
An Intelligent Optical Telemetry Architecture
Luis Velasco*, Pol González, and Marc Ruiz

Optical Communications Group (GCO), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
e-mail: luis.velasco@upc.edu

Abstract: A distributed telemetry system is proposed with agents receiving and analyzing data

before sending to a centralized manager. Intelligent data aggregation on optical constellations

telemetry largely reduces data rate without introducing significant error. © 2023 The Authors1

1. Introduction

The benefits of telemetry for optical networking have been shown in the literature and several telemetry

architectures have been defined (see, e.g., [1], [2]). In general, telemetry data is collected from observation points

in the devices and send to a central system running besides the Software Defined Networking (SDN) controller.

Although protocols specifically devised for telemetry, like gRPC, compress data, the amount of data that can be

collected and the frequency of collection make those architecture not practical. In this paper, we propose a

telemetry architecture that supports intelligent data aggregation nearby data collection.

2. Telemetry Architecture

Fig. 1 presents the reference network scenario, where an SDN architecture controls a number of optical nodes,

specifically optical transponders (TP) and reconfigurable optical add-drop multiplexers (ROADM), in the data

plane. Note that the SDN architecture might include a hierarchy of controllers, including optical line systems and

parent SDN controllers. A centralized telemetry manager is in charge of receiving, processing and storing

telemetry data in a telemetry database (DB). Some data exchange between the SDN control and the telemetry

manager is needed, e.g., the telemetry manager needs to access the topology DB describing the optical network

topology, as well as the label switched path (LSP) DB describing the optical connections (theses DBs are not

shown in Fig. 1). Every node in the data plane is locally managed by a node agent, which translates the control

messages received from the related SDN controller into operations in the local node and exports telemetry data

collected from observation points (labeled M) enabled the optical nodes.

A detailed architecture of the proposed telemetry system is presented in Fig. 2, where the internal architecture of

telemetry agents inside node agents and the telemetry manager is shown. Internally, both, the telemetry agent and

manager are based on three main components: i) a manager module configuring and supervising the operation of

the rest of the modules; ii) a number of modules that include algorithms, e.g., data processing, aggregation, etc.

and interfaces, e.g., gRPC; and iii) a Redis DB that is used in publish-subscribe mode to communicate the different

modules among them. This solution provides an agile and reliable environment that simplifies communication, as

well as integration of new modules. A gRPC interface is used for the telemetry agents to export telemetry to the

telemetry manager, as well for the telemetry manager to tune the behavior of algorithms in the agents.

Let us describe now a typical telemetry workflow valid for a wide range of use cases. The node agent includes

modules (denoted data sources) that gather telemetry data from observation points in the optical nodes. Examples

include optical spectrum analyzers (OSA) in the ROADMs and data from digital signal processing, e.g., optical

constellations, in the TPs. A telemetry adaptor has been developed, so data sources can export collected data to

the telemetry system; specifically, the adaptor receives raw data from the data source and generates a structured

json object, which is then published in the local Redis DB (labeled 1 in Fig. 2). The periodicity for data collection

can be configured within a defined range of values. A number of algorithms can be subscribed to the collected

measurements. In this example, let us assume that only one algorithm is subscribed, which processes the

measurements locally. Such processing might include doing: i) no transformation on the data (null algorithm); ii)

some sort of data aggregation, feature extraction or data compression; or iii) some inference (e.g., for degradation

detection). The output data (transformed or not) are sent to a gRPC interface module through the Redis DB (not

shown in the figure) (2), which conveys the data to the telemetry manager. Because gRPC requires a previous

definition of the data to be conveyed, our implementation encodes the received data in base64, which allows

generalization of the telemetry data to be conveyed. Note that, although such encoding could largely increase the

volume of data to be transported, intelligent data aggregation performed by telemetry agents could reduce such

volume to a minimum.

In the telemetry manager, the data are received by a gRPC interface module that publishes them in the local Redis

DB, so subscribed algorithms can receive them. The algorithms in the telemetry manager can implement functions

related to data aggregation, inference, etc. Once processed, the output data is published in the local Redis DB (4)

and can be stored in the telemetry DB (5) and/or be exported to external systems (6). Interestingly, algorithms in

the telemetry manager can communicate with those in the telemetry agents using the gRPC interface (7-8).

Examples of such communication include parameter tuning, among others.

The research leading to these results has received funding from the H2020 B5G-OPEN (G.A. 101016663) and the MICINN IBON (PID2020-114135RB-I00) projects

and from the ICREA Institution.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1364/OFC.2023.M3G.1

Telemetry Manager

TP

Node
agent

SDN control
Architecture

Node
agent

Node
agent

TP

Node
agent

M M M MOptical Network

Telemetry
DB

Fig. 1: Overall network architecture

AlgorithmRedis

gRPC
Interface

Telemetry Agent

gRPC
Interface

Telemetry Manager

Algorithm

DB
Interface

Telemetry
DB

Telemetry
Adaptor

Other
Telemetry
InterfacesSDN

Control

1
2

3
4

5

6

7

Data
Source

Node Agent

gRPC

8

Fig. 2: Proposed telemetry architecture

3. Intelligent Data Aggregation for Optical Constellations Telemetry

We now focus on introducing several techniques to greatly reduce the data volume that needs to be conveyed

through the gRPC interface connecting telemetry agents to the manager. In particular, we analyze: i) data

compression using autoencoders; ii) supervised feature extraction; and iii) data summarization using the

arithmetic mean of a number of observations. For this example, let us assume the case where the observation point

is in a TP, which gathers the received optical symbols of a m-QAM signal. The related data source then,

periodically retrieves a constellation sample X (a sequence of k IQ symbols as represented in Fig. 3a for a 16-

QAM signal) and publish it in the local Redis DB.

Let us start with the use of autoencoders, a type of neural network with two components: the encoder, which maps

input data into a lower-dimensional latent space, and the decoder, which gets data in the latent space and

reconstructs the original data back. Once trained, the autoencoder takes as input 2×k values, i.e., [x1
I, x1

Q,… xk
I,

xk
Q], from the received constellation sample and generates the latent space Z=[z1, …, zL], where the size of Z is

significantly lower than that of X (Fig. 3b). In this case, the encoder runs as an algorithm module in the telemetry

agent and exchanges Z for every input sample X with the decoder running in the telemetry manager through the

gRPC interface. The algorithm in the telemetry manager uses the decoder to reconstruct the constellation sample

and it stores the result in the telemetry DB.

Let us now consider supervised feature extraction. In our previous work in [3], we applied Gaussian Mixture

Models (GMM) [4] to characterize each constellation point of an optical constellation sample as a bivariate

Gaussian distribution (Fig. 3c). Therefore, each constellation point i is characterized by 5 features, the mean

position in I and Q axes [µI,µQ], as well as the I and Q variance and symmetric covariance terms that the symbols

belonging to the constellation point i experience around the mean [σI,σQ,σIQ]. Therefore, for an m-QAM signal,

m*5 features need to be propagated from the telemetry agent to the manager.

With the two previous intelligent data aggregation techniques, telemetry data is propagated from the observation

point to the telemetry manager with the same frequency, i.e., every time a new constellation sample is collected

from the observation point, a subset of data representing it is generated and conveyed to the telemetry manager.

Assuming a high collection frequency, this policy entails large volume of data being conveyed. However, in

normal conditions, this is not needed in general. Hence, we could measure variations in the computed features to

decide whether a representation of the new sample needs to be sent to the telemetry manager. In case of no

significant variations in the features, the telemetry agent can send averaged values of the features with a much

lower frequency, thus reducing the volume of telemetry data

being conveyed.

4. Illustrative Results

The telemetry agent and the telemetry manager have been

implemented in Python and deployed as containers in two

different virtual machines. InfluxDB 2.4 implementing the

telemetry DB was deployed as a separated container. A data

source was developed that emulates constellation samples

collection from an observation point in a TP (available in [5]).

Each constellation sample X includes k=2048 symbols from a

16-QAM optical signal. In consequence, the size of each

sample X is 2×2048×4 = 16,384 bytes (B), assuming that every

symbol is represented with two scalars (I and Q) of 32 bits. The

telemetry adaptor in the data source publishes samples X

encoded as a json object. A representation of the json object is

shown in Fig. 4 identified with the same label as the related

message in Fig. 2 for the sake of clarity.

I

Q

3i

1i

-1i

-3i

-3 -1 1 3

x1
I

x1
Q

…
xn

I

xn
Q

x*1
I

…
x*n

I

x*n
Q

x*1
Q

(c) Features extraction

(b) Autoencoder

(a) Input sample (X)

Encoder Decoder

z1
zm
…

Latent
Space Z

I

Q

3i

1i

-1i

-3i

-3 -1 1 3

X X*

Fig. 3: Constellation sample (a) and use of autoencoders

(b) and supervised features extraction (c).

{

"X": [[-3.08519822419515, 2.98467451952321],

:

[2.96258763128303, 2.97984558299648]]

}

{

"Z": ["2.732774257",

:

"0.172829926"]

}

2a1

{

"F": [["-2.971842458","2.971601309","0.004633636",..."0.004507746"],

:

["-2.941472597","2.931215828","0.113045212",..."0.121031438"]]

}

2b

Fig. 4: JSON objects

0

10

20

30

40

50

0 10 20 30 40 50 60

X (scalar)

Z (json)

F (json)

max

Telemetry Period (s)

D
at

a
R

at
e

(k
b

/s
)

X (scalar) Z (json) F (json)

Size (B) 16,384 607 1,546

14.5s

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 5 10 15 20 25 30

800km

1600km

M
ax

im
u

m
 F

 v
ar

ia
ti

o
n

30 sec period

30 sec period

1 sec period

Telemetry Period (s)
Fig. 5: Telemetry data rate vs period Fig. 6: Aggregation error vs telemetry period Fig. 7: Data summarization

Algorithms have been implemented in Python and deployed in the telemetry agent and manager for the intelligent

data aggregation techniques detailed in Section 3. In case of using autoencoders for data compression, the encoder

runs in the telemetry agent, whereas the decoder runs in the telemetry manager. The algorithm in the telemetry

agent is subscribed to messages from the data source, so it takes as input a constellation sample X and generates

the latent space Z representing it. We have trained the autoencoder for the maximum compression that produces

a reproduction error in the decoder lower than 2%, which results in vectors Z of size 32. Such vectors are output

as json objects, where each component of the vector is represented as a string with 11 characters, resulting is 455

characters in total for the json object (2a in Fig. 4). The json object is then compressed, so each character uses

only 1B and encoded in base64, which results in 607B. When the message arrives at the telemetry manager through

the gRPC interface, it is used as input to the decoder in the related algorithm. The decoder generates a sample X*,

which is finally stored in the telemetry DB. In our tests, both, data encoding and decoding took 60ms.

In the case of supervised feature extraction, the algorithm in the telemetry agent applies GMM fitting to every

constellation sample X received and generates outputs of m=16 vectors with 5 features each (denoted F). This

process, outputs a json object with 1,159 characters (2b in Fig. 4), which is then conveyed through the gRPC

interface using 1,545B. To compare the results of features extraction to those from the autoencoder, the algorithm

in the telemetry manager, samples each distribution to obtain constellation samples with 2,048 symbols, and stores

them in the telemetry DB.

Fig. 5 presents the telemetry data rate when the telemetry period ranges from 1s to 1min for gRPC messages with:

i) samples X using scalar values; ii) Z vectors with the latent space encoded as json objects; and iii) features F

encoded as json objects. The inset in Fig. 5 summarizes the size of every object. We observe that using

constellation samples for the telemetry results in extremely large data rates, which limits the telemetry period. The

reason is double; on the one hand, high data rates would require expensive data communication infrastructure

dedicated for network telemetry, and on the other, optical devices (in this case, the TP) would need to support

them, which might impact its performance. Therefore, assuming a maximum data rate for telemetry collection of

9600 b/s (e.g., for a typical serial interface), the minimum telemetry period for optical constellations would be

14.5s. With such period, the telemetry data rate reduces one order of magnitude to only hundreds of b/s.

Telemetry data rate can be further reduced by implementing data summarization on the extracted features, which

can be sent with a larger period in case no significant changes occur. To illustrate this, Fig. 6 shows the relative

maximum difference of features F when the telemetry period ranges 1-30 s, assuming collection period of 1s.

Telemetry data of two lightpaths of 800km and 1600km are shown. In both cases, increasing the telemetry period

above 20 s achieves negligible aggregation error under 2%. Based on this, a dynamic telemetry data aggregation

has been implemented for the extracted features from optical constellations (Fig. 7). The telemetry agent

aggregates feature values and sent them every 30 s if no meaningful variation is detected. However, as soon as

some variation is detected, the telemetry agent sends the extracted features as soon as they are processed, i.e.,

every 1s, so the related algorithm in the telemetry manager can analyze the data with fine granularity. As soon as

the variations disappear, the algorithm in the telemetry manager asks the one in the agent to aggregate data again.

We can conclude that having fine grain telemetry for network data analysis at a centralized location results in a

large amount of data to be conveyed from the devices. To solve that fact, a distributed telemetry architecture has

been proposed, where collected data is analyzed before sending them to the central location. Intelligent data

aggregation has been shown for optical constellations telemetry, where aggregation introduces negligible error.

References
[1] L. Velasco et al., “Monitoring and Data Analytics for Optical Networking: Benefits, Architectures, and Use Cases,” IEEE Network, 2019.
[2] F. Cugini et al., “Telemetry and AI-based security P4 applications for optical networks,” IEEE/OPTICA JOCN, 2022.

[3] M. Ruiz et al., “Deep Learning -based Real-Time Analysis of Lightpath Optical Constellations,” IEEE/OPTICA JOCN, 2022.
[4] N. Bouguila and W. Fao, Mixture Models and Applications, Springer, 2020.

[5] M. Ruiz et al., “Optical Constellation Analysis (OCATA),” https://doi.org/10.34810/data146, 2022.

