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Abstract: In this work, we evaluate machine learning (offline) and evolutionary strategy (online) 
techniques for the Raman pump power optimization. Experimental results show that, although reusable 
and accurate, online tools may be time-consuming for reconfigurable amplifiers.
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INTRODUCTION

The ability to provide broadband gain at any frequency has recently motivated researchers to consider Raman 
amplifiers (RA) for the amplification of multi-band signals [1]-[5]. Some of the aforementioned works have explored an 
exclusive RA feature: the shaping of gain spectrum by adjusting the powers of the pump lasers. This is a non-trivial 
optimization problem – as it involves differential equations, where given a target gain profile, the solution is the pump 
power configuration providing a gain as close as possible to the target.

Recently, machine learning (ML) has been applied to learn the complex pump-signal relations in RAs [6]. It has been 
shown to reach highly accurate gain profile optimization for C-band [7], S+C and S+C+L-bands [2]-[4] transmissions. 
Based on neural networks (NN) that learns from data, such a data-driven approach performs ultra-fast offline optimization, 
and normally dedicated NN models are required for each specific experimental scenario [8].

An alternative approach for Raman amplifier pump power optimization uses bio-inspired evolutionary strategies (ES) 
such as genetic algorithm [9]-[11], differential evolution (DE) algorithm [12][13], and most recently co-variance matrix 
adaptation evolutionary strategy [14]. Starting from a large set of random and non-trivial solutions, these population-
driven approaches navigate through the solution space looking for the target performance. So far, these methods have 
been applied to the RA offline optimization only, using a numerical model to emulate the RA. This helps to speed up the 
optimization by allowing parallel evaluation of the solutions within the population. However, for the solution to be useful 
experimentally, a thorough physical layer characterization is also required [14]. This makes the offline ES approach also 
dependent on the experimental scenario. However, ES can also be applied online, directly interacting with the 
experimental setup to evaluate the solutions. Some examples are the optimization of frequency combs [15] and optical 
transmitters [16]. Nevertheless, online ES approaches have not yet been applied to the RA case. This would eliminate the 
need for a physical layer characterization, making the approach independent of the experimental scenario.

In this work, experimental Raman gain profiles are optimized online using a DE algorithm. During the procedure, the 
real response of a distributed 50-km standard single-mode fiber (SSMF) RA is monitored. The obtained results are 
compared to state-of-the-art offline optimizers based on inverse system design using ML [6]. DE solutions have superior 
accuracy, achieving maximum errors of 0.15 and 0.48 dB when optimizing flat gains of 3 and 5 dB, respectively. The 
main drawback of such an online iterative approach is the optimization time per target gain, which can reach more than 
9 hours, against the milliseconds when using the offline approaches with trained NN models.

EXPERIMENTAL SETUP

The experimental RA setup used for the online optimization is depicted in Fig.1(a). This setup was also used to generate 
the data set to build the ML-based inverse system design and to evaluate the final solutions. The input signal is generated 
by 40 continuous-wave lasers with a total power of +16.15 dBm and covering the entire C-band (192-196 THz). This 
signal goes through a 50-km SSMF, where it is distributedly amplified by 4 back-propagating Raman pump lasers. Pump 
frequencies are fixed and maximum powers PMAX are also shown in Fig.1(a). Pump powers are remotely controlled and 
their powers are defined as P = [P1,P2,P3,P4]. Pumps and signals are combined by a wavelength division multiplexer 
(WDM). At the RA output, an optical spectrum analyzer (OSA) measures the signal with a resolution of 0.1 nm. The 
Raman on-off gain profile G = [G1,G2,…,G40] is calculated as the difference between output spectra with the pump lasers 
turned on and off for each signal channel [8]. In Fig.1(a), GT stands for target gain and GM for measured gain.

ONLINE OPTIMIZATION WITH DIFFERENTIAL EVOLUTION ALGORITHM

The DE algorithm is a derivative-free, population-driven, and bio-inspired optimization method [15][17]. It relies on 
iteratively going through three stages: mutation, crossover, and fitness evaluation. The process starts at iteration k = 0 by 
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generating the population Xk=0={x0,1,x0, ,…,x0,Nc}, where Nc is the number of solution candidates. For the RA gain 
profile optimization, each initial solution x0, is described by a pump power configuration with values uniformly 
distributed in the interval [0,PMAX]. For iteration k = 0, just the fitness evaluation stage is performed. In this case, all 
solutions within Xk=0 are evaluated according to the fitness function f(x0,i) = max(|GT-GM(x0,i)|). f(x0,i) corresponds to
the maximum absolute error along the channels between target and measured GM(x0,i) gains, with GM(x0,i) being the 
measured gain when applying the solution x0, to the pump powers in the experimental setup.

For each iteration , in the mutation stage, a donor vector vk,i is created by mixing random solutions in the 
previous population xk-1,1:Nc . Each vk,i is calculated as vk,i = xk-1,r1 + F(xk-1,r2 -xk-1,r3), where r1 , r and r are population 
indexes randomly generated within [1,Nc], and F is a scaling factor . In the crossover stage, a trial vector uk,i is 
generated by mixing vk,i and xk ,i in the following way: for each element uk,i,j uk,i , uk,i,j = vk,i,j with a crossover 
probability pc , and uk,i,j = k ,i,j otherwise. Recall that is the pump index ( ). The boundaries of uk,i are 
checked to avoid values outside the pump power limits. Finally, in the evaluation stage, uk,i is evaluated using f(∙). The 
new solution candidate xk,i is updated according to xk,i = uk,i if f uk,i < f(xk-1,i), or xk,i = xk-1,i otherwise. The overall best 
solution candidate xbest is updated according to xbest = xk,i if f(xk,i) < f(xbest). The final solution is given by PDE = xbest.

To apply the DE, no prior knowledge of the physical layer is needed. Therefore, the setup time needed to prepare the 
optimizer for different experimental setups is negligible. In this work, we consider Nc = 30, F = 0.6, and pc = 0.8. The 
maximum number of iterations is K = 100, with early-stop for no improvements after 25 consecutive iterations. 

OFFLINE OPTIMIZATION WITH MACHINE LEARNING

The offline optimization method applies the data-driven ML framework for the RA inverse design detailed in [6] and 
illustrated in Fig. 1(b). NNinv (Fig. 1(b)-I) is the core of the framework and models the inverse mapping of the RA, i.e., 
the gain profile G to the pump configuration P (G→ P). Therefore, NNinv provides a direct retrieval of the proper pump 
power configuration P for a target gain profile GT. In case NNinv does not provide sufficient accuracy, an additional fine 
optimization routine is applied. It consists of using NN in a trajectory-driven gradient descent (GD) loop to refine the 
pump configuration (Fig. 1(b)-II). NN models the forward RA mapping P→ G. It is equivalent to solving the Raman 
coupled equations, with the difference of being trained on measured data and providing nearly-instantaneous gain profile 
predictions. The optimization starts with the NNinv outcome as the initial solution. During the optimization, the mean 
squared error (MSE) between GT and NN prediction is minimized. NN provides a fast and differentiable model 
to calculate the gradient and speed up the fine optimization. The final solutions are PNNinv= P, and PGD+NNfwd= Popt.

There are two important steps needed before having the framework ready to be used. (1) Experimental data acquisition, 
where uniformly randomly pump configurations are applied to the experimental RA (Fig. 1(a)) and the corresponding 
Raman gains are measured. The final dataset is given by = {Pn,Gn | n = 1,…,N}, where is the total number of cases. 
(2) Supervised training, consisting in training NNinv and NN using . Details about how the NNs architecture, training
and performance in a wide range of gain profiles (flat, tilted, and arbitrary) can be found in [7]. The first step is the most 
time-consuming. In our experimental setup, it took ~20 seconds to capture each case in . Since we consider N = 3000, 
the total setup time is 16.5 hours. The second step takes only few minutes and has, therefore, negligible contribution to 
the total setup time. However, after training, the optimization time is almost instantaneous, as shown in the following.

RESULTS AND DISCUSSION

Here we apply the aforementioned DE and ML-based methods to optimize two flat target gain profile cases, GT3dB and 
GTdB (Fig. 1(a)). As a reference, we look for measured gain profiles GM inside the dataset that are close to GT3dB and 
GT3dB. This pseudo brute-force approach provides absolute maximum errors EMAX = max(|GT - GM|) of 0.22 and 0.48 dB, 
respectively. These values can be used as a reference since they are related to gain profiles achievable by the experimental 
setup. However, better solutions might be still possible since it is not a comprehensive brute-force search.

Fig. 1. (a) Experimental setup for the online optimization using differential evolution (DE) algorithm. (b) Offline optimization based on neural 
network models. MSE: mean squared error, GD: gradient descent, : target gain, : measured gain.
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The computed solutions PDE , PNNinv , and PGD+NNfwd are applied to the experimental setup in Fig. 1(a) and their 
corresponding gains are measured. Target and measured gain profiles are shown in Fig. 2(a). Fig. 2 also shows 
optimization and pseudo brute search (ref) performance in terms of MSE (Fig. 2(b)) and EMAX (Fig. 2(c)).

The worst performance for NNinv in optimizing GTdB is because there is just one case in the training dataset with a 
gain profile close to GTdB, while there are ten cases close to GTdB (where close means EMAX 0.5 dB). In fact, a uniform 
distribution on the pump powers (NN input) does not guarantee a uniform distribution on the gain profiles (NNinv
input). Since NNinv was not trained with sufficient points around GTdB , it will not be able to provide good pump 
predictions (generalize) for GTdB as it does for GTdB [6]. NN , on the other hand, was trained over a uniformly
distributed input (pump powers). Therefore, NN can be accurate enough to help GD + NNfwd in overcome the NN
limitations, as shown by MSE and EMAX improvements.

When applying DE, there are no significant MSE improvements w.r.t. GD + NNfwd as observed for EMAX. This is 
because GD is based on MSE while DE on EMAX. By minimizing , DE may also minimize MSE because a low 
can lead to a low MSE. However, the opposite is not true. This means that a low MSE can still have high errors that are 
averaged along the signal channels. Therefore, DE and GD + NNfwd reach accurate MSE results, while only DE has a 
better . Moreover, DE directly monitors the pump power solutions in the experimental setup during the optimization 
routine, with no approximations as for the GD + NNfwd.

Fig. 2(d-e) shows how the cost functions MSE and f(xbest) evolve along the iterations for the GD + NNfwd and DE 
methods, respectively. Although both methods optimize GTdB after a similar number of iterations, the total optimization
time is very different. At each iteration, DE experimentally evaluates = 30 candidate solutions, which takes around 10 
minutes, while GD + NNfwd evaluates a single candidate in less than 1 millisecond using NN .

Table 1 summarizes the optimization performance, including the optimization time to achieve each target gain and the 
setup time, considering a standard personal computer (Intel Core i5 @3.4 GHz, 8 GB RAM). The main drawback of NN-
based optimizers is the setup time due to the experimental data acquisition. These optimizers are also dependent on the 
considered experimental setup used during the preparation steps. However, once they are ready, ultra-fast RA gain 
optimization can be achieved, relying on a simple and fast matrix multiplication if just NNinv is applied, or taking just a 
few milliseconds with GD + NNfwd. In contrast, the proposed DE can be reusable for any RA experimental setup with 
minimum time and effort, not requiring physical layer characterization as in an offline approach [14]. Nevertheless, DE's 
flexibility and highly accurate solutions come with the cost of having a very long optimization time that scales up with 
the number of target gains. To optimize both GTdB and GTdB, DE takes a total time (setup + optimization) of 24 hours, 
while NN-based approaches have a total time close to the setup time.

CONCLUSIONS

Optimization tools are very important to leverage the ability to shape the gain profile of the Raman amplifiers. Many 
offline tools have been reported in the literature with this purpose. However, they are highly dependent on the 
experimental setup used to build them. In this work, an online optimization tool, highly accurate and reusable for different 
experimental setups, was compared to some state-of-the-art offline tools. The obtained results show that the only 
drawback is the high optimization time. This imposes critical limitations in future flexible optical networks, where rapid 
actions are desirable. Therefore, in scenarios requiring reconfigurability, NN-based optimizers may be preferable.

TABLE I
COMPARING THE OPTIMIZERS IN TERMS OF ERRORS (MSE, AND , LOWEST VALUES IN BOLD) AND TIME (OPTIMIZATION, SETUP AND TOTAL).

Optimizer GT
dB GT

dB Setup Total
MSE (dB) (dB) Optimization time MSE (dB) (dB) Optimization time time time

NNinv 0.32 0.51 ~0 1.06 1.44 ~0 16.5 h 16.5 h
NNfwd 0.18 0.43 17 ms 0.14 0.78 23 ms 16.5 h 16.5 h

DE 0.07 0.15 14.5 h 0.14 0.48 9.5 h ~0 24 h
Pseudo brute search (ref) 0.09 0.22 ~0 0.24 0.48 ~0 16.5 h 16.5 h

Fig. 2. (a) Target and measured gain profiles. Optimization performance in terms of (b) mean squared error (MSE) and (c) maximum absolute 
error (EMAX) for the different optimizers and the pseudo brute-force search (ref). Convergence analysis for (d) NN and (e) DE.
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