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Abstract

Contrastive representation learning of videos highly re-
lies on the availability of millions of unlabelled videos. This
is practical for videos available on web but acquiring such
large scale of videos for real-world applications is very ex-
pensive and laborious. Therefore, in this paper we focus
on designing video augmentation for self-supervised learn-
ing, we first analyze the best strategy to mix videos to cre-
ate a new augmented video sample. Then, the question re-
mains, can we make use of the other modalities in videos
for data mixing? To this end, we propose Cross-Modal
Manifold Cutmix (CMMC) that inserts a video tesseract
into another video tesseract in the feature space across two
different modalities. We find that our video mixing strat-
egy STC-mix, i.e. preliminary mixing of videos followed
by CMMC across different modalities in a video, improves
the quality of learned video representations. We conduct
thorough experiments for two downstream tasks: action
recognition and video retrieval on two small scale video
datasets UCF101, and HMDB51. We also demonstrate the
effectiveness of our STC-mix on NTU dataset where domain
knowledge is limited. We show that the performance of our
STC-mix on both the downstream tasks is on par with the
other self-supervised approaches while requiring less train-
ing data.

1. Introduction
The recent advancements in self-supervised representa-

tion is credited to the success of using discriminative con-
trastive loss such as InfoNCE [16]. Given a data sam-
ple, contrastive representation learning focus on discrimi-
nating its transformed version from a large pool of other in-
stances or their transformations. Thus, the concept of con-
trastive learning while applicable to any domains, its effec-
tiveness rely on the domain-specific inductive bias as the
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transformations are obtained from the same data instance.
For images, these transformations are usually standard data
augmentation techniques [7] while in videos, data artifacts
that arise from temporal segments within the same video
clip [14, 23, 29, 33]. Although these methods rely on large
scale videos especially available on web, it would be im-
practical in real-world applications. For example, under-
standing activities of daily living is crucial for patient mon-
itoring and smarthome application but these boring videos
are not easily available on web. Acquiring such sensi-
tive videos is very expensive in terms of both time and
cost [10, 39].

Recently, data mixing strategies [40, 52, 54] have
emerged as one of the promising data augmentation for su-
pervised learning methods. These mixing strategies when
incorporated with contrastive learning, the quality of the
learned representation improves drastically as in [24,44,45]
while requiring less training data. Such augmentations in-
troduce semantically meaningful variance for better gener-
alization which is crucial for learning self-supervised rep-
resentations. While these mixing strategies have been im-
pactful for learning image representations, mixing strate-
gies have been very limitedly explored in the video domain.

Therefore, in this paper, we study the various data mix-
ing strategies for videos, and propose a new approach to
overcome their limitation by mixing across modalities. We
first investigate and compare the mixing strategies adopted
from the the image domain, and we find that mixing videos
by performing simple interpolation of two video cuboids
(Mixup) is more effective than inserting a video cuboid
within another (Cutmix). This is contradictory to the ob-
servations made in the image domain. Furthermore, un-
like learning image representations [24], these data mixing
strategies are prone to over-fitting when trained for longer,
making them limited for videos.

Motivated by the success of previous self-supervised
techniques exploiting multiple modalities to learn discrimi-
native video representation as in [2,3,8,21,28,32,34], in this
paper, we pose the following question: can we take advan-
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tage of other modalities for mixing videos while learning
self-supervised representation?

Different modalities of a video like RGB, optical flow,
etc. have different distributions and thus, mixing them di-
rectly in the input space makes the task of discriminating
similar instances from the other instances easier limiting
the quality of the learned representation. To this end, we
propose our Cross-Modal Manifold Cutmix (CMMC), that
performs data mixing operation ‘across different modali-
ties’ of a video in their hidden intermediate ‘representa-
tions’. Given the video encoders from different modalities
pre-trained with contrastive loss in addition to mixup aug-
mentation, CMMC exploits the underlying structure of the
data manifold. This is done by performing cutmix opera-
tion in the feature space across space, time and channels.
To the best of our knowledge, this is the first attempt to per-
form mixing across channels. The channel mixing of the
cross-modal feature map enforces the encoder to learn bet-
ter semantic concepts in the videos. Hence, we train video
encoders for different modalities in several stages includ-
ing the use of mixup strategy in videos and our proposed
CMMC. We dub this augmentation strategy as STC-mix
which stands for space, time, channel Mix for contrastive
representation learning.

Empirically, we confirm that STC-mix being easy to im-
plement, significantly improves contrastive representation
learning for videos. We show that STC-mix can effec-
tively learn self-supervised representation with small avail-
ability of data for pretext task and can also take advan-
tage of other modalities of the videos through manifold
mixing strategy. We thoroughly evaluate the quality of
the learned representation on two downstream tasks action
recognition and retrieval, on UCF101 and HMDB51. We
demonstrate the improvement in transferability of the rep-
resentation learned with STC-mix by conducting training
on a large scale dataset Kinetics-400 and then finetuning
on smaller datasets. Furthermore, we corroborate the ro-
bustness of STC-mix by observing similar improvements
on RGB-D videos for the task of action recognition.

2. Background
In this section, we first review a general contrastive

learning framework used for learning self-supervised video
representation. Then, we review a data mixing formula-
tion for self-supervision in the image domain. Let X ∈
RT×3×H×W be a sequence of video. The objective is to
learn a mapping f : X → z where z ∈ RD, that can
be effectively used to discriminate video clips for various
downstream tasks, e.g. action recognition , retrieval, etc.
Contrastive Learning. Assume a set of augmentation
transformations A is applied to X . So, for a particular
video there exists a positive (say X̃ ) whereas the other trans-
formed videos in a mini-batch are considered as negatives.

The encoder f(.) and its exponential average model f̃(.)
maps the positives and negatives respectively to embedding
vectors. Therefore, the contrastive loss for a sample Xi is
formulated as

L(Xi) = −log
exp(zi · z̃i/τ)

N∑
j=0

exp(zi · z̃j/τ)
(1)

where τ is a scaling temperature parameter andN is the set
of negatives. Note that the embedding vectors zi and z̃i are
L2-normalized before the loss computation. Thus, the loss
L optimizes the video instances such that the representation
of the video instances with the same view are pulled towards
each other while pushing away from the other instances.
Data Mix for Contrastive Learning. We revisit the formu-
lation proposed in i-mix [24] for mixing data within a batch
for contrastive representation learning. Let yi ∈ {0, 1}BS

be the virtual labels of the input Xi and X̃i in a batch, where
yi,i = 1 and yi,j ̸=i = 0. Then, the (N + 1)− way discrim-
ination loss for a sample in a batch is:

L(Xi, yi) = −yi,b · log
exp(zi · z̃b/τ)

N∑
j=0

exp(zi · z̃j/τ)
(2)

where b ranges from 0 to BS. Thus, the data instances are
mixed within a batch for which the loss is defined as:

LMix((Xi, yi), (Xr, yr), λ) =

L(Mix(Xi,Xr;λ), λyi + (1− λ)yr)
(3)

where λ ∼ Beta(α, α) is a mixing coefficient, r ∼
rand(BS), and Mix() is a mixing operator. In the follow-
ing, we will discuss the appropriate mixing operators in the
video domain.

3. STC-mix
In this paper, we use the same i-mix formulation (from

the above section) for data mixing while learning discrim-
inative self-supervised representation. First, we investigate
the best strategies to define the mixing operator for video
domain. Furthermore, we introduce a manifold mixing
strategy to make use of the other modalities freely avail-
able in videos for data mixing. We integrate both these data
augmentation strategies, together called STC-mix for con-
trastive representation learning of videos.

3.1. Mixing Operator for Videos

Unlike mixing operations in images as in [40,44,52,54],
videos have temporal dimension. For the Mixing operation
defined in equation 3, it is straightforward to extend the ex-
isting image mixing strategies to videos. But, we argue that
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handling temporal dimension in videos is not equivalent to
handling spatial dimension in images. Mixup [44] in videos
perform weighted averaging of two spatio-temporal stack
of frames. In contrast to cutmix operator [52], mixup op-
erator retains the temporal information in videos and thus
facilitates the contrastive representation learning. We em-
pirically corroborate this observation in the experimental
analysis. In addition to this, videos possess different modal-
ities like optical flow that can be computed without any
supervision. The question remains that can we make use
of other modalities in videos for mixing instances while
learning contrastive representation? To this end, we in-
troduce Cross-Modal Manifold Cutmix (CMMC) strat-
egy for mixing video instances across different modalities
which is discussed in the next section.

3.2. Cross-Modal Manifold Cutmix

Different modalities in videos is an additional informa-
tion that are often exploited for self-supervised learning as
in [18, 26]. In contrast to these approaches, we simply pro-
pose to mix these different modalities as another data aug-
mentation strategy for self-supervised representation. How-
ever, the dissimilarity in distribution between the different
modalities (say, RGB and optical flow) in videos makes
it harder to mix them at input space. Consequently, we
propose Cross-Modal Manifold Cutmix to mix such cross-
modal representations in the hidden representation space.

As an extension of the previous notation, we now con-
sider two different modalities X1i and X2i for a given video
clip Xi. The objective of the self-supervised task is to learn
discriminative video representation, i.e. to learn functions
f1(·) and f2(·). We decompose the encoder function by
f1(X1i) = f1k(g1k(X1i)), where g1k is a part of the video
encoder for modality 1 with k layers that maps the input
data X1i to a hidden representation. Similarly, f1k maps
the hidden representation g1k(X1i) to the embedding vec-
tor z1i. Note that we already have trained video encoders
f1i(·) and f2i(·) by exploiting the above mentioned Mixup
strategy among the video instances in a mini-batch while
optimizing the contrastive loss. Now, CMMC is trained
in a 4 stage fashion. In the first stage, we train the en-
coder f1i(·) of modality 1 in 5 steps as illustrated in fig-
ure 1. First, we select random layers k and l from a set
of eligible layers in f1i(·) and f2i(·) respectively such that
k ≤ l. This set excludes the input space. Second, we fed a
pair of input X1i and X2r to their respective video encoders
f1 and f2 until they reach layer k and layer l respectively.
We obtain g1k(X1i) and g2l(X2r) - a hidden representation
(spatio-temporal tesseract) of both videos in modality 1 and
2. Third, we perform a data mixing among the hidden rep-
resentations across two modalities as:

gmix
1k , λ = CutMix(g1k, g2l;α) (4)

ymix
1k = λy1i + (1− λ)y2r (5)

where (y1i, y2r) are one-hot labels, hyper-parameter α = 1,
and the mixing operator is cutmix as in [52] which returns
the mixing coefficient λ along with the mixed data. For
brevity, we omit the input instances in the equation. Fourth,
we continue the forward pass in f1(·) only from layer k to
the output embedding, now we denote by zmix

1i . Fifth, this
embedding is used to compute the (N +1)-way discrimina-
tion loss which is reformulated as:

L(X1i, y1i) = −ymix
1i,b · log

exp(zmix
1i · z̃1b/τ)

N∑
j=0

exp(zmix
1i · z̃1j/τ)

(6)

The computed gradients are backpropagated through the en-
tire video encoder f1(·) of modality 1 only. It is to be noted
that the video encoder f2(·) of modality 2 is not trained in
this stage. In the second stage, we train the video encoder
f2(·) for modality 2 while freezing the updated learned
weights of f1(·). We continue this cycle twice for each
modality, and hence 4 stages to learn the self-supervised
video representation in f1(·) and f2(·) . We provide the
Pseudocode of one stage of CMMC for training encoder
f1(·) in Algorithm 1.

Algorithm 1 Pseudocode of One stage CMMC
1: α, k ← 1.0, rand(1, N) ▷ N is the layers in the encoder
2: l← rand(k,N)
3: x1, x̃1 ← T (X1) ▷ Two views of the modality 1
4: x2 ← T ′′(X2) ▷ modality 2 data
5: g1k ← f1.partial forward(x1, 0, k)
6: g2l ← f2.partial forward(x2, 0, l)
7: gmix

1k , labels new, λ← CutMix(g1k,g2l, α)
8: z1 ← normalize(f1.partial forward(gmix

1k , l, N))

9: z2 ← normalize(f̃1.forward(x̃1))
10: z2,g2l ← z2.detach(),g2l.detach() ▷ no gradient flow
11: labels← zeros(len(x1))
12: logits← matmul(z1, zT2 )/t ▷ t is the temperature
13: loss ← λ × CE(logits, labels) + (1 − λ) ×

CE(logits, labels new)

Thus, to sum up STC-mix consists of initially training
video encoders of modality 1 and modality 2 independently
with infoNCE loss as in [7] and applying mixup augmen-
tation. Then, we perform CMMC among the hidden repre-
sentations of data from modality 1 and 2 in 4 stages. This
is performed by alternation training strategy as in [18] to
make use of the latest learned representations in the cross-
modal network. The final learned model is obtained after
two cycles of training encoder of each modality.

CutMix in feature space. Here, we explain how the cut-
mix operator is applied on the video tesseracts in the feature
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Stop Gradient
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Figure 1. Cross-Modal Manifold Cutmix (CMMC) trains a visual encoder f1 for Modality 1 with X1 as input while mixing with input X2

from modality 2. The mixing operation between the cross-modal feature maps g1k and g2l is Cutmix which is illustrated elaborately at the
right. For brevity, we set k = 2. Thus, l is randomly selected from the set {2,3,4,5} through a switch.

space. Assume that the hidden representation of the input
video sequence X1i in modality 1, g1k ∈ Rc1×t1×h1×w1 ,
where c1 represents channel, t1 time, and s1 = h1 × w1

is the spatial resolution. We generate a new representation
gmix
1 by combining the hidden representations g1k and g2l.

These hidden representations g1k and g2l may differ such
that (t1, s1) ≥ (t2, s2) and c1 ≤ c2. Therefore, we de-
fine a cutmix operation that combines the video tesseracts
in space, time and across channels. We define the combin-
ing operation as

gmix
1 = M ⊙ g1k + (1−M)⊙ g2l (7)

where M ∈ {0, 1}c1×t1×h1×w1 is a binary tensor mask
which is decided by sampling the bounding box coordi-
nates bbox = (bc1, bc2, bt1, bt2, bh1, bh2, bw1, bw2) from a
uniform distribution. In order to preserve the temporal in-
formation in a video, we fix (bt1, bt2) = (0, t2). Simi-
larly, we preserve the channel information processed by the
video encoder f2(·) by fixing (bc1, bc2) = (0, c2). Thus,
the bounding box selection follows a random sampling of
a center coordinate (bwc, bhc) from (U(0, w2), U(0, h2)).
The corner points of the bounding box are determined
by where λ ∼ U(0, 1). Even by fixing (bt1, bt2) and
(bc1, bc2), the resultant video tesseract in one modal-
ity may not match the dimension of the video tesser-
acts in other modality across channel and time, if k <
l. So, we select a 4D bounding box with coordinates
(Mc1,Mc2,Mt1,Mt2,Mh1,Mh2,Mw1,Mw2) within the
defined binary mask M . We randomly sample a center co-
ordinate (Mcc,Mtc,Mhc,Mwc) from (U(0, c1), U(0, t1)),
(U(0, h1), and U(0, w1)) respectively. The end points of

the binary mask M are determined by

Mc1,Mc2 = Mcc − c2
2 ,Mcc +

c2
2

Mt1,Mt2 = Mtc − t2
2 ,Mtc +

t2
2

Mh1,Mh2 = Mhc − h2
2 ,Mhc +

h2
2

Mw1,Mw2 = Mwc − w2
2 ,Mwc +

w2
2

(8)

For the region within this bounding box, the values in the
binary mask is filled with 0, otherwise 1. A new mixing
coefficient is computed by 1 − λnew =

∑
c,t,w,h Mc,t,w,h

denoting the complementary of the proportion of volume
occupied by M . This new mixing coefficient λnew is re-
turned by the cutmix function to compute the mixed labels
in equation 5.

Thus, we perform a mix operation in videos across all the
dimensions including spatial, temporal and channels. How-
ever, we preserve the temporal properties of the video in-
stances by retaining a proportion of channel information.
This makes cutmix operation effective in the feature space.

4. Experiments
In this section, we describe the datasets used in our ex-

perimental analysis, implementation details, and evaluation
setup. We present ablation studies to illustrate the effective-
ness of STC-mix video data augmentation and also, provide
an exhaustive state-of-the-art comparison with our STC-
mix models.

4.1. Datasets

We use two video action recognition datasets:
UCF101 [41] and Kinetics-400 [20] for self-supervised
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training of the video encoders. UCF101 contains 13k
videos with 101 human actions and Kinetics-400 (K400)
contains 240k video clips with 400 human actions. To
show the robustness of STC-mix on domains with limited
data and other modalities, we also use an RGB+D action
recognition dataset: NTU-RGB+D [39] for self-supervised
training of a video and skeleton encoder. NTU-RGB+D
(NTU-60) contains 58k videos with 60 human action, all
performed indoors. Note that we use the videos or skeleton
sequences from the training set only for the self-supervised
pre-training. Downstream tasks are evaluated on split1
of UCF101 and split1 of HMDB51 [22], which contains
7k videos with 51 human actions. For evaluation on
NTU-60, we evaluate on the validation set of NTU-60 on
Cross-subject (CS) and Cross-View (CV) protocols.

4.2. Implementation details

STC-mix is a simple data augmentation strategy that
requires cutmix operation in the feature space which is
adopted from [52] followed by our temporal and channel
mixing. The input modalities in our experiments consists
of RGB, optical flow and skeletons (3D Poses). The opti-
cal flow is computed with the un-supervised TV-L1 algo-
rithm [43] and the same pre-processing procedure is used
as in [6]. For the skeleton experiments, the skeleton data
X ∈ RC×T×V is acquired using KinectV2 sensors, where
coordinate feature C = 3, # joints V = 25, and # frames
T = 50. Following the pre-processing steps in [26], we
compute the joints and motion cues. For all the RGB and
optical flow models, we choose S3D [49] architecture as
the backbone whereas for the skeleton model, we choose
ST-GCN [51] with channels in each layer reduced by 1/4
times as the backbone. For self-supervised representation
learning, we adopt a momentum-updated history queue to
cache a large number of video features as in MoCo [19].
We attach a non-linear projection head, and remove it for
downstream task evaluations as done in SimCLR [7].

For our experiments with RGB and optical flow, we use
32 128 × 128 frames of RGB (or flow) input, at 30 fps.
For additional data augmentation, we apply clip-wise con-
sistent random crops, horizontal flips, Gaussian blur and
color jittering. We also apply random temporal cropping
from the same video as used in [18]. For training a MoCo
model with STC-mix data augmentation, we initially train
the RGB and Flow networks for 300 epochs with mixup
data augmentation independently. The mixup operation is
applied in the input space. Then, we train these pre-train
networks with CMMC in 4 stages. In each stage, a network
with one input modality is trained for 100 epochs by freez-
ing the network with other modality. In the next stage, we
reverse the cross-modal networks and continue training the
network with other modality. Finally, after the 4 stages, the
resultant models are hence trained for 500 epochs in total.

For optimization, we use Adam with 10−3 learning rate and
10−5 weight decay. All the experiments are trained on 4
and 2 V100 GPUs for K400 and others respectively, with a
batch size of 32 videos per GPU.

For our experiments with skeleton sequence, we choose
Shear with shearing amplitude 0.5 and Crop with a padding
ratio of 0.6 as the augmentation strategy as used in [26].
Note that, for CMMC on skeleton data, we perform cutmix
operation only on skeleton vertices followed by channel and
temporal mixing. For training with CMMC, the GCN en-
coders are initially trained for 150 epochs on Joint and Mo-
tion cues. This is followed by 2 stage training each with 150
epochs, where encoder with one modality is trained and the
other is frozen. For optimization, we use SGD with momen-
tum (0.9) and weight decay (0.0001). The model is trained
on 1 V100 with a batch size of 128 skeleton sequences.

4.3. Evaluation setup for downstream tasks

For experiments with RGB and optical flow, we evalu-
ate on two downstream tasks: (i) action classification and
(ii) retrieval. For action classification, we evaluate on (1)
linear probe where the entire encoder is frozen and a sin-
gle linear layer followed by a softmax layer is trained with
cross-entropy loss, and (2) finetune where the entire en-
coder along with a linear and softmax layer is trained with
cross-entropy loss. Note that the encoders are initialized
with the STC-mix learned weights. More details for train-
ing the downstream action classification framework is pro-
vided in the Apendix. For action retrieval, the extracted fea-
tures from the encoder pre-trained with STC-mix are used
for nearest-neighbor (NN) retrieval. We report Recall at k
(R@k) which implies, if the top k nearest neighbours com-
prise one video pertaining to the same class, a correct re-
trieval is counted.

4.4. Ablation studies on STC-mix

In this section, we empirically show the effectiveness of
our data augmentation strategy for videos. We also inves-
tigate the potential causes behind the significant improve-
ment of performance with STC-mix by conducting relevant
experiments.
Which mixing strategy is the best for uni-modal video
understanding? In Table 1, we investigate different video
mixing strategies based on mixup and cutmix operator for
downstream action classification and retrieval tasks. For
the augmentations based on Cutmix [52], we randomly se-
lect a sub-cuboid and plug it into another video. We also
consider Videomix [53] that performs a cutmix operation
across all the frames clipwise consistent. For the virtual
labels, we perform label smoothing as defined in Equa-
tion 3. In image domain, cutmix outperforms the mixup
strategy in supervised settings [52]. However, we find that
all strategies using cutmix in temporal dimension (T cut-
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Table 1. Different Video mixing strategies are evaluated on down-
stream action classification and retrieval tasks. All the models are
trained on training samples of UCF101 for 200 epochs with RGB
input and tested on the validation set of UCF101 and HMDB51.

Mixing Action cls. Retrieval
Linear probe R@1

Strategies UCF HMDB UCF HMDB
MoCo 38.2 15.3 29.1 9.8

+ Mixup 49.6 24.9 36.2 16.2
+ T cutmix 41.7 17.3 30.2 12.9

+ ST cutmix 19.8 14.3 32.6 14.3
+ VideoMix 45.5 21.2 34.5 15.2

Figure 2. Accuracy graph illustrating the improvements in STC-
mix with CMMC compared to baselines without using mix, man-
ifold mix, and alternate training in CMMC.

mix), spatio-temporal dimension (ST cutmix) and spatial
dimension (VideoMix) performs worse than simple Mixup
strategy. This is because cutmix operation destroys the tem-
poral structure of the videos which is crucial for understand-
ing actions in videos. Similarly, VideoMix where cutmix
is performed spatially and not temporally, introduces new
contextual information in videos in arbitrary spatial loca-
tions. This not only hampers the motion patterns present in
the original video but also weakens the similarity between
the positive samples in the contrastive loss. Thus, video
mixing operators must ensure retention of temporal charac-
teristics in videos.
Why do we need multi-modal mixing strategy for
videos? In Fig. 2, we illustrate the downstream action clas-
sification accuracy vs # epochs plot. We observe that the
performance of the model without mix saturates after 500
epochs. This plot clearly shows the importance of apply-
ing data mixing augmentation. However, the model trained
without multi-modal mixing strategy (CMMC) overfits af-
ter 300 epochs, whereas the STC-mix models training with
multi-modal mixing are still learning discriminative repre-
sentation. We find that the mixing strategy on video repre-
sentation learning induces faster training and with CMMC,
the models learn cross-modal knowledge without using

Table 2. Comparison of different Cross-Modal manifold mixing
strategies. Rand. mix layer indicates if the feature map from the
other modality is obtained from the same layer as the primary
modality or not. s = h × w, t, and c represents spatial, tem-
poral and channel mixing of the feature maps. All the video mix
models are trained on training samples of UCF101 for 300 epochs
whereas the MoCo model is trained for 500 epochs. M indicates
use of cross-modal information.

Cross-Modal Rand. Action cls. Retrieval
Manifold Mixing M mix s t c Linear probe R@1

strategies layer UCF HMDB UCF HMDB

R
G

B

MoCo (Baseline) × × × × × 46.8 23.1 33.1 15.2
+ mixup × × ✓ ✓ ✓ 52.8 24.4 37.6 17.6

+ CM mixup ✓ × ✓ ✓ ✓ 53.9 25.1 40.3 17.6

+ CM cutmix

✓ × ✓ × × 54.6 25.5 40.4 17.8
✓ × ✓ ✓ × 55.1 27.1 40.6 16.5
✓ × ✓ ✓ ✓ 55.2 27.8 41.6 18.6
✓ ✓ ✓ ✓ ✓ 55.8 28.3 42.8 19.1

O
pt

ic
al

Fl
ow

MoCo (Baseline) × × × × × 66.8 30.3 45.2 20.8
+ mixup × × ✓ ✓ ✓ 68.6 33.1 48.7 19.5

+ CM mixup ✓ × ✓ ✓ ✓ 70.4 33.1 51.2 21.0

+ CM cutmix

✓ × ✓ × × 70.4 33.3 51.4 21.0
✓ × ✓ ✓ × 71.8 34.7 52.7 23.1
✓ × ✓ ✓ ✓ 71.5 33.9 53.1 21.5
✓ ✓ ✓ ✓ ✓ 72.4 34.9 53.9 23.1

Tw
o-

st
re

am

MoCo (Baseline) × × × × × 68.1 33.1 49.8 21.9
+ mixup × × ✓ ✓ ✓ 71.3 36.3 53.8 24.5

+ CM mixup ✓ × ✓ ✓ ✓ 72.2 35.9 56.1 25.3

+ CM cutmix

✓ × ✓ × × 72.1 35.8 56.9 25.1
✓ × ✓ ✓ × 73.1 37.2 56.9 27.3
✓ × ✓ ✓ ✓ 73.4 37.2 56.4 26.5
✓ ✓ ✓ ✓ ✓ 74.0 38.1 58.1 27.1

complicated knowledge distillation techniques as in [9, 15].
It is to be noted that STC-mix is more beneficial when the
cross-modal encoders are trained in alternation strategy. In
Fig. 2, we show that the RGB encoder with alternate train-
ing outperforms the RGB encoder which is trained for 200
epochs straightaway with the outdated optical flow encoder.
The alternate training strategy takes benefit of the most up-
dated cross-modal encoder for data mixing and hence learn-
ing more discriminative representation.
Diagnosis of CMMC. In Table 2, we provide the results for
different configurations of data mixing in the feature space.
The objective is to understand the strategies responsible for
boosting the performance of the models on UCF101 and
HMDB51 for downstream tasks. All the models are initial-
ized with weights obtained from pre-training with mixup
and trained for 300 epochs. Note that the initial mixup
model is trained for 200 epochs. First, we show that cross-
modal mixup (indicated by + mixup) in the feature space
exploiting the cross-modal representation outperforms the
traditional manifold mixup (indicated by + mixup) in the
feature space [44] on UFC-101 which does not make use of
the cross-modal representation. However, we observe that
the action classification accuracy on HMDB51 using optical
flow is equivalent for both strategies with or without using
cross-modality. This is because HMDB51 mostly consists
of static actions with improminent motion patterns which
limits the optical flow model to learn motion dominated rep-
resentation. As a result, this also affects the action classifi-
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Table 3. Unsupervised methods pre-trained on UCF-101 and evaluated on linear probe and fine-tuning for downstream action classification
on UCF101 and HMDB51 for different combination of modalities - video (V ) and flow (F ). † indicates that the method is reproduced on
our configuration.

Method Network Res. D GFLOPs M Linear Probe Fine-tune
UCF HMDB UCF HMDB

OPN [23] VGG 227 14 16 V - - 59.6 23.8
VCOP [50] R(2+1) 112 26 12.5 V - - 72.4 30.9

CoCLR-RGB [18] S3D 128 23 11 V 70.2 39.1 81.4 52.1
ρBYOL† [13] 2×S3D 128 23 22 V+F 70.2 37.8 84.9 57.6
CoCLR [18] 2×S3D 128 23 22 V+F 72.1 40.2 87.3 58.7

STC-mix 2×S3D 128 23 22 V+F 74.0 38.1 87.5 59.1
CoCLR + STC-mix (RGB) S3D 128 23 11 V 71.3 39.4 82.5 53.2

CoCLR + STC-mix 2×S3D 128 23 22 V+F 74.7 40.8 87.9 59.0

cation accuracy on HMDB51 when evaluated with both the
streams. Next, we show the influence of mixing different
dimensions in the hidden representation of a video. We per-
form experiments with cross-modal cutmix occurring in the
spatial dimension (s), spatial and temporal (t) dimensions,
and finally all the dimensions including channels (c). Note
that the manifold cutmix operation is performed within the
same data manifold, i.e. the cutmix is performed across
the same random layer between RGB and Flow networks.
In contradiction to our previous observation of video mix-
ing in the input space, here the temporal cutmix provides
a minor boost to the performance of the downstream tasks.
This is supported by the fact that hidden representations of
a video retains temporal information due to the preceding
convolutional operations on the input sample. Finally, we
introduce more randomness in CMMC by randomizing the
selection of the cross-modal network layer where the mix-
ing takes place. This enables CMMC to take advantage of
the features from later layers of the cross-modal network.
Thanks to the channel mixing that enables the features from
different layers to mix with each other. It also ensures that
the lost temporal information is preserved through channels
that retains in the original feature map.

4.5. Comparison to the state-of-the-art

In this section, we compare STC-mix with the state-of-
the-art (SOTA) self-supervised learning (SSL) approaches
for video/skeleton action classification and video action re-
trieval tasks.
SSL with small training samples. In Table 3, we provide
the action classification results on UCF101 and HMDB51
for linear-probing and full finetuning of video encoders with
models trained on UCF101. In this work, we focus on im-
proving the performance of downstream task with UCF101
pre-training due its small size. We compare STC-mix with
ρBYOL [13] which is a SOTA SSL method for video rep-
resentation. For a fair comparison, we provide the results
of BYOL with both modalities (RGB + Flow). However,
it highly relies on the availability large scale unlabelled
data in contrast to STC-mix which learns discriminative
representation even with less training data. Furthermore,

STC-mix only with its strong data augmentation (mixup +
CMMC) outperforms CoCLR by 1.9% on UCF101. How-
ever, the lower action classification accuracy of STC-mix on
HMDB51 compared to CoCLR indicates the requirement of
positive mining of data samples in contrastive learning as
performed in CoCLR. It is to be noted that STC-mix is a
data augmentation that can be incorporated with any exist-
ing self-supervised representation learning methods includ-
ing CoCLR. Consequently, we have performed STC-mix
augmentation while pre-training with CoCLR on UCF-101
in Table 3 (last two rows). We observe that our proposed
augmentation boosts the performance of CoCLR model sig-
nificantly when finetuned on UCF101 and HMDB51.
In Table 4, we provide the video retrieval results on UCF101
and HMDB51 for the STC-mix models trained on UCF101.
This is a classical test for verifying if the pre-trained model
learns semantic information while learning self-supervised
representation. We test if a query instance clip and its near-
est neighbours belong to the same category. Our STC-mix
model outperforms all the representative baselines by a sig-
nificant margin on both the datasets.
Generalizing CMMC on other modalities. In Table 5, we
present SSL with pose modality for skeleton action recog-
nition results on NTU-60. We perform CMMC with hid-
den skeleton representations in the encoder. We treat Joints
(J) and Motion (M) as different input modalities for given
skeleton data. Note that the cutmix operation across spa-
tial dimension represents the joint vertices (1-dimensional).
The downstream action classification results of a skeleton
model pre-trained with contrastive learning (SkeletonCLR)
using CMMC outperforms its baseline by 2.4% on CS and
by 1% on CV protocol. We further improve this represen-
tation with CrosSCLR [26] which with its cross-modal pos-
itive mining benefits the vanilla SkeletonCLR model. We
believe that such positive mining approaches in contrastive
learning such as CoCLR or CrosSCLR can benefit from our
video mixing strategies.
Generalizing CMMC on heterogeneous input modali-
ties. In an attempt to generalize STC-mix further, we per-
form STC-mix with RGB (S3D backbone) and Poses (ST-
GCN backbone) as the cross-modal inputs. For brevity,
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Table 4. Nearest-Neighbour video retrieval on UCF101 and HMDB51. Testing set clips are used to retrieve training set videos and R@k is
reported for k ∈ {1, 5, 10, 20}.

Method Dataset UCF101 HMB51
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

Jigsaw [31] UCF 19.7 28.5 33.5 40.0 - - - -
OPN [23] UCF 19.9 28.7 34.0 40.6 - - - -

RL-method [5] UCF 25.7 36.2 42.2 49.2 - - - -
VCOP [50] UCF 14.1 30.3 40.4 51.1 7.6 22.9 34.4 48.8
VCP [27] UCF 18.6 33.6 42.5 53.5 7.6 24.4 36.3 53.6

MemDPC [17] UCF 20.2 40.4 52.4 64.7 7.7 25.7 40.6 57.7
SpeedNet [4] K400 13.0 28.1 37.5 49.5 - - - -
CoCLR [18] UCF 55.9 70.8 76.9 82.5 26.1 45.8 57.9 69.7

STC-mix UCF 58.1 76.5 83.4 88.7 27.1 50.7 65.1 77.1

Table 5. Unsupervised results on NTU-60 for action classification
using different modalities M (J and M). ∗ indicates that results
reproduced on our settings.

Method M NTU-60
CS CV

LongTGAN [55] J 39.1 48.1
MS2L [25] J 52.6 -

AS-CAL [37] J 58.5 64.8
P&C [42] J 50.7 76.3

SeBiReNet [30] J - 79.7
SkeletonCLR∗ (Baseline) J + M 70.1 77.2

CMMC (Skeleton) J + M 72.5 79.1
2s-CrosSCLR [26] J + M 74.5 82.1

CMMC (2s-Skeleton) J + M 75.2 83.1

Table 6. Comparison to the SOTA methods on NTU-60 using RGB
(R) and Pose (P) modalities. Here, K400 indicates Kinetics [20],
M indicates modality, and SSL indicates self-supervised learning.

Method M Extra Pre-train NTU-60
Data Dataset CS CV

Su
pe

rv
is

ed I3D [6] R ✓ K400 85.5 87.3
NPL [35] R ✓ K400 - 93.7
STA [10] R+P ✓ K400 92.2 94.6
VPN [11] R+P ✓ K400 93.5 96.2

L MoCo (S3D) R × NTU-60 87.5 91.3

S STC-mix R × NTU-60 88.1 92.0

S STC-mix R+P × NTU-60 91.4 95.1

we perform CMMC only at block 4 of S3D and ST-GCN.
Moreover, we do not perform cutmix in the spatial dimen-
sion, instead we reshape the entire spatial dimension (25
joints) into a 5 × 5 region while mixing the skeleton fea-
tures with RGB. Conversely, we always extract a 3×3 RGB
region followed by vectorizing it to mix with the skeleton
features. More details for this experiment is provided in
the Appendix. In Table 6, we show that STC-mix improves
the baseline MoCo model. Furthermore, ‘self-supervised’
STC-mix pre-trained with both the modalities performs on
par with the SOTA ‘supervised’ methods which are pre-
trained on ImageNet [12] and Kinetics [20].
SSL with STC-mix on large scale data. In Table 7, our
STC-mix model with lower FLOPs and lower input reso-

Table 7. Fine-tune results of models trained on Kinetics-400 for
different combination of modalities - Video (V), Flow (F), and Au-
dio (A). STC-mix† is adapted with ρBYOL settings.

Method Network Res. D M GFLOPs UCF HMDB
CoCLR [18] 2×S3D 128 23 V+F 22 90.6 62.9

STC-mix 2×S3D 128 23 V+F 22 91.1 62.3
STC-mix+CoCLR S3D 128 23 V 11 89.4 55.3
STC-mix+CoCLR 2×S3D 128 23 V+F 22 92.3 63.5

XDC [1] R(2+1)D 224 26 V+A 48.5 84.2 47.1
AVTS [21] I3D 224 22 V+A 108 83.7 53.0

MemDPC [17] 2×R-2D3D 224 33 V+F 140 86.1 54.5
CVRL [36] R3D 224 49 V 167 92.1 65.4
ρBYOL [13] S3D 224 23 V 36 96.3 75.0
STC-mix† 2×S3D 224 23 V+F 72 96.9 75.4
STC-mix† S3D 224 23 V 36 96.6 75.2

lution (128), pre-trained on Kinetics-400 performs on par
with the other SOTA models substantiating the impact of
simple cross-modal video augmentation. We adapt STC-
mix with ρBYOL training settings replacing of MoCo type
SSL for this large-scale pre-training on Kinetics. More de-
tails on this adaptation is provided in the Appendix. We ob-
serve that this variant STC-mix† outperforms all the SOTA
SSL methods showing its usefulness in the SSL paradigm.

5. Related work

Deep neural networks, especially the networks fabri-
cated for processing videos are data-hungry. While annotat-
ing large scale video data is expensive, recently many self-
supervised video representation learning approaches have
been proposed to make use of the abundant web videos.
On one hand, some methods have exploited the tempo-
ral structure of the videos, such as predicting if frames
appear in order, reverse order, shuffled, color-consistency
across frames, etc [14, 23, 29, 33, 38, 46–48]. On the other
hand, some methods have been taking advantage of the
multiple modalities of videos like audio, text, optical flow,
etc by designing pretext tasks for their temporal align-
ment [2, 3, 8, 21, 28, 32, 34].

Meanwhile, data mixing strategies have gained popu-
larity in image-domain data augmentations for supervised
learning [40,52,54] in addition to their usage also for learn-
ing self-supervised image representation [24, 44, 45]. A re-
cent work (unpublished), in the spirit of data mixing in the
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video domain, VideoMix creates a new training video by in-
serting a video cuboid into another video in the supervised
setting [53]. In contrast, we focus on mixing video sam-
ples for self-supervised representation. Different from the
observations in VideoMix, we note that mixup in STC-mix
is a better augmentation tool rather than strategies involv-
ing removal of spatio-temporal sub-space from the original
videos. The most closest to our work, Manifold mixup [44]
focuses on interpolating hidden representation of the sam-
ples within a mini-batch, whereas, our proposed CMMC in
STC-mix performs cutmix operation in the data manifold
across different modalities. In addition, we also introduce
the notion of channel mixing in the feature space. We find
that STC-mix is simple to implement while is a strong data
augmentation tool for learning self-supervised video repre-
sentation even with small data size.

6. Conclusion
We have analyzed the augmentation strategies for learn-

ing self-supervised video representation. We have intro-
duced STC-mix which involves performing video mixup
followed by cross-modal manifold mixup to take advan-
tage of different modalities present in videos. STC-mix im-
proves the quality of learned representation and thus brings
large improvement in the performance of downstream tasks
on UCF101, HMDB51 and NTU-60 datasets. We believe
that STC-mix can be a standard video augmentation tool
while learning any multi-modal self-supervised video rep-
resentation. To facilitate future research, we will release
our code and pre-trained representations.
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[5] Uta Büchler, Biagio Brattoli, and Björn Ommer. Improving
spatiotemporal self-supervision by deep reinforcement learn-
ing. CoRR, abs/1807.11293, 2018. 8

[6] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 4724–4733. IEEE, 2017. 5, 8

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020. 1, 3, 5

[8] Joon Son Chung and Andrew Zisserman. Out of time: au-
tomated lip sync in the wild. In Workshop on Multi-view
Lip-reading, ACCV, 2016. 1, 8

[9] Nieves Crasto, Philippe Weinzaepfel, Karteek Alahari, and
Cordelia Schmid. MARS: Motion-Augmented RGB Stream
for Action Recognition. In CVPR, 2019. 6

[10] Srijan Das, Rui Dai, Michal Koperski, Luca Minci-
ullo, Lorenzo Garattoni, Francois Bremond, and Gianpiero
Francesca. Toyota smarthome: Real-world activities of daily
living. In ICCV, 2019. 1, 8

[11] Srijan Das, Saurav Sharma, Rui Dai, Francois Bremond, and
Monique Thonnat. Vpn: Learning video-pose embedding for
activities of daily living, 2020. 8

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009. 8

[13] Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross Gir-
shick, and Kaiming He. A large-scale study on unsupervised
spatiotemporal representation learning. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3298–3308, 2021. 7, 8

[14] Basura Fernando, Hakan Bilen, Efstratios Gavves, and
Stephen Gould. Self-supervised video representation learn-
ing with odd-one-out networks. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 1, 8

[15] Nuno C. Garcia, Pietro Morerio, and Vittorio Murino.
Modality distillation with multiple stream networks for ac-
tion recognition. In Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss, editors, Computer Vision –
ECCV 2018, pages 106–121, Cham, 2018. Springer Interna-
tional Publishing. 6

[16] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive
estimation: A new estimation principle for unnormalized sta-
tistical models. In Yee Whye Teh and Mike Titterington, edi-
tors, Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, volume 9 of Proceed-
ings of Machine Learning Research, pages 297–304, Chia
Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. 1

[17] Tengda Han, Weidi Xie, and Andrew Zisserman. Memory-
augmented dense predictive coding for video representation
learning. In European Conference on Computer Vision,
2020. 8

[18] Tengda Han, Weidi Xie, and Andrew Zisserman. Self-
supervised co-training for video representation learning. In
Neurips, 2020. 3, 5, 7, 8

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. arXiv preprint arXiv:1911.05722, 2019.
5, 11

9



[20] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 4, 8

[21] Bruno Korbar, Du Tran, and Lorenzo Torresani. Co-training
of audio and video representations from self-supervised tem-
poral synchronization. CoRR, abs/1807.00230, 2018. 1, 8

[22] Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote,
Tomaso Poggio, and Thomas Serre. Hmdb: a large video
database for human motion recognition. In 2011 Interna-
tional Conference on Computer Vision, pages 2556–2563.
IEEE, 2011. 5

[23] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Singh, and Ming-
Hsuan Yang. Unsupervised representation learning by sort-
ing sequences. In 2017 IEEE International Conference on
Computer Vision (ICCV), pages 667–676, 2017. 1, 7, 8

[24] Kibok Lee, Yian Zhu, Kihyuk Sohn, Chun-Liang Li, Jinwoo
Shin, and Honglak Lee. i-mix: A domain-agnostic strategy
for contrastive representation learning. In ICLR, 2021. 1, 2,
8

[25] Lilang Lin, Sijie Song, Wenhan Yang, and Jiaying Liu. Ms2l:
Multi-task self-supervised learning for skeleton based action
recognition. In Proceedings of the 28th ACM International
Conference on Multimedia, MM ’20, page 2490–2498, New
York, NY, USA, 2020. Association for Computing Machin-
ery. 8

[26] Li Linguo, Wang Minsi, Ni Bingbing, Wang Hang, Yang
Jiancheng, and Zhang Wenjun. 3d human action represen-
tation learning via cross-view consistency pursuit. In CVPR,
2021. 3, 5, 7, 8, 11

[27] Dezhao Luo, Chang Liu, Yu Zhou, Dongbao Yang, Can Ma,
Qixiang Ye, and Weiping Wang. Video cloze procedure
for self-supervised spatio-temporal learning. arXiv preprint
arXiv:2001.00294, 2020. 8

[28] Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan
Laptev, Josef Sivic, and Andrew Zisserman. End-to-End
Learning of Visual Representations from Uncurated Instruc-
tional Videos. In CVPR, 2020. 1, 8

[29] Ishan Misra, C. Lawrence Zitnick, and Martial Hebert. Shuf-
fle and Learn: Unsupervised Learning using Temporal Order
Verification. In ECCV, 2016. 1, 8

[30] Qiang Nie, Ziwei Liu, and Yunhui Liu. Unsupervised 3d
human pose representation with viewpoint and pose disen-
tanglement. In European Conference on Computer Vision
(ECCV), 2020. 8

[31] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In ECCV,
2016. 8

[32] Andrew Owens and Alexei A. Efros. Audio-visual scene
analysis with self-supervised multisensory features, 2018. 1,
8

[33] Lyndsey C. Pickup, Zheng Pan, Donglai Wei, YiChang Shih,
Changshui Zhang, Andrew Zisserman, Bernhard Scholkopf,
and William T. Freeman. Seeing the arrow of time. In 2014
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2043–2050, 2014. 1, 8

[34] AJ Piergiovanni, Anelia Angelova, and Michael S. Ryoo.
Evolving losses for unsupervised video representation learn-
ing. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2020. 1, 8

[35] AJ Piergiovanni and Michael S. Ryoo. Recognizing ac-
tions in videos from unseen viewpoints. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4124–4132, June 2021. 8

[36] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang,
Huisheng Wang, Serge J. Belongie, and Yin Cui. Spa-
tiotemporal contrastive video representation learning. CoRR,
abs/2008.03800, 2020. 8

[37] Haocong Rao, Shihao Xu, Xiping Hu, Jun Cheng, and Bin
Hu. Augmented skeleton based contrastive action learning
with momentum lstm for unsupervised action recognition.
Information Sciences, 569:90–109, 2021. 8
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Appendix
1. Training/Testing specification for downstream fine-
tuning on UCF101 and HMDB51. At training, we ap-
ply the same data augmentation as in the pre-training stage
mentioned in section 4.2., except for Gaussian blurring. The
model is trained with similar optimization configuration as
in the pre-training stage for 500 epochs. At inference, we
perform spatially fully convolutional inference on videos
by applying ten crops (center crop and 4 corners with hori-
zontal flipping) and temporally take clips with overlapping
moving windows. The final prediction is the average soft-
max scores of all the clips.
2. History Queue in MoCo. We adopt momentum-updated
history queue as in MoCo [19] to cache a large number
of visual features while learning contrastive representation.
For our pre-training experiments, we use a softmax temper-

ature τ = 0.07, and a momentum m = 0.999. The queue
size of MoCo for pre-training experiments on UCF101 and
K400 are 2048 and 16384 respectively.
3. More Details on Experiments with Skeletons.

(i) Training/Testing specification for downstream fine-
tuning on NTU-60. For training the pre-trained ST-GCN
along with the linear classifier, we apply the same data aug-
mentation as in the pre-training stage. We train for 100
epochs with learning rate 0.1 (multiplied by 0.1 at epoch
80).

(ii) 2s-CrossCLR + CMMC. For this experiment pre-
sented in Table 6., we first train each view, i.e., Joint and
Motion, for 100 epochs. Then, we train the model with
CMMC for another 100 epochs, and finally, we train the
model with cross-view training proposed in [26] for 100
epochs. Thus, the model is trained for 300 epochs in to-
tal for a fair comparison with the representative baselines
2s-CrosSCLR [26] and SkeletonCLR.

(iii) STC-mix on NTU-60. In this experiment, we per-
form STC-mix to perform cross-modal data augmentation
between RGB and 3D Poses. Note that the video encoder
(S3D) and skeleton encoder (ST-GCN) are asymmetric. At
first, both the encoders are trained with infoNCE loss for
300 epochs. The queue size of MoCo for pre-training is
set to 2048. For brevity, we perform CMMC at fixed layers
instead of randomizing the layers to be mixed across modal-
ities. For S3D, we perform CMMC at block 4 while block
8 for ST-GCN. For training video encoder in the CMMC
stage, the output of the ST-GCN from block 8 undergoes a
cutmix operation with the output of block 4 of S3D. The
output feature of ST-GCN is 3-dimensional (c2 × t2 × J),
where J = 25. Thus, we reshape J into a 5 × 5 matrix.
Thus, the resultant 4D tensor is now mixed with the video
feature after undergoing a cut operation across time and
channels. Conversely, while training the skeleton encoder,
the intermediate RGB feature map from the 4th block of
S3D is 4-dimensional (c2×t2×s2). Thus, we perform a cut
operation across all the dimensions, extracting a 3× 3 crop
in the spatial dimension. We flatten the spatial dimension
resulting into a 3D tensor which is mixed with the ST-GCN
intermediate feature. Note that this is an attempt to general-
ize STC-mix with asymmetric modalities. Thus, this exper-
iment can be generalized by randomly choosing the blocks
and randomizing the permissible dimension of the crops in
the Cutmix operation, we leave this for future exploration.
4. Regularization effect of STC-mix
In Fig. 3, we provide (1) a plot of training loss of two mod-
els, one using STC-mix and the other model is using stan-
dard data augmentations, and (2) the (K+1)-way accuracy of
the pretext task of the models learning contrastive represen-
tation. We observe a disparity between the training losses
(at left of the figure) in both the models with and without
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Figure 3. Training on UCF101 dataset. At left, we present the
training loss of two models, one using video augmentation: STC-
mix and the other not. At right, we provide the (K+1)-way accu-
racy on the pretext task while learning contrastive representation.

using STC-mix. This is owing to the hardness of the pre-
text task which can be directly correlated with the difficulty
of the data transformation, via STC-mix data augmentation.
Meanwhile, we also note that the (K+1)-way accuracy of
the STC-mix model while training on contrastive loss is
lower than that of the model without using STC-mix (at the
right of the figure). However, the performance gain of the
STC-mix model on downstream classification and retrieval
tasks shows the regularizing capability of using STC-mix
type data augmentation.
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