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Abstract

While deep learning has seen many recent appli-
cations to drug discovery, most have focused on pre-
dicting activity or toxicity directly from chemical struc-
ture. Phenotypic changes exhibited in cellular images
are also indications of the mechanism of action (MoA)
of chemical compounds. In this paper, we show how
pre-trained convolutional image features can be used
to assist scientists in discovering interesting chemical
clusters for further investigation. Our method reduces
the dimensionality of raw fluorescent stained images
from a high throughput imaging (HTI) screen, produc-
ing an embedding space that groups together images
with similar cellular phenotypes. Running standard un-
supervised clustering on this embedding space yields a
set of distinct phenotypic clusters. This allows scien-
tists to further select and focus on interesting clusters
for downstream analyses. We validate the consistency
of our embedding space qualitatively with t-sne visu-
alizations, and quantitatively by measuring embedding
variance among images that are known to be similar.
Results suggested the usefulness of our proposed work-
flow using deep learning and clustering and it can lead
to robust HTI screening and compound triage.

1 Introduction

Modern drug discovery is a rapidly evolving field
with the use of modern AI technology. Nonetheless, it
remains expensive and time consuming for the intro-
duction of any new medicine (almost $3 billion, >10
years, [3]). Rather than hand-designing and testing
novel drugs individually, the modern pharmaceutical
approach is to use a library of compounds (e.g. 2 mil-
lion compounds), and filter them with a sequence of
complex imaging and biochemical tests. Typically for
a high throughput screen, a single dose experiment is
designed to remove vast majority of irrelevant com-
pounds, e.g. by 100 folds.

Following the spectacular rise of deep learning tech-
niques in computer vision, natural language processing
and numerous scientific applications in recent years,
deep learning has increasingly been applied to the field
of chemoinformatics [2]. However, most recent work

(e.g. [1]) has focused on predicting the biological ef-
fects of chemical compounds directly from chemical
structure representations such as SMILES strings [9].
Morphological profiling is a complementary approach
that can be used to predict a broad range of biological
effects [4]. In this approach, candidate drugs are ap-
plied to cell cultures and imaged with high throughput
fluorescence microscopy; depending on the bioactivity
of the drugs, this can cause a variety of morphological
changes to occur, yielding clues as to what effect a com-
pound has on the cells. Indeed, [4] shows that a single
network can be transferred to predict the outcomes of
many other targeted assays.

Despite the rich information provided by morpho-
logical profiling, it is sometimes unknown which exact
morphological phenotypes one should screen for. An
example of this scenario is a high throughput screen
conducted by AstraZeneca, in which novel compounds
are screened for inhibition of IDOL - Inducible De-
grader of the Low density lipoprotein receptor (LDLR)
[5]. In this screen, HEK293S human embryonic kid-
ney cells were engineered to express both Low Den-
sity Lipoprotein Receptor - Green Fluorescence Pro-
tein (LDLR-GFP) and IDOL. Since IDOL degrades
LDLR, the presence of green fluorescence is an indi-
cator of IDOL inhibition. However, due to the com-
plex and poorly understood interactions between novel
compounds and human cells, presence of the GFP sig-
nal is a necessary but not sufficient condition to infer
IDOL inhibition - the actual phenotypic appearance of
genuine hits is not known at the screening stage. In
situations like this, the expert knowledge and intuition
of a biologist is required to identify phenotypes that
are indicative of genuine hits. Due to the high volume
of images in a HTI screen, this cannot be done manu-
ally for each individual image, and due to the unknown
nature of the target phenotype, supervised learning is
not applicable.

In this paper, we propose a novel procedure for com-
puting feature vectors for cellular images using a pre-
trained convolutional neural network (CNN). The re-
sulting feature vector space can then be partitioned
by unsupervised clustering, allowing us to decompose
a HTI screen into a small set of visually distinct phe-
notypes. The expert judgement of biologists can then
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Figure 1. Our feature extraction pipeline. We
feed our images through a pre-trained VGG16
network, truncated before the fully connected lay-
ers, and concatenate the spatial means of three in-
termediate convolutional layer activations. This
yields a vector of multi-scale convolutional fea-
tures, which we later embed in 2D space via t-sne
(see Figure 5).

be applied to whole phenotype clusters rather than in-
dividual images, allowing a HTI screen to be filtered
rapidly for interesting compounds. The feature vectors
can also be embedded in 2D space for visualization us-
ing dimensionality reduction techniques such as t-sne
[6], providing a visual summary of the phenotypic dis-
tribution.

In Section 2 we describe our feature extraction
pipeline. Section 3 discusses clustering and in Section 4
we demonstrate and evaluate our approach on a high
throughput imaging dataset (IDOL).

2 Feature Extraction

CNNs trained on large datasets such as ImageNet
have been found to learn a hierarchy of features, with
early layers learning general, task-agnostic features
pertaining to texture and shape primitives, and later
layers learning more task specific features [10]. De-
spite the obvious differences between ImageNet images
(which are generally photographs) and fluorescence mi-
crographs, the early convolutional layers of a CNN
trained on ImageNet are general enough to respond
to the differences in shape, colour and texture in fluo-
rescent labeled cellular images.

Our feature extraction begins by computing feature
maps for a cellular image, by feeding it through a pre-
trained CNN (Figure 1). The CNN architecture we use
is VGG16 [8], pre-trained on ImageNet. Rather than
taking final fully-connected layer activations as our fea-
ture vector, we extract our features by mean pooling
the (pre-activation) feature maps of three early convo-
lutional layers, and concatenating the means to pro-
duce a feature vector of length 1024 (one component
for each feature map in the chosen layers). Extracting
features from early convolutional layers rather than fi-
nal fully connected layers has a number of advantages
for large images in which the objects of interest are

Figure 2. Receptive field sizes of our chosen con-
volutional layers, overlaid on a histological image
for reference. By pooling from multiple layers, we
can extract information about fine texture, indi-
vidual cells and small clusters of cells.

relatively small and homogeneously distributed.

Firstly, high level representations learned by CNNs
contain information that is immediately relevant for
identifying the classes they are trained to recognize. In
the case of ImageNet, these are everyday objects such
vehicles and animals. High level features are unlikely
to be very descriptive for cellular images, which dif-
fer substantially from the ImageNet images and train-
ing classes, but lower level features are still general
enough to capture information about shape, texture
and colour.

Secondly, because of the fixed weight matrix con-
necting the first fully connected layer to the last con-
volutional layer, fully connected layers require the in-
put image to be of a fixed size. By using only the
convolutional layers of the network, we avoid the need
to downsample our images to 224 × 224 (for the VGG
network), which would discard valuable high frequency
information.

Thirdly, different layers capture information at dif-
ferent scales. Higher level layers have larger receptive
fields, and describe patterns of greater size and com-
plexity, but successively discard the higher frequency
information captured by lower layers. By extracting
features from the fourth, seventh and ninth convolu-
tional layers, we obtain a multi-scale representation
(see Figure 2).

3 Clustering

To discover distinct phenotypes in the dataset, we
perform k-means clustering in feature space. The op-
timal choice for the number of clusters k is a trade-off
between making the clusters as homogeneous as possi-
ble, and keeping their number low. Figure 3 shows the
mean intra-cluster embedding variance as a function of
k; since we observe diminishing returns past k = 70,
we choose 70 as the optimal number of clusters.



Figure 3. Mean intra-cluster variance as a func-
tion of the number of clusters. We cap the num-
ber of clusters at 70, as diminishing returns are
observed past this point.

4 Results

The most crucial aspect to validate is that our fea-
ture extraction does indeed embed similar images at
similar points in the feature space. We can evaluate
this quantitatively, by measuring the variance (con-
cretely, mean squared distance to centroid) of different
groups of image embeddings. The compounds tested in
this dataset are chemically clustered by AstraZeneca in
Extended-Connectivity Fingerprint embedding space
[7], resulting in 711 chemical clusters. We would expect
images corresponding to compounds from the same
chemical cluster to have more tightly clustered feature
vectors than the dataset as a whole, because similar
compounds may lead to similar morphological changes
in images. As expected, the mean intra-cluster feature
variance is 66.5% that of the dataset as a whole. Fur-
thermore, we would expect different images captured
from the same well on an assay plate to be clustered
more tightly still, because these images all correspond
to the same compound. We observe the mean intra-
well variance (4 images were captured per well) to be
4.0% that of the full dataset.

To validate the quality of our clusters, we display
samples from six phenotypic clusters in Figure 4. We
see that k-means has identified relatively homogeneous
clusters, further validating the quality of our embed-
dings.

Figure 5 shows a t-sne visualization of our entire
dataset, with phenotypic clusters detected by k-means
labelled by colour and annotated with representative
samples from that cluster. To speed up the t-sne pro-
cess, we used Principal Component Analysis (PCA) to
reduce the dimensionality of our features from 1024 to
10. These 10 principal components explain > 90% of
the variance in the embedding space. Clusters 4 and

Figure 4. Samples from six of the 70 phenotypic
clusters detected by k-means. Each row shows
four example images from a single cluster. Rows
2 and 4 show genuine GFP expression.

6 in Figure 5 show genuine GFP expression, while the
others are judged as uninteresting by the biologists,
and can be discarded, resulting in a 47-fold reduction.
Using the full 70 clusters would result in more precise
filtering and greater reduction still.

5 Conclusion

We have developed a novel workflow for high
throughput screening. In this workflow, images were
represented as deep learning feature vectors from a pre-
trained convolutional neural network. This was fol-
lowed by the clustering of images with similar image
phenotypes. This facilitates scientists to select inter-
esting clusters for downstream screening in an attempt
to find hit compounds. Because it uses generic convo-
lutional features extracted from a pre-trained convolu-
tional neural network, our method requires no train-
ing and can be applied to any cellular screen dataset
without hyperparameter tuning - a significant saving in
time. Our visualizations allow scientists to quickly as-
sess the distribution of cellular morphologies in a high
throughput imaging screen, or within a smaller sub-
set of compounds, such as a chemical cluster. Mean-
while, our proposed workflow allows scientists to select
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Figure 5. A t-sne embedding of our dataset, with colours showing phenotypic clusters discovered by k-means.
For visualization purposes, we set k = 15 here.

interesting/promising phenotypes and quickly retrieve
chemical clusters that show a high prevalence of said
phenotypes.

Future work could gain further insight into the bi-
ological processes at work by investigating the rela-
tionship between our morphological embeddings and
the ECFP embeddings of the chemicals that produced
them, perhaps by predicting ECFP embeddings from
morphological embeddings using supervised learning.
Our techniques could also be applied to other imaging
modalities, such as tissue pathology and mass spec-
trometry imaging, with minimal modification needed.
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