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Abstract: We investigated data augmentation to train neural networks (NNs) for soft-
failure cause identification, demonstrating its impacts on NN complexity. Results indicate
up to 68% reduction in the computational complexity of NN for each inference.
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1. Introduction

In recent years, machine learning (ML) techniques have been extensively investigated for the realization of au-
tonomous optical networks [1], with optical network failure management (ONFM) as a promising use case [2].
However, despite this extensive research, there is little emphasis on improving the quality of training data, which
is critical in determining the performance of ML models. As a result, the cost of poor quality training data is usu-
ally paid in the form of increased (hidden) complexity of the ML model. One method of improving data quality
is to eliminate the class imbalance, and in ONFM, class imbalance is common because some types of failures
occur more frequently than others, resulting in an unequal distribution of observations within the dataset. Training
ML models, in particular neural networks (NNs), with such imbalanced datasets, may result in a bias toward the
majority class (i.e., more common failure) [3] that affects the performance of NNs in terms of accuracy and/or
training time. In [4], data augmentation has been shown to provide benefits in reducing training time. However,
there is a lack of research that analyzes the complexity of the NN, especially in the context of ONFM.

This paper focuses on the gains of data augmentation during the inference phase of the deployed NNs for soft-
failure cause identification. The obtained results suggest that a good quality (i.e., balanced, hereinafter referred
to as modified) training dataset can enable a less complex NN (NNLC) to achieve similar performance as a more
complex NN (NNMC) trained with an imbalanced experimental dataset. Results also show that if we deploy NNLC
trained with the modified dataset for the identification of soft failures, we can reduce the multiplication or bit
operations by up to 68% for each inference, implying a significant reduction in the complexity of NNs.

2. Experimental Testbed Setup for Data Acquisition

For this investigation, we collected data from the experimental testbed shown in Fig. 1. Commercial transponders
were used on the transmitter (Tx) and receiver (Rx) sides. The testbed consisted of 4×80-km single-mode-fiber
spans, denoted by S1, S2, S3, and S4. Erbium-doped fiber amplifiers (EDFAs), denoted as A1, A2, A3, and A4,
were used at the end of each span. We artificially introduced five different soft-failures in the system relying on a
wavelength selective switch (WSS) placed at the end of S2. Table 1 summarizes the configuration details for all
five considered soft-failures. In the case of normal operation (i.e., no soft-failure), the WSS’s central frequency
was set at 192.3 THz, and its attenuation and bandwidth were set at 0 dB and 37.5 GHz, respectively.

The input (Pin) and output (Pout) power levels in each amplifier, as well as the bit error rate (BER) and the
optical signal-to-noise ratio (OSNR) in the coherent receiver, were extracted from the testbed. Two imbalanced
datasets were considered: UD1, where only BER and OSNR were taken into account; UD2, where we included
also Pin at A2 in addition to BER and OSNR. UD1 was inseparable, whereas UD2 was separable in N-dimensional
space, where N is the number of input features considered (i.e., 2 for UD1 and 3 for UD2).

Fig. 1. Experimental testbed setup.

Soft-Failure
Filter

Bandwith
(GHz)

Attenuation
(dB)

Central
Frequency

(THz)
Filter Tightening 26 0 192.3

Attenuation 37.5 6 192.3
Filter Tightening + Attenuation 26 6 192.3
Filter Tightening + Filter Shift 26 0 192.32

Filter Shift 37.5 0 192.32

Table 1. Considered soft-failures.



3. Proposed Approach for Data Augmentation

Data augmentation has been achieved using a variational-autoencoder (VAE) followed by a synthetic samples
selector (SSS) as in Fig. 2. A VAE is a generative ML model with an encoder and a decoder (both of which
are NNs). The generative capabilities of VAE stem from its encoder, which encodes input as a distribution over
latent space (i.e., encoder output). The latent space distributions are then randomly sampled multiple times, and
the resulting latent vectors are fed to the VAE decoder, whose task is to reconstruct the encoder’s actual input.
However, due to the imperfect training, the reconstructed input is not the same as the actual input. But, it can be
used as synthetic data because it retains the underlying pattern of the actual input data.
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Fig. 2. Proposed approach: variational-autoencoder followed by a synthetic samples selector.

Once synthetic data (X̂) are generated, its subset is selected by SSS. In particular, among (X̂), for each under-
represented soft-failure class, SSS selects data by minimizing their Euclidean distance from the mean of that same
class in the actual imbalanced experimental dataset (X). The required number of selected synthetic samples is
added to each under-represented soft-failure class in order to obtain the modified dataset (Xmodi f ied , i.e., balanced).
It should be noted that only the training dataset was modified, while the validation and test datasets remained
unchanged for an unbiased evaluation of NNs trained with modified and unmodified training datasets. Hereinafter,
modified (i.e., balanced) datasets obtained from UD1 and UD2 are referred to as MD1 and MD2, respectively.

4. Results and Complexity Analysis
For soft-failure cause identification, we used a NN (NNMC1 with 325 trainable parameters and size: input layer
(I) × hidden layer-1 (h1) × hidden layer-2 (h2) × output layer (O) = 2 × 20 × 10 × 5) and a comparatively less
complex NN (NNLC1 with 125 trainable parameters and size: I × h1 × O = 2 × 15 × 5). Both NNMC1 and NNLC1
were trained using UD1 and MD1, and different aspects of their performance were analyzed.

Fig. 3. Performance comparison: (a) NNLC1, NNMC1, NNLC2, and NNMC2 trained with MD1, UD1,
MD2 and UD2, respectively (b) NNLC1 and NNMC1 trained with both MD1 and UD1



We also compared the performance of another NN (NNMC2 with 173 trainable parameters and size: I × h1 × h2
× O = 3 × 10 × 8 × 5) trained with UD2, to a comparatively less complex NN (NNLC2 with 59 trainable parameters
and size: I × h1 × O = 3 × 6 × 5) trained with MD2. The results in Fig. 3(a) show that NNLC2 achieved 100%
validation accuracy in 12.44 seconds and NNMC2 achieved the same accuracy in 12.53 seconds. Since UD2 was
separable, attaining 100% validation accuracy was possible but for UD1, validation accuracy of only up to 81.6%
was achieved because of its inseparable nature. NNLC1 achieved 81.6% validation accuracy in approximately
56 seconds, while NNMC1 achieved the same validation accuracy in 54.3 seconds. From both the considered
cases, it can be inferred that a complex NN trained with a low-quality dataset (i.e., unmodified in this case) and
a comparatively less complex NN trained with a good-quality dataset can result in similar performance. This is
possible because, as suggested in Fig. 3(b), improving the quality of the training dataset improves the classification
accuracy of a NN. The corresponding F1-score on test dataset also improves as for NNMC1, it improved from 0.57
to 0.75 by changing the training dataset from UD1 to MD1, and a similar improvement was observed for NNLC1.

As NNLC trained with a modified dataset performed similarly to NNMC trained with the unmodified dataset,
using NNLC for the soft-failure cause identification can save computational resources during the inference phase.
To quantify this saving, we considered two commonly used metrics: the number of (i) real multiplications (RMs)
and (ii) bit operations (BOPs). RMs provide an estimate of computational complexity (CC) in terms of the number
of multipliers required while ignoring adders. This is because adders, unlike multipliers, are typically simpler to
implement in hardware or software [5]. For a dense (i.e., fully-connected) layer of a NN, RMs = nn×ni [6], where
nn is the number of neurons in the given layer and ni is the number of inputs to each neuron in that layer. On
the other hand, the BOP is a more comprehensive metric because it takes into account both multiplication and
addition operations. If bw and bi represent the bit-lengths of each weight and input, respectively, then Eq. 1 gives
an estimate of BOPs for a dense layer [6].

BOPs ≈ nnni[bwbi +bw +bi + log2(ni)] (1)

The quantitative analysis in Table. 2 shows how the computational complexity of a NN deployed for soft-failure
cause identification reduces in terms of RMs and BOPs. NNLC1 requires 63.79% less multipliers and up to 64.06%
fewer BOPs than NNMC1 for each inference. Similarly, deploying NNLC2 in place of NNMC2 to achieve similar
performance for soft-failure cause identification can reduce the RMs and BOPs by up to 68%.

CC Metric bi bw NNMC1 NNLC1 %Reduction NNMC2 NNLC2 %Reduction
RMs - - 290 105 63.79 150 48 68.00
BOPs 8 8 24272 8724 64.06 12434 3947 68.26
BOPs 16 16 84592 30564 63.87 43634 13931 68.07
BOPs 32 32 316592 114564 63.81 163634 52331 68.02
BOPs 64 64 1226032 443844 63.80 634034 202859 68.01

Table 2. Computation complexity (CC) comparison in terms of BOPs and RMs: NNMC1 vs. NNLC1
and NNMC2 vs. NNLC2.

5. Conclusions
We investigated a variational-autoencoder-based data augmentation technique for pre-processing of training
datasets for neural networks (NNs) used for soft-failure cause identification. It has been shown that adding aug-
mented data to an experimental training dataset can enable a less complex NN (NNLC) to achieve classification
accuracy comparable to a complex NN (NNMC) trained with non-augmented dataset. Besides, NNLC saves up to
68% computational resources for each inference as compared to NNMC.
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