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Abstract

We present a transfer learning analysis on a spor-
ting environment of the expanded 3D (X3D) neural net-
works. Inspired by action quality assessment methods
in the literature, our method uses an action recogni-
tion network to estimate athletes’ cumulative race time
(CRT) during an ultra-distance competition. We eva-
luate the performance considering the X3D, a family
of action recognition networks that expand a small 2D
image classification architecture along multiple network
axes, including space, time, width, and depth. We
demonstrate that the resulting neural network can pro-
vide remarkable performance for short input footage,
with a mean absolute error of 12 minutes and a half
when estimating the CRT for runners who have been
active from 8 to 20 hours. Our most significant dis-
covery is that X3D achieves state-of-the-art perfor-
mance while requiring almost seven times less memory
to achieve better precision than previous work.

1 Introduction

With the progress of technology, the world of sports
undergoes a tremendous transformation as competition
teams seek new ways to gain an advantage. Computer
vision, which employs artificial intelligence algorithms
to analyze camera footage in real-time, is one of the
most promising research areas on this topic. In this re-
gard, computer vision has already been utilized in va-
rious applications, such as player position estimation,
ball trajectory prediction, and technological assistance
to referee decisions [1].

Recently, algorithms for action quality assessment
(AQA) have emerged as a result of human action recog-
nition research [2]. AQA aims to design a system
that can automatically and objectively evaluate spe-
cific human actions based on input videos. Contrary to
the traditional video action recognition problem, AQA
evaluates the execution of an action.

Sports have benefited from AQA in many practical
scenarios, such as athlete posture correction, coaching
systems, and action evaluation. In recent years, the
score to be assigned to an athlete’s performance by a
panel of judges has been estimated, such as diving and
gymnastics movements. Consequently, numerous AQA
approaches treated this task as a regression problem to
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Figure 1. Samples of a runner’s footage at
each recording point. The runner of interest
is surrounded by a green container. We analyze
different X3D instances for each footage to ex-
tract the runner’s embeddings. Then, these em-
beddings are fed into a model to infer the CRT
at a specific recording point.

learn the direct mapping between videos and action
scores [3, 4].

Lately, ultra-distance competitions have been con-
sidered for runners’ performance evaluation [5]. Con-
trary to previous sporting AQA works, the task is not
to measure the performance of methods between the
ground truth and a predicted score series but the CRT.
The CRT at a particular recording point RPi can be

defined as Ti = T1 +
∑j=i

j=2(Tj − Tr) where r = j − 1,
see Figure 1. Moreover, the problem framed in ultra-
distance races is challenging due to the highly dynamic
scenes and the race span, i.e., runner’s appearance vari-
ance, multiple scenarios, occlusive elements, etc.

Recent advances in ultra-distance races CRT esti-
mation provide high generality regarding the action
recognition networks considered [5, 6]. We seek to
bridge these approaches by gradually increasing the
network’s complexity to resolve this task. Our work
explores X3D expanded instances to produce accurate
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Figure 2. The proposed pipeline for regressing runner’s CRT. The designed process consists of two
primary components: the footage pre-processing block, and the regression block. In the first scenario, the
tracker aids by neutralizing the runner’s background activity. The latter entails the division into n small clips
by down-sampling. Then the clips are sent into X3D instances for extracting features. An average pooling
synthesizes the final features. The resulting tensor is the input to the regressor.

CRT predictions, as shown in Figure 1. The used ar-
chitecture is X3D for expanding from the 2D space into
the 3D space-time domain [7]. The 2D base architec-
ture is the MobileNet. The considered expansion then
progressively increases the computation by expanding
only one axis at a time, i.e., frame rate, sampling rate,
footage resolution, network depth, number of layers,
and number of units.

We have analyzed the X3D instances in a dataset
collected to evaluate runner re-identification methods
in real-world scenarios. The achieved results are re-
markable (up to 12 minutes and a half of MAE), and
they have also provided interesting insights. Contrary
to other action recognition networks, X3D instances
generate shorter embeddings. As a consequence, k-NN
instance-based approach turns to be enough to tackle
the problem efficiently. Second, a few network expan-
sions are enough to achieve the best performance. Fi-
nally, our proposal outperforms other approaches in
literature.

2 Related Work

AQA is inherently an action recognition problem
facing challenges like automatically and objectively
evaluating specific actions people complete through in-
put footage. A common approach to handling action
recognition in supervised training has been to limit in-
put data to skeleton-based approaches, e.g., detecting
human body joints [8, 9]. This encourages the super-
vised network to infer knowledge from a metric scale
that may be globally inconsistent in scenarios where
the human body shifts rapidly, such as violence detec-
tion [10] and sports AQA [11]. In addition, the esti-
mated skeleton data can frequently be noisy in realis-
tic scenes due to occlusions or changing lighting con-
ditions [12], particularly in ultra-distance races held in
uncontrolled environments.

Regarding this issue, appearance-based approaches

have been used in the past to tackle AQA. Pioneer
research conducted by Parmar et al. already uses C3D
neural networks at a clip level for feature computations
[13, 14]. More recently, several works have used the
I3D network on clips not to predict a score but a score
distribution [11, 15]. I3D ConvNets have also been
used to tackle the runner’s performance in the past
[5, 6]. Contrary to these works, we aim to analyze
the athletes performance by progressively expanding an
X3D architecture to achieve a lightweight architecture
that preserves robustness.

3 Method

We develop a modular multi-stage pipeline for run-
ners’ CRT estimation in ultra-distance races. Its struc-
ture is illustrated in Figure 2.

Context constrain. According to Freire et al. [6],
action recognition networks require clean footage in-
put for CRT inference. Therefore, objects (athletes,
race personnel, cars) that are not interesting must be
removed from the scene. Specifically, the initial block
pre-processes the raw input data to focus on the run-
ner of interest. We have applied ByteTrack [16], a
multi-object tracking network, to track the runner of
interest in each footage. Then, a context-constrain
pre-processing yielded the scenario considered in our
experiments. Given a runner i bounding box area
BBi(t, RP ) at a given time t ∈ [0, T ] and in a record-
ing point RP ∈ [0, P ], the new pre-processed footage
F ′
i [RP ] can be formally denoted as follows:

F ′
i [RP ] = BBi(t, RP ) ∪ τ(RP ) (1)

Where τ(RP ) is the average number of frames to
generate the clean footage where the runner appears
with a still background.

Feature extraction and regression. The in-
put footage consisting of n frames is down-sampled



and split into n video clips (v1, ..., vn), each con-
taining q consecutive frames representing an activity
snapshot (see Figure 2). Next, each video clip vi is
passed through a pre-trained X3D network, resulting
in a 192-dimensional feature vector. These X3D in-
stances have been pre-trained with the Kinetics dataset
[17], which comprises 400 action categories. Once all
the feature vectors of the n video clips are obtained,
an average pooling layer is applied to ensure that the
information from each clip is given equal consideration.
Finally, the extracted features are used to train a k-NN
regressor, which is used to infer the CRT.

X3D instances. We have used four X3D expanded
instances that are named according to their size; ex-
tra small (X3D-XS), small (X3D-S), medium (X3D-M),
and large (X3D-L). Each considered expansion is used
for sequentially expanding X2D from a tiny spatial net-
work to a spatiotemporal X3D network by performing
the following operations on temporal (frame rate and
sampling rate), spatial (footage resolution), width (net-
work depth), and depth dimensions (number of layers
and number of units) [7]. X3D-XS is the output af-
ter five expansion steps. The following larger model
is X3D-S, defined by one backward contraction step
following the seventh expansion step. The contrac-
tion step reduces the frame rate and, therefore, tem-
poral resolution while holding the clip duration con-
stant. The eighth and the tenth expansions generate
the X3D-M and X3D-L, respectively. As seen in Ta-
ble 1, X3D-M expands the spatial resolution by increas-
ing the spatial sampling resolution of the input video.
In contrast, X3D-L expands not only the spatial reso-
lution but also the depth of the network by increasing
the number of layers per residual stage.

4 Dataset and Experiments

A key challenge in performing AQA is the lack
of publicly available sporting datasets. Our pipeline
needs athlete’s data to regress CRT properly. While
many works in this sporting domain rely on statis-
tical data, manually gathering sufficient multimedia
data is expensive. We employ a dataset derived from
TGC20ReId dataset [18] provided by the authors, that
contains seven-second clips at 25 fps at each recording
point for each participant.

The initial dataset includes annotations for nearly
600 participants across six recording points. Given the
varying performances of the runners, the gap between
the leaders and the last runners increases along the
course as the number of active participants decreases.
Consequently, a subset of 214 runners is eligible for es-
timating the CRT, that is, those runners that have cov-
ered the last three recording points during the dataset
recording time.

Metric. An athlete i observation oi[RP ] at a
recording point RP ∈ [0, P ] consists of a pre-processed
footage F ′

i [RP ] and a CRT ϕi[RP ]. In addition, the

CRT of the runners has been normalized between [0,1]
using Equation 2.

ϕ′i[RP ] =
ϕi[RP ]−min(ϕi[0])

max(ϕi[RP ])
(2)

Our task is to identify an end-to-end regression tech-
nique that minimizes the following objective:

min L(ϕ′i[RP ], ψi[RP ]) =
1

N

N∑
j=0

|ϕ′i[RP ]j − ψi[RP ]j |

(3)
where ψi[RP ] represents for the runner i predicted
value at a recording point RP based on seven seconds
of movement observation, and N is the batch size.

The following section presents the average Mean Ab-
solute Error (MAE) across 20 repetitions of 10-fold
cross-validation. On average, 410 samples are chosen
for training, leaving 46 for testing.

4.1 X3D Instances Evaluation

As Section 3 points out, we have considered several
X3D instances, namely X3D-XS, X3D-S, X3D-M, and
X3D-L. Additionally, inspired by [6], we have combined
these instances averaging them (192 embeddings) or
concatenating (192×#I embeddings, where #I is the
number of combined instances) the last ResNet block
output.

Table 1 shows the achieved results by each configu-
ration. The table is divided into three blocks, with four
entries in the first and three in the rest. The first block
is related to the basic X3D instances, the second is the
average of different X3D instances embeddings, and the
last is the average of different X3D instances concate-
nation. Average and concatenation experiments com-
bine models sequentially by both, model size -first XS
and S, then XS, S and M, and so on- and individual
performance. From the temporal dimension perspec-
tive, each X3D-XS and X3D-S input clip is composed
by four frames and a large sample rate (12 frames),
whereas X3D-M and X3D-L increase the number of
frames per clip (13 and 16) but reduce the sample rate
by a half.

Table 1 also highlights the relative importance of
the model size. As can be appreciated, smaller models
consistently outperform bigger models, i.e., X3D-XS
is 18% better than X3D-L. Averaging model embed-
dings partially outperform individual approaches, but
the rates are inconclusive since there is no correlation
between the size and the performance. For instance,
the middle combination configuration (XS+S+M) is
worse than any other, bigger or smaller, configura-
tion. Freire et al. have recently achieved their best
results when concatenating I3D ConvNet embeddings
[6]. Similarly, in our study, we consistently observed
a substantial and consistent reduction in loss as the
model size increased, highlighting the effectiveness of



Table 1. Mean average error (MAE)
achieved by each configuration. The first col-
umn displays the model configuration (+ stands
for average and ∪ for concatenation, respec-
tively). The second column shows the number of
frames per video clip, the third column shows the
sampling rate (SR), and the last column shows
the achieved MAE. Lower is better.

Instance #Frames SR MAE

X3D-XS 4 12 0.010

X3D-S 4 12 0.011

X3D-M 13 6 0.011

X3D-L 16 5 0.012

XS+S Mixed Mixed 0.012

XS+S+M Mixed Mixed 0.013

XS+S+M+L Mixed Mixed 0.019

XS∪S Mixed Mixed 0.011

XS∪S∪M Mixed Mixed 0.011

XS∪S∪M∪L Mixed Mixed 0.011

concatenating embeddings. Despite these findings, it
is worth noting that the X3D-XS model, albeit with a
slight margin, still maintains the highest success rate
among all tested models.

After considering various classifiers such as linear re-
gression, random forest, gradient boosting, SVM, and a
multi-layer perceptron, we have found that k-NN out-
performs all of them. To ensure the optimal perfor-
mance, we conducted a grid search to identify the most
suitable regressor. It turns out that k-NN reported
the best result. Furthermore, due to the small number
of dimensions and the moderate number of observa-
tions, we have reported rates using a k-NN regression
method. Consequently, an instance-based classifier is
good enough to select the best embeddings for infer-
ence. In terms of minutes, a 0.010 MAE is roughly
12 minutes and a half. Since the fastest runner was
recorded after 8 hours of CRT, and the last one after
20 hours of CRT, the achieved MAE is a really positive
outcome.

To better compare the proposed pipeline with the
related work, we have included our best result in Table
2. This table summarizes the performance reported
in recent literature on the mentioned dataset but also
the size of the model. The table includes three major
architectures, C3D, 3D ResNets considering different
depths, and the I3D ConvNet. Overall, the X3D-XS
model outperforms other considered prior architectures
on this task. Moreover, Table 2 shows that the X3D-XS
model is more than six and a half times smaller than
the model with the second best result. Note that the
ranking in this table shows no correlation between the
model size and the model performance.

Table 2. Comparison of different architec-
tures on the dataset used in the present
work. The first column shows the considered
pre-trained architectures, whereas the second and
the third columns show the number of parameters
and the MAE, respectively. Lower is better.

Architecture #Params MAE

C3D [19] 34.8M 0.038

3D ResNets-D30 [20] 60.5M 0.036

3D ResNets-D50 [20] 45.8M 0.033

3D ResNets-D101 [20] 84.8M 0.032

3D ResNets-D200 [20] 146.4M 0.031

I3D-800SB [6] 25M 0.019

I3D-2048SB [6] 25M 0.015

X3D-XS (Ours) 3.7M 0.010

5 Conclusions

Combining metric accuracy and lightweight models
is a key challenge in AQA. We propose an X3D analysis
by progressively expanding the architecture on tempo-
ral, spatial, width, and depth dimensions. Then, an
instance-based classifier (k-NN) provides good perfor-
mance on the generated embeddings. We show im-
proved error reduction with each basic X3D instance
alone and demonstrate successful results when concate-
nating instance signals. Our best result was achieved
by a model almost seven times smaller and a 34% bet-
ter than the best proposal in the literature. Several
applications can benefit from our proposal, not only
monitoring a runner’s performance, but also relieving
the race staff from paying exhausting continuous at-
tention to health concerns. In addition, we hope it will
assist in deploying robust and general CRT estimation
models.
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