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Abstract

We present a local anomaly detection method in
videos. As opposed to most existing methods that are
computationally expensive and are not very generaliz-
able across different video scenes, we propose an adver-
sarial framework that learns the temporal local appear-
ance variations by predicting the appearance of a nor-
mally behaving object in the next frame of a scene by
only relying on its current and past appearances. In the
presence of an abnormally behaving object, the recon-
struction error between the real and the predicted next
appearance of that object indicates the likelihood of an
anomaly. Our method is competitive with the existing
state-of-the-art while being significantly faster for both
training and inference and being better at generalizing
to unseen video scenes.

1 Introduction

Video anomaly detection (VAD) is one of the behav-
ioral recognition tasks that can help ensuring a safer
society by detecting quickly various potential or ongo-
ing incidents. Generally, VAD consists in identifying
video frames containing spatio-temporal regions devi-
ating from the normal behavior expected for a given
scene. Since anomalies are rare and unpredictable,
many researchers (e.g . [1–8]) aim at identifying them as
novelties in videos by relying only on normal known ob-
servations during training and by detecting anomalies
as observations that fall outside of the known normal
boundary.

Most of the recent VAD methods [1–5, 7] are holis-
tic. The normal pixel-level behaviors in videos are
learned by training unsupervised generative neural net-
works minimizing the reconstruction and/or the pre-
diction of the appearance/motion cues of the whole
video frames. Color intensities and/or dense optical
flows of video frames are widely used as appearance
and/or motion cues respectively. In reconstruction-
based methods [1, 4], these normal appearance and/or
motion cues are learned through a convolutional auto-
encoder (CAE) trained by minimizing the reconstruc-
tion error between the input and the predicted output.
In the case of prediction-based approaches, which gen-
erally perform better compared to the reconstruction-
based ones, CAEs [3] or convolutional LSTMs [2] with
two decoders can reconstruct the input and predict
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Figure 1. Overview of our method. For each ob-
ject, the generator G predicts the appearance of
that object in the next frame t+T by using its ap-
pearances in the past t− T and current t frames.
For an anomaly (person fighting), G is expected
to produce bad reconstruction (as shown in red).

the appearance of a different video frame by solely
using some consecutive appearance cues, whereas U-
Net frameworks [5, 7] use both the appearance and
motion cues. Even though they can perform VAD in
real-time, most of these holistic methods are computa-
tionally heavy and tend to overfit on the background
appearance in the training set. To alleviate the latter
issue, model agnostic meta-learning (MAML [23]) was
proposed in [8] to extent a holistic VAD model beyond
known video scenes. However, meta-learning scheme
can be computationally very expensive when working
with a high number of video scenes.

To overcome the issues of holistic methods, some
researchers [6, 9] instead consider object-centric pixel-
level features because they allow VAD systems to gen-
eralize better across different scenes. Indeed, each of
these object-centric features corresponds to a spatio-
temporal region occupied by one of the objects of in-
terest (e.g. pedestrians, cyclists, cars, etc.), ignoring
the non-object background information in videos that
prevents VAD to generalize normal local behaviors to
unseen videos. These approaches focus on the detec-
tion of object-centric local anomalies in videos, inde-
pendently of other objects [10], but actually they can
also capture close-range interactions between objects
allowing them to capture a broad variety of anomalies.

Because of their advantages over holistic models,
we propose to use object-centric appearances extracted
with a pretrained object detector for training a VAD
framework that can detect local anomaly. We also want
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a light-weight VAD solution that can quickly and ef-
fectively detect local anomalies with just a few video
frames. As opposed to some existing methods [5–7],
we do not use any motion features (e.g . optical flows)
mainly due to the fact that they are noisy for low reso-
lution/poor quality videos. Moreover, the explicit use
of motion adds another layer of complexity that can
make the VAD framework less generalizable to other
videos with different viewpoints.

Unlike the framework proposed in [6] where each
CAE model learns normal features independently from
each other, we propose a next local appearance predic-
tion network (NLAPnet) comprising of a single genera-
tor that follows a U-Net architecture with skip connec-
tions to learn to predict the next local appearance of
a normally behaving object by using only the past and
the current local appearances of the corresponding ob-
ject in the video frames. Thus, contrarily to the CAE
models in [6], our generator explicitly learns the short
temporal appearance variations of a given object which
enables better characterization of normal behavior. In-
spired by [5, 7] in which the generator is trained as a
generative adversarial network (GAN [11]), an adver-
sarial loss is also added during training in which a dis-
criminator learns jointly with the generator to separate
the real against the generated images. During inference
for a given object, we rely on the structural similarity
index measure (SSIM [17]) between the real and the
predicted image for producing an anomaly score.

Our contributions are: 1) Unlike previous methods,
ours explicitly learns the temporal appearance varia-
tions by predicting the next local appearance using
just a few frames and we show that this approach gives
competitive results, 2) our method can perform real-
time VAD when using a pretrained DLA backbone for
object detection, and 3) because it does not rely on
optical flow and it is object-centric, our method shows
very good generalization capabilities on new scene as
demonstrated by a few-shot scene adaptation study.

2 Proposed Method

Assuming that local video anomalies are caused by
objects in the scene, we propose to adversarially train,
with a discriminator, a generative model that learns to
predict the appearance of objects behaving normally in
the next frame given its appearances in the past and
current frames. To reduce the computation cost, we
define past (at−Ti ), current (ati) and next (at+T

i ) object-
centric appearances as the gray-scaled pixel-level inten-
sity images of an object (i) in the past (t−T ), current
(t) and next (t + T ) frames respectively. Hence, each
object in a given scene at a given time has an asso-
ciated appearance triplet (< at−Ti , ati, a

t+T
i >) which

slides temporally through the video frames. The frame
gap T = 3 is empirically selected to ensure significant
local changes in appearance while having a small spa-
tial displacement to avoid the need to track the ob-
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Figure 2. Overview of our proposed next local
appearance prediction network (NLAPnet). The
encoders Ep and Ec of the generator G take the

past and current appearances at−Ti and ati respec-
tively. The decoder learns to predict the next
appearance at+T

i . The discriminator D learns to
discriminate the real and the predicted images.

jects. After learning with normal behaviors, the neural
network will produce bad reconstructions for the next
appearance of objects with abnormal behavior, thus
indicating the likelihood of anomalies.

2.1 Object-Centric Appearance Extraction

Since our method requires object-centric appear-
ances in videos, we need a pretrained multi-class object
detector (MOD) to estimate the bounding box loca-
tions of all the objects of interest for each of the video
frames. For this, we used the CenterNet [12] detec-
tor, for his state-of-the-art (SOTA) performance, with
pretrained weights on MS-COCO [13] for detecting ob-
jects within 81 different classes. To extract the appear-
ance images of a given object, we simply crop the past
(t−T ), the current (t) and the next (t+T ) video frames
using the bounding box coordinates of that object in
the current (t) frame.

2.2 Next Local Appearance Prediction Network

NLAPnet predicts the next local appearance of an
object using a generator G that learns to predict at+T

i

from a pair of object crops < at−Ti , ati >. In order to
solve the issue of vanishing gradients while capturing
better fine-grained details, our generator G is formed
by two encoders that are linked to one decoder with
skip-connections [14]. The encoders share the same
weights and are composed of multiple 2-strided convo-
lutional layers, while the decoder is composed of mul-
tiple 2-strided transpose convolutional layers. A dis-
criminator D is also added to impose a generative ad-
versarial constraint by learning to differentiate the real
at+T
i against the generated one ât+T

i by G. To increase



generative performance, our model follows the adver-
sarial framework in [5] by using PatchGAN [15] with
the Least Square GAN [16] which makes D a discrim-
inative feature generator that is composed of multiple
2-strided convolutional layers and learns to output a
feature matrix of confidence values ranging from one
(for real images) to zero (for generated images).

For a given pair of < at−Ti , ati > of an object i in
a video frame t, the quality of the prediction by G is
evaluated through the generative reconstruction loss
LG , the generative adversarial loss LGadv and the dis-

criminative adversarial loss LDadv, which are given by:

LG =
1

2

(
1− SSIM

(
at+T
i ,G

(
at−Ti , ati
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(1)
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,

(3)

where x and y denotes the patch coordinates of the
discriminative feature for computing the mean squared
errors (MSE). During training, D and G update their

weights alternately : D first minimizes LDadv and then

G minimizes LG +LGadv. For LG , we found that the
structural similarity index measure (SSIM [17]) be-
tween gray-scaled intensity images yields better overall
VAD performance.

2.3 Video Anomaly Detection

During inference, we simply use LG which employs
SSIM as described in eq. 2 for producing a region-level
anomaly score sti for a triplet < at−Ti , ati, a

t+T
i > of an

object i at a time t. Anomaly detection decisions are
taken at frame-level with provisions to reduce noise.
To get the frame-level anomaly score st, we take the
highest corresponding region-level anomaly score. To
mitigate the issue of missing detection due to occlusion,
we temporally smooth the frame-level anomaly scores
with a Gaussian filter.

3 Experiments

3.1 Experimental setup

To validate our proposed method, we used three
publicly available VAD benchmarks with training
videos assumed as being normal: UCSD Pedes-
trian [18], CUHK Avenue [19] and ShanghaiTech [20].
The UCSD Pedestrian benchmark is divided into two
datasets (Ped1 and Ped2), where both share the same

Table 1. Frame-level AUC results (in %) of our
method on four datasets. * Means that the re-
sults were obtained by our implementation of the
method. The best results are shown in boldface.

Method Ped1 Ped2 Ave ST
CAE [1] 81.0 90.0 70.2 60.9
ConvLSTM-AE [2] 75.5 88.1 77.0 -
STAE-OF [3] 87.1 88.6 80.9 -
Deep CAEs [4] 56.9 84.7 77.2 -
FFP [5] 83.1 95.4 84.9 72.8
MAC [7] - 96.2 86.9 -
Few-shot [8] 86.3 96.2 85.8 77.9
OC-CAEs-dla* [6] 77.4 95.5 80.3 79.3
OC-CAEs-hg* [6] 79.6 96.4 82.2 80.5
NLAPnet-dla 81.1 96.3 81.3 82.0
NLAPnet-hg 82.3 97.2 85.4 82.5

abnormalities in videos consisting of vehicles, cyclist,
skateboarders and wheelchairs going on pedestrian
pathways, the CUHK Avenue dataset contains anoma-
lies that are based on some irregular human activities
like running, loitering and throwing/leaving carried ob-
jects, and ShanghaiTech (ST) is composed of multiple
videos having different scenes with varying types of ab-
normal activities like cycling, fighting, robbing, etc.

To measure performance, we employ the frame-level
area under the ROC curve, following the evaluation
protocol in [5]. To study the effect of MOD on local
VAD, we consider two different CenterNet [12] back-
bones, namely 1) deep layer aggregation with 34 layers
(DLA [21]) and 2) hourglass with 104 layers (HG [22]).
The former backbone is less accurate than the latter
one, but enables fast real-time detection. When con-
ducting experiments related to scene adaptation and
for the ablation study, we used the HG backbone.

3.2 Results and Discussion

Comparison with SOTA methods: We first
compared our proposed method using two differ-
ent MOD backbones (NLAPnet-dla and NLAPnet-hg)
with several existing SOTA methods [1–8], as shown in
table 1. Note that we present only the results from our
version of the implementation of [6] using the same
two MOD backbones (OC-CAEs-dla and OC-CAEs-
hg) so that all results are obtained following the same
evaluation protocol for a rigorous comparison. Over-
all, results show that our proposed method, using ei-
ther one of the two MOD backbones, significantly out-
performs other existing approaches on the most chal-
lenging dataset, ST, as well as on Ped2, while being
competitive on other datasets. However, our method
does not perform as well on Ped1 which has a signifi-
cantly lower resolution, which may affect the learning
of normal behavior for predicting frames. Nevertheless,
we can see that a better performing MOD backbone
helps increasing the performance on these datasets, es-



Table 2. Comparison between frame-level AUC
results (in %) on three target datasets using pre-
trained weights on ST. Met.: Method, Tr.: Train-
ing scheme. PO: use pretrained weights only,
FT: fine-tune the pretrained weights on the tar-
get dataset and MT: meta-training on ST. *: re-
sults were obtained by our implementation of the
method. †: shots are not used with PO. Best
results are shown in boldface.

Target Met. Tr. 1-shot 5-shot 10-shot

Ped1

[8] PO 73.1†
[8] FT 77.0 77.9 78.2
[8] MT 80.6 81.4 82.4

* [6] PO 71.6†
* [6] FT 72.1 74.3 77.2
(ours) PO 74.4†
(ours) FT 76.3 77.1 79.3

Ped2

[8] PO 82.0†
[8] FT 85.6 89.7 91.1
[8] MT 91.2 91.8 92.8

* [6] PO 90.3†
* [6] FT 92.2 93.1 94.2
(ours) PO 95.9†
(ours) FT 96.5 96.8 97.5

Ave

[8] PO 71.4†
[8] FT 75.4 76.5 77.8
[8] MT 76.6 77.1 78.8

* [6] PO 74.7†
* [6] FT 75.7 76.5 77.1
(ours) PO 78.8†
(ours) FT 79.5 81.1 82.3

pecially on Avenue, with heavily occluded areas. Still,
our results with NLAPnet-dla are competitive and are
obtained at real-time speed. With NLAPnet-hg, our
performances are similar or better than holistic meth-
ods [1–5, 7, 8], except for Ped1. This shows the benefit
of an object-centric approach in VAD.

Performance in Scene Adaptation: Since the
non-object background information is not used in our
proposed framework, we are more capable of adapting
NLAPnet to a different unseen video scene with similar
anomalies. To demonstrate that, we employed a similar
protocol as [8] by fine-tuning our pretrained model with
only K randomly selected frames per video (K-shot)
in the training set of the target datasets: Ped1, Ped2
and Avenue (Ave). As in [8], we use ST as the source
dataset for pretraining our model since it has vari-
ous scenes with similar anomalies as in other datasets.
Moreover, to further compare the effectiveness of our
proposed framework for scene adaptation, we include
results with the existing object-centric method [6] by
fine-tuning the CAE models on the target dataset. Re-
sults are shown in table 2.

Results show that our method outperforms the
model agnostic meta-learning (MAML [23]) framework
that was used as an holistic method for the Ped2 and

Table 3. Ablation study AUC results (in %) on
ST. Ep and Ec: encoders of the generator G for
past and current local images respectively. SC:
with skip-connections. adv: G is trained adver-
sarially with a discriminator D. Best results are
shown in boldface.

Ep X — X X X X
Ec — X X X X X
SC — — — X — X
adv — — — — X X

AUC 75.3 75.5 76.7 80.8 76.2 82.2

Table 4. Training (Tr) time in hours and inference
(Inf) speed in frame per seconds of our method
and others on ST.

[5] dla [6] hg [6] dla (ours) hg (ours)
Tr 48 10 10 3 3
Inf 25 25 11 34 13

Avenue datasets. We also note a significant increase
in performance when using our framework compared
to the object-centric method of [6]. Interestingly, we
can see that using pretrained weights on ST can even
improve the performance on Ped2 compared to the one
that is trained only on Ped2 (see table 1). However, for
Ped1, since the appearances of crowded objects are of
low pixel resolution, similarly to [6], our method does
not perform as well compared to the holistic model [8].

Ablation Study: In this experiment, we validate
the crucial parts of NLAPnet using the ST dataset. We
test the effects of the two encoders (for past and current
images), the skip-connections and the adversarial loss

LDadv. As we can see in table 3, results illustrate the im-
portance of using both encoders with skip-connections
when training the model in an adversarial manner.

Running Time: We used Python 3 and Keras 2
with TensorFlow binding to implement our proposed
method1 on a Intel i7-8700 machine with 16 GB RAM
using Nvidia RTX 2080 GPU. Table 4 gives the approx-
imated training time and inference speed of NLAPnet,
of [5] and of our implementation of [6] using DLA or
HG MOD backbone. We can see that our method is
significantly faster than [6] while having competitive
VAD performances.

4 Conclusion

To conclude, this paper proposes an adversarial
framework that learns to predict the local appearance
of a normally behaving object in the next video frame
by using only the appearances of that object in the past
and current frames. Results on four public benchmarks
demonstrate the effectiveness of our method with com-
petitive performance in VAD while at the same being
faster at inference, light-weight and capable to better
adapt to unseen video scenes than other methods.

1Code: https://github.com/proy3/NLAP-net_VAD.

https://github.com/proy3/NLAP-net_VAD
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