This strategy is based on an observation that
images with similar time stamps are expected to have
visually similar appearance, since they are collected
by a mapper robot that navigates through a continu-
ous trajectory in the environment, and such clusters
of images are expected to be a good training set for a
DCNN classifier. Obviously, this simple strategy has
many limitations. Particularly, it is not robust if the



Figure 4. Visual image for each class.

robot’s moving speed varies. Also, it does not take ad-
vantage of any appearance features that are available
from the pre-trained DCNN.
The second strategy is location cue strategy. This

strategy is different from the time cue strategy only
in that it partitions a sequence of images not by their
time stamps, but by their travel distance along the tra-
jectory. Thus, the partitioning result is a set of clus-
ters with K− 1 intervals of approximately equal travel
distances. Note that the location cue strategy does
require the information of travel distance along the
trajectory, which is readily available given the ground-
truth viewpoint information. This strategy is robust
against variance in the robot’s moving speed but still
does not take advantage of appearance information
from the pre-trained DCNN.
The third strategy is location-appearance cue strat-

egy. The basic idea is to augment the location cue
strategy by using the available pre-trained DCNN clas-
sifier as a guide. We use the 6-th layer from the pre-
trained DCNN as the image representation because it
has shown excellent performance in the image classifi-
cation task in [7]. The workspace partitioning proce-
dure is as follows. (1) Images are represented by 4,096
dimensional 6-th layer features from the DCNN. (2)
They are fed to k-means clustering to obtain K image
clusters. (3) For each cluster, we perform the location
cue strategy to partition the cluster into sub-clusters.
The fourth strategy is time-appearance cue strategy.

The basic idea is to augment the time cue strategy
by using the available pre-trained DCNN classifier as
a guide. The basic concept of the augmentation is
similar to that of the location-appearance cue strategy,
but different in that we perform the time cue strategy
(instead of the location cue strategy) in the step3 of
the procedure.

3 Experiments

We evaluated the proposed framework for workspace
partitioning on real VPC tasks. Four different strate-

gies for workspace partitioning were considered: time,
location, location-appearance, and time-appearance.
For training data, we used the dataset of “March 31st
2012,” in which the total travel distance is 6.0km, the
time is midday, the environmental condition is cloudy,
no foliage and no snow. The training data consists
of images and viewpoint information that is available
from the NCLT Dataset. For testing data, we used
the dataset of “Aug 4th 2012,” in which the travel dis-
tance is 5.5km, the time is morning, the environmen-
tal condition is sunny, foliage and no snow. The test
data consists of images, and the available viewpoint in-
formation is used for ground-truth prediction. Fig. 4
shows examples of images belonging to individual clus-
ters in the case of time-appearance strategy. Shown
are representative images from 600 clusters that were
randomly sampled from the K clusters.
The training data provided by each strategy was fed

to transfer learning (i.e., fine-tuning) of the DCNN
that is pre-trained on the Big Data (i.e., the ImageNet
LSVRC-2012 dataset). The classification function in
the pre-trained DCNN is a softmax classifier that com-
putes the likelihood over 1,000 classes of the ImageNet
dataset. To fine-tune the DCNN, we changed the num-
ber of the softmax classifiers at the top layer with the
number of place classes. Then, the DCNN parame-
ters were fine-tuned on new training datasets. After
the fine-tuning, we evaluated the performance of the
DCNN on the test set in terms of accuracy. In the ex-
periment, we changed the softmax classifier with a new
value that is equal to the classes of training datasets.
Table 1 shows the loss and accuracy of the test

datasets. We can see that the time-appearance cue
strategy outperformed the time cue, location cue,
and location-appearance cue strategies. We also see
that the location cue strategy outperformed the time
cue strategy. The reason may be that the time cue
strategy does not consider that the mapper robot
moves with variable and it often fails to partition
the workspace into equal-size sub-regions. Overall,
the time-appearance and location-appearance strate-
gies outperformed the other two. It could be said that
appearance information from the pre-trained DCNN
provides an effective cue to further improve the time
cue and location cue strategies. Finally, the success
rate of these strategies is sufficiently high considering
the fact that the number of possible places is large
(e.g., 675).

4 Conclusions & Future Works

In this study, we explored the use of deep con-
volutional neural networks (DCNNs) in visual place
classification (VPC) for robotic mapping and localiza-
tion. It has been shown that the proposed strategies
for workspace partitioning enabled effective discovery,
learning and classification of place classes. Our re-
search showed that we can use location features and
appearance features to partition the robot’s workspace
into places, which leads to better fine-tuning of the
DCNN, and improves overall performance of VPC.
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