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Abstract—The blocking performance of a heuristic and a deep
reinforcement learning approach for resource provisioning in a
dynamic multi-band elastic optical network is evaluated. The
heuristic is based on a previous proposal that prioritises the use
of band C, then L, S, and E, in that order. The deep reinforcement
learning approach uses a deep Q-network (DQN) agent trained
on different multi-band scenarios. Results show, as expected, a
significant decrease in blocking probability when moving from the
C-band only scenario to the multi-band scenarios (C+L, C+L+S,
C+L+S+E). However, the DQN agent did not outperform the
heuristic. The lower performance of the agent, also observed in
some previous works in optical networks, highlights the need
for further research on how to better configure agents and
improve the network representation used by the optical network
environments.

Index Terms—provisioning, reinforcement learning, multi-
band optical networks, elastic optical networks

I. INTRODUCTION

Multi-band optical networks are one of the promising solu-
tions to accommodate the Internet traffic growth triggered by
the increasing number of users/devices and the ever growing
bandwidth generated/consumed by them [1]. By extending the
network operation of currently deployed fibre beyond the C
band, multi-band networks do not need to incur the fibre-lying
costs associated to alternative solutions - like multi-core fibre
- while retaining most of the advantages [2].

Among the many challenges associated to the multi-band
operation in dynamic elastic optical networks (MB-EONs),
provisioning is one that significantly impacts how efficiently
resources are utilised. In a MB-EON, provisioning is in
charge of solving the problem of finding a route, a band, a
modulation format and a spectrum portion for each connection
request. Recently, a heuristic approach was proposed in [3] to
allocate resources in dynamic MB-EONs operating with the
C+L+S+E+O bands. Simulation results obtained for a core
network showed that the signal quality offered by the O-band
is not good enough for a core scenario and that by using

C+L+S bands, up to 4 times more traffic can be accommodated
in the network.

In the last couple of years, a few initial works have reported
on the application of deep reinforcement learning (DRL)
techniques to solve different resource allocation problems in
optical networks [4]–[7]. Results in [4] show the agent per-
forms only slightly better than the K-shortest-path first fit (K-
SP-FF) heuristic, commonly used to solve the dynamic routing
and spectrum assignment (RSA) problem in elastic optical
networks. The work in [5] shows an agent outperforming
one of the heuristics and performing worse than another. In
[7] it is argued that the reason behind the low performance
of DRL agents lies on the simplified network representation
commonly used to keep a low computational complexity. They
demonstrate that by using a more complete representation,
their agent achieves better performance. However, this agent
only solves the simpler routing problem, without dealing with
spectrum allocation.

To add to the relevant discussion of when and how DRL
algorithms offer better performance than very well known
heuristics in optical networks, in this paper we report on initial
results on applying DRL to solve the problem of provisioning
in dynamic MB-EONs. That is, solving the routing, modu-
lation format, band and spectrum allocation problem (multi-
band RMSA). To do so, we use the same agent and set of
hyperparameters reported previously to solve the single-band
RMSA problem [6] (environment and the observation space
adapted to the multi-band scenario) and apply a heuristic
based on the one presented in [3]. Results show the expected
improvement in blocking probability due to increased capacity
under both approaches. However, as also reported in some
previous work, the agent fails to outperform the heuristic in
all studied cases.

The rest of this paper is as follows: Section II presents
the physical layer model, the heuristic and the DRL approach
(model and training); Section III presents the simulation results
and Section IV concludes the paper.



II. THE MULTIBAND OPTICAL NETWORK ENVIRONMENT

A. Physical Layer Model

We consider an elastic optical network operating in the C,
L, S and E bands. The O band was not considered due to
the enhancement of nonlinear interactions and the reduced
accuracy of the Gaussian noise (GN) model in that region.
Results presented in [3] also show the unsuitability of the O-
band for core networks.

To calculate the maximum reach of an optical signal prop-
agating in a MB-EON, a total of 2720 frequency slot units
(FSUs) centered in the S band were assumed. This yields a
total bandwidth of 34THz, from 1365-1615 nm. The number
of FSUs for the C, L, S and E bands was equal to 344, 480,
760, and 1136, respectively.

Following the methodology from [8], the maximum trans-
mission reach for different modulation formats was obtained.
Table 1 shows the maximum number of spans (1 span = 100
km) for different band configurations assuming a bit error rate
threshold of 4.7x10-3 before forward error correction [9].

TABLE I
MAXIMUM OPTICAL REACH [NUMBER OF SPANS]

Active Modulation Formats
bands BPSK QPSK 8QAM 16QAM 32QAM 64QAM

C 199 99 54 27 13 7
C+L C:197 C:99 C:54 C:14 C:13 C:7

L:167 L:84 L:46 L:22 L:11 L:6
C+L C:174 C:87 C:47 C:23 C:12 C:6
+S L:167 L:84 L:46 L:26 L:11 L:6

S:148 S:74 S:41 S:20 S:10 S:5
C+L C:130 C:65 C:35 C:17 C:8 C:4
+S+E L:144 L:72 L:39 L:19 L:9 L:5

S:102 S:51 S:29 S:14 S:7 S:3
E:31 E:15 E: 9 E:4 E:2 E:1

The number of slots, s, required by a demand requesting a
bit rate b, is given by:

s = db/FSUbe (1)

where FSUb is the bit rate achieved by a single FSU, equal
to those reported in Table 3 in [8]: 23, 46, 69, 92, 115 and
140 Gbps for BPSK, QPSK, 8-QAM, 16-QAM, 32-QAM and
64-QAM, respectively.

B. The Heuristic Approach

The heuristic, based on the algorithm presented in [3], first
attempts to establish connections in the C band. In that band,
the K-SP-FF algorithm is executed, selecting the most efficient
modulation format with an optical reach equal to or greater
than the length of the route checked (number of required slots
calculated according to Eq. (1)). If unsuccessful, the same
procedure is carried out in the L, S and E bands, in that order.
If still unsuccessful, the request is rejected.

C. The DRL Model

The objective of the agent is maximising its reward when
selecting an action. Upon receiving the agent´s action, the

environment checks whether there are available resources to
establish the connection on the route, band and slot selected
by the agent. If the connection is successfully established, a
positive reward is sent back to the agent. Otherwise, a negative
reward is sent back. In both cases, information on the network
status is also sent back to the agent (observation). The action
set, the rewards and the observation were as follows:

• The action was coded by extending the action set used
in [4] to include K*B*J actions, where K is the number
of alternative paths, B the number of bands and J the
number of blocks with available slots to consider in the
selected path.

• The reward was equal to 1 if the agent´s action led to a
successful connection establishment and -1 otherwise.

• The observation received by the agent was coded by
extending the network state proposed in [4]. The extended
network state representation was coded as a (2 ∗ N +
1 + (2 ∗ J + 3) ∗K ∗ B) array, where N is the number
of nodes. The first 2 ∗ N positions identified the source
and destination of the request (one-hot format). The third
position stored the connection holding time. The next
K ∗B positions stored (2∗J+3) elements each: for each
possible path-band pair, the first J elements store the size
of the J blocks, the next J elements store the index of the
slot where the Jth blocks starts, the remaining 3 elements
store the requested number of slots, the average size of
blocks and the total number of available slots.

D. DRL Implementation

The dynamic MB-EON environment was built using the
Optical RL-Gym [6], a DRL framework specially developed
for optical networks. The code can be found in a Github
repository 1. The agents originally tested in this work were
DQN, TRPO and PPO2, available at the Stable Baselines
framework 2. The hyperparameters used for those agents were:

• DQN: double q=False, gamma=.95, ’layers’: [128] * 4,
’dueling’: False

• TRPO:gamma=0.95, timesteps per batch=1024,
max kl=0.01

• PPO2:gamma=0.95, learning rate=0.00025, vf coef=0.5
We evaluated the accumulated rewards of these agents in

all band scenarios. The DQN agent achieved better results
in most scenarios (C, C+L, C+L+S+E). For example, for
2000 [Erlang], DQN achieved a mean reward of 27.23± 6.6,
followed by TRPO (27.0 ± 6.9) and PPO2 (24.78 ± 7.25).
Thus, in this paper we report on DQN agent results.

Next, the DQN agent was trained in the C, C+L, C+L+S
and C+L+S+E scenarios for different traffic loads. As way of
example, Fig. 1 shows the DQN agent blocking performance
during the training phase for all scenarios at a load of 1000
[Erlang]. For the C and C+L scenarios, the agent was trained
for 200,000 time steps. In the C+L+S and the C+L+S+E
scenarios, the agent was trained for 500,000 time steps. The

1https://github.com/nourelsheikh/MultiBand-RL
2https://stable-baselines.readthedocs.io/en/master/



Fig. 1. Evolution of blocking probability during the training process

model was saved for each load and scenario combination.
These models were then tested in an environment similar to
that used in training but with different service requests.

III. RESULTS

The heuristic and the DQN agent’s performance was evalu-
ated by means of simulation on the NSFNet (14-node, 21-link)
and Eurocore (11-node, 25-link) topologies. Dynamic requests
were generated following a Poisson process with mean arrival
rate equal to 0.1 seconds and a mean holding time ranging
from 50 to 1200 seconds. The requests’ bit rate was uniformly
distributed between 25 Gbps and 400 Gbps. The source of
each request was selected following the probabilities derived
from the traffic matrix presented in [4]. The values of K and
J were set to 5 and 1, as in [4]. Due to space constraints, only
the results for the NSFNet topology are presented, but similar
results were obtained for Eurocore.

Fig. 2 shows the blocking probability exhibited by the
trained DQN agent (solid lines) and the heuristic (dashed lines)
for the 4 scenarios studied: C-band only, C+L, C+L+S and
C+L+S+E.

It can be seen that the agent´s blocking performance is
significantly improved when the number of bands is increased.
However, the agent´s blocking performance is not better than
that achieved by the heuristic - as also observed in some
previous works in the area. In terms of run time, the agent
was consistently faster than the heuristic: The agent was 13%
faster in the C- band scenario, 14.9% in C+L, 16.7% in C+L+S
and 18% in C+L+S+E. Besides, whilst the heuristic run time
increased 5% going from the C to the C+L+S+E scenario, the
agent´s increase was only 1%.

IV. CONCLUSION

We compared the blocking performance of a trained re-
inforcement learning agent to that of an adapted KSP-FF
algorithm in dynamic multi-band elastic optical networks. In

Fig. 2. Agent and heuristic blocking probability as a function of traffic load
for NSFNET.

both cases, the increase in bands led to a significant reduction
in blocking probability. The agent was outperformed by the
heuristic in terms of blocking but its runtime was consistently
faster than the heuristic’s and did not increase significantly
with increased number of bands. Further work will concentrate
on studying how to improve the agent´s performance by
researching the impact of different hyper parameters and
network representations. By doing so, we expect to detect
the conditions under which a DRL agent performs better than
known heuristics in solving this resource allocation problem
to then generalise the results to different problems in optical
networks.
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