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Abstract—Attacks on industrial enterprises are increasing in
number as well as in effect. Since the introduction of industrial
control systems in the 1970’s, industrial networks have been
the target of malicious actors. More recently, the political and
warfare-aspects of attacks on industrial and critical infrastruc-
ture are becoming more relevant. In contrast to classic home and
office IT systems, industrial IT, so-called OT systems, have an
effect on the physical world. Furthermore, industrial devices have
long operation times, sometimes several decades. Updates and
fixes are tedious and often not possible. The threats on industry
with the legacy requirements of industrial environments creates
the need for efficient intrusion detection that can be integrated
into existing systems. In this work, the network data containing
industrial operation is analysed with machine learning- and time
series-based anomaly detection algorithms in order to discover
the attacks introduced to the data. Two different data sets
are used, one Modbus-based gas pipeline control traffic and
one OPC UA-based batch processing traffic. In order to detect
attacks, two machine learning-based algorithms are used, namely
SVM and Random Forest. Both perform well, with Random
Forest slightly outperforming SVM. Furthermore, extracting and
selecting features as well as handling missing data is addressed
in this work.

Index Terms—Machine Learning, Artificial Intelligence, Cyber
Security, IT Security, Industrial

I. INTRODUCTION

Over the last two decades, industrial systems have in-
creasingly become the target of malicious actors [1]. In the
1970’s, electronic components were introduced to automate
control systems, followed by Supervisory Control And Data
Acquisition (SCADA) systems that allowed for reuse and
reprogramming of components. At that time, security has
not been an issue due to two reasons [2]: First, industrial
networks, also known as Operation Technology (OT), are
physically separated from Information Technology (IT) net-
works. Second, OT networks are highly application specific,
an attacker supposedly has no chance of understanding and
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influencing the processes. However, the rise of the Industrial
Internet of Things (IIoT) and Industry 4.0 rendered both
assumptions obsolete. The fourth industrial revolution creates
novel use cases, e.g. the digital factory [3], mostly based on
the increased capabilities in communication and embedded
intelligence. However, these use cases require interconnectiv-
ity and distribution of data, inherently breaking the above-
mentioned assumptions. This drastically increases the attack
surface, especially since most industrial communication pro-
tocols were not designed with security in mind. Many of
them, such as Modbus [4], [5] Profinet [6], do not contain
means for authentication or encryption. As a consequence,
any attacker that has successfully broken the perimeter and
moved laterally into the OT network can listen and participate
in the communication. Breaking the perimeter of IT networks
employed in the office area of industrial enterprises becomes
the biggest hurdle for attackers and success in doing so leads
to severe consequences, e.g. the blackout in the Ukrainian
power grid in December of 2015, caused by a malware called
Industroyer or Crashoverride [7]–[9]. Due to characteristics
of OT networks, such as legacy devices, but also periodic and
unique behaviour, Intrusion Detection Systems (IDSs) from
the IT world cannot be transferred as they are. Adaptions
have to be made, e.g. in creating industrial firewalls. In this
work, methods based on machine learning as well as time
series analysis are evaluated with respect to their capabilities
to detect attacks in OT networks. The remainder of this work
is structured as follows. An overview of related work is
provided in Section II. The data sets used for the evaluation
are introduced in Section III, the algorithms implemented to
detect the attacks are presented in Section IV. In Section V,
the results are presented and discussed. Finally, this work is
concluded in Section VI.

II. RELATED WORK

Due to the relevance of industrial enterprises to the
national wealth of industrial nations and the severe potential
impacts of Cyber-Physical Production Systems (CPPSs) on
the physical world, industrial intrusion detection has gained
relevance in the research community. Duque Anton et al.
have evaluated industrial network data with classifiers [10]
as well as with time series-based methods [11]. A survey
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regarding existing risk assessment methods is performed
by Cherdantseva et al., as well as an assessment of the
applicability of these methods in SCADA scenarios [12].
Zhu et al. provide an extensive overview of industrial IDSs
along several dimensions and compare security in IT and OT
networks [13]. Garcia-Teodoro et al. summarise challenges
and solutions to anomaly detection in industrial networks [14].
Attacks on industrial networks are analysed and evaluated
by Caselli et al. [15]. Khalili and Sami employ an a priori
algorithm to detect attacks in industrial networks, based on
their regularity and knowledge about critical states [16]. They
focus on the timing behaviour of communication sequences
that is expected to be regular in industrial environments.
Gao and Morris address the detection of attacks in Modbus
communication with the help of an attack classification and
terminology [17]. Another approach for detection in the
legacy Modbus communication is introduced by Morris et
al. [18].

Wireless communication technologies are an enabler of
novel business and application use cases for industry, although
wireless systems contain inherent attack surfaces. A survey of
intrusion detection in Wireless Sensor Networks (WSNs) is
performed by Butun et al. [19]. Mobile Ad hoc NETworks
(MANETs) are a certain kind of wireless network, addressed
by Shakshuki et al. [20]. Wei et al. employ a prediction-
based intrusion detection system for wireless industrial net-
works [21]. Shin et al. present methods of intrusion detection
for such networks [22], commonly known as WSNs. Zhang
et al. apply methods of intrusion detection to mobile net-
works [23]. A roadmap for the use of machine learning-based
anomaly detection methods in industrial networks is provided
by Meshram and Haas [24]. Schuster et al. propose a method
for anomaly detection mechanisms based on learning a notion
of normal behaviour [25]. An evaluation of several machine
learning methods for detecting malicious activities in SCADA
communication is provided by Beaver et al. [26]. Mukkamala
et al. analyse the Defense Advanced Research Projects Agency
(DARPA) Knowledge Discovery in Databases (KDD) cup ’99
with neural networks and Support Vector Machines (SVMs) in
order to detect the attacks contained in the data set [27].

III. DATA SET

In this work, two distinct data sets are analysed with
respect to detecting attacks. The data sets are derived from
different sources as well as processes and employ different
protocols, namely Modbus and Object Linking and Embedding
for Process Control Unified Architecture (OPC UA). In the
remainder of this work, the Modbus-based data set is referred
to as DS1, the OPC UA-based one as DS2. An overview of
both data sets can be found in Table I.

A. Modbus-based Data Set DS1

The Modbus-based data set has been presented by Morris
et al. [28]. A gas pipeline has been set up in a simulation
environment. This data set is an extension of a previous work

TABLE I
DATA SETS ANALYSED IN THIS WORK

ID Protocol No. of Packets Duration Attacks No. of mal. Packets
DS1 Modbus 274 627 4 d 60 048
DS2 OPC UA 4 910 41 m 2 702

of Beaver et al. [26] which contained attacks that have been
easily discovered by machine learning algorithms. The goal of
this data set was to increase complexity and realism. Overall,
the simulations consists of four parts: A Human Machine
Interface (HMI), a Programmable Logic Controller (PLC), a
network simulation and a virtual process. It is shown that an
HMI and a Master Terminal Unit (MTU) respectively are used
to control a control logic that, in turn, influences a pump and
valve in a physical environment. In order to follow a real
physical process as closely as possible, the Matlab Simulink
package SimHydraulics (now called Simscape Fluids) [29] was
used to simulate a pump, a valve, a pipeline and a fluid as well
as its flow. The simulation has been run for the duration of four
days, creating 274 627 packets, containing 20 features each. In
Table II, the complete feature list is shown. During this time,

TABLE II
FEATURES AVAILABLE IN DS1

Feature Type
Address Network information
Function Code Command Payload
Length of Packet Network Information
Setpoint Command Payload
Gain Command Payload
Reset Rate Command Payload
Deadband Command Payload
Cycle Time Command Payload
Rate Command Payload
System Mode Command Payload
Control Scheme Command Payload
Pump Command Payload
Solenoid Command Payload
Pressure Measurement Response Payload
CRC Rate Network Information
Command Response Network Information
Time Network Information
Binary Attack Label
Categorised Attack Label
Specific Attack Label

a total of 60048 attacks has been performed, belonging to one
of 35 kinds of attack. These attacks are clustered into seven
categories as listed in Table III. The complete list can be found
in the work of Morris et al. [28].

B. OPC UA-based Data Set DS2

The OPC UA-based data set analysed in this work is based
on a real-world process environment introduced by Duque An-
ton et al. [30]. With the help of a Festo Didactic environment,
the Festo Didactic MPS PA Compact Workstation, a batch
processing scenario is set up. The water, originally contained



TABLE III
CATEGORIES OF ATTACKS IN DS1

Abbreviation Label Description
Normal 0 Normal Behaviour
NMRI 1 Naive Malicious Response Injection
CMRI 2 Complex Malicious Response Injection
MSCI 3 Malicious State Command Injection
MPCI 4 Malicious Parameter Command Injection
MFCI 5 Malicious Function Code Injection
DoS 6 Denial of Service
Recon 7 Reconnaissance

in Container 1, is pumped into Container 2 by pump M102.
Due to natural re-flow, Container 2 is drained over time. After
the water level falls below a threshold value with a hysteresis,
the pump is restarted and pumps water from Container 1 into
Container 2 again. This normal behaviour is shown during the
packets 0 to 1 500, from packet 1 800 to packet 3 000 and after
packet 3 500 in Figure 1. The attacks are from packet 1 500 to

Fig. 1. Process Behaviour in DS2

packet 1 800 and from packet 3 000 to packet 3 500, marked by
red frames. In the first attack, all sensor and actuator values are
set to 0, indicating an error in the process, causing a disruption
due to necessary investigation and maintenance. For the second
attack, the frequency of the process is cut in half. This causes
a change in the process, still indicating activity.

IV. ALGORITHMS USED

In this work, SVMs have been used to analyse the data sets
as described in Section III on packet basis.

A. SVMs

SVM is a large margin classifier, introduced by Boser et al.
in 1992 [31]. Two classes of instances of dimensionality n
are divided by an n + 1 dimensional hyperplane in a way
that each instance has the maximal possible distance from

the classifying hyperplane. The instances are noted as tuples,
shown in (1) [32].

(xi, yi), i = 1, ...,m, y ∈ {−1, 1} (1)

x is a vector describing an instance of data in an n-dimensional
feature space. y describes the attribution of the instance as
belonging to one of two classes, while m is the number of
instances. First, the SVM is trained with a labeled set of
instances. It is a supervised classification method, meaning
the training set needs to contain information about the correct
classes. After training, the attribution of the test and productive
data is performed with the signum-function as shown in (2).
w is the normal vector of the separator hyperplane, b is the
offset from the hyperplane.

yi = sgn(w, xi − b) (2)

When applying SVMs, obtaining a linear hyperplane to divide
the data set is desirable. However, some data sets might not
allow that. In these cases, the so-called kernel trick can be
applied [32]. This kernel trick can be used to map the input
data space onto a higher dimensional feature space in a non
linear fashion. The higher dimensional data space then can be
divided by a hyperplane in a linear fashion.

B. Random Forests

Random Forests are collections of Decision Trees, binary
classifiers consisting of one root node, several internal split
nodes and leaf nodes that are used to classify events [33]. The
classification of the Random Forest is done per majority vote
of all Decision Trees. Random Forests are robust to over-fitting
and converge quickly, making them applicable in a variety
of use cases. In addition to classifying data, Random Forests
provide means to determine the relevance of features on the
classification result. This is done by measuring the decrease
in accuracy if a feature is not considered for classification
and the Gini index respectively. The Gini index is a measure
for the pureness of a data set that is split according to a
certain feature [34]. A high decrease in Gini index indicates a
high importance of the feature for a correct classification. The
decrease in accuracy is used to determine the feature relevance
in Section V.

V. EVALUATION

In this section, the algorithms mentioned in Section IV are
applied to the data sets introduced in Section III. First, the
process of feature extraction is discussed and the features
employed in anomaly detection are presented. Furthermore,
the handling of missing data is addressed. After that, the
performance of the respective algorithms is presented.

A. Feature Selection

Feature selection is useful in cases of large datasets where
some features can be omitted without compromising on the ac-
curacy of the classification model, thereby resulting in reduced
training time. This is done by finding relationships in the data
and analysing various processes that help in extracting such



relations. Selecting features that are capable of distinguishing
between malicious and non-malicious instances is an important
prerequisite to anomaly detection. There are hardly formal
methods to identify insightful features. However, there are
approaches to identify the impact of a feature on the outcome,
e.g. with the importance score of Random Forests [35]. In this
work, the features of DS1 have been analysed a priori. These
features and their relevance according to the importance score
of Random Forests are shown in Table IV. Two variations

TABLE IV
RELEVANCE OF INDIVIDUAL FEATURES IN DS1

Feature Relevance
Pressure 0.177116
Length 0.134636
CRC 0.089498
Cycle 0.082905
Reset 0.082821
Setpoint 0.081545
Function 0.080561
Gain 0.068976
Deadband 0.060087
Rate 0.039752
Command 0.036751
System 0.022929
Pump 0.021371
Control 0.010001
Solenoid 0.009587
Address 0.001463

of random forest classifiers were employed: An ensemble
with SVM by limiting the number of features for training
the selection model and a classification of the full set of
features for each dataset on plain random forest classifier. On
one hand, a reduction of training time in using the ensemble
classifier was observed. On the other hand, the random forest-
only classifier resulted in a higher accuracy rate. A perfect
classification with no false positives or negatives is obtained
for DS2. By using random forests before training the SVM
model for DS1 a reduction of training time by 5 810 seconds
is observed while still obtaining an accuracy of 92,5%. It is
shown that the pressure as well as the length of a packet
have a high impact on the classification, as listed in Table V.
The next five features are similarly important, followed by
two slightly less important features, gain and deadband. The
remaining features are less important. The data sets were split
into training and testing data in a relation of 80% to 20%. This
relation is consistent for normal and malicious events in order
to effectively train the classifiers on both classes. Furthermore,
the data was pre-processed: A Principal Component Analysis
(PCA) was applied in using Random Forests and a zero mean
scaling was used for SVMs.

B. Handling Missing Data

Missing values in DS1 constitute 40% of the entire dataset.
The sizeable amount makes it crucial to handle the data
efficiently so as to not deteriorate the detection rate of the

TABLE V
RELEVANCE OF INDIVIDUAL FEATURES IN DS2

Feature Relevance
Water Temperature 0.241810
Water flow volume 0.201617
Water level container 1 0.160073
Water level Container 2 0.156903
Water pressure 0.155168
S111 0.034989
S113 0.034306
Pump running 0.008172
Pump status 0.004048
S112 0.002526
B114 0.000387
Ball valve acknowledge 0.000000

classifier. Missing data is randomly spread across the features
and is not specific to any one feature or the category of attack
a packet belongs to, thus classified as Missing Completely
At Random (MCAR) [36]. The missing data comes from the
characteristic of Modbus packets to not transfer all data values
automatically, but only those requested. In order to obtain data
at regular time points, this lack of information on several time
points is impacting the feature selection. As it is safe to assume
that the data does not behave erratically in between polling
for the given data, interpolation with time method is used for
each feature of the dataset to estimate missing values as this
method is efficient and most widely used [37]. The results
indicate that interpolating missing values does not downgrade
the accuracies of the different training models tested. Since
an attack may or may not impact all features at a single
point in time, each feature is considered to be an individual
event. For instance, considering an MSCI attack, an attack on
the pump triggers random changes to the state of the pump,
whereas a solenoid attack randomly changes the state of the
solenoid [28] The impact of an attack may eventually trickle
down to other features in time. However, in this work, only the
point in time during which an attack occurs is discussed. In
DS2, the dimensionality is lower. From manual inspection of
the features, a few correlations are inferred. To get an idea of
the trends in all attacked records, manual analysis is performed
on the dataset. The following direct correlations between a
feature and an attack are drawn:

• Attacks have an influence of the following attributes:
Water flow, water level in both containers, water pressure
and water temperature

• Pump status remains constant during an attack: 0 during
the first attack and 1 during the second attack

• S111 is 0 during the first attack and 1 during the second
attack and normal operation

• S112 0 during the first attack and during normal operation
• S113 is 0 during the first attack

These observations are supported by the feature importance
scores derived from random forest classifier. The features as
shown in Table V. Water temperature is the most relevant



feature with about 25%. The following four features are im-
portant as well, while the remaining features are significantly
less relevant.

C. Performance of the Algorithms

Since both the datasets are highly imbalanced with only
21.9% of events being attacks in DS1 and 14.3% in DS2,
modifications in support vector machine are employed to
appropriately tackle the class imbalance problem. An 80/20
split for training and testing data was chosen for the data sets.
For Random Forests, PCA was applied as a pre-processing
means while a zero mean scaling was performed for SVMs.
For DS1, cost sensitive learning for SVM modeling using SVM-
weight is implemented [38]. When the classification model
is assigned SVM-weight, it assigns a larger penalty value
to False Negatives (FNs) than to False Positives (FPs). The
training time for SVM-weight is the same as the training time
required for SVM and is of order O((Np+Nn)3), where Np
are positive samples and Nn are negative samples. However
overweighting the classifier increases the training time. There
are other data processing techniques such as under-sampling
where only a subset of majority class is used for training along
with minority class [39], and oversampling where samples
of minority class are replicated. Since oversampling increase
the dataset size and under-sampling could result in decrease
of meaningful time dependent trends, the cost metric of the
classifier using recursive validation with Gridsearch [40], a
Python library, was performed in the course of this work.
An overview of the performance of SVMs on the data sets
is provided in Table VI. With highly skewed distribution of

TABLE VI
PERFORMANCE OF SVMS

Metrics DS1 DS2
Accuracy 92.5% 90.8%
Precision 78.2% 90.4%
Recall 93.6% 99.9%
F1 Score 85.2% 94.9%

the data, evaluation of the classifier based only on accuracy is
not sufficient. Additional metrics, such as precision, recall and
F1-score, are employed to evaluate the classification ability.
The confusion matrix of each trained classifier is generated
to compare predicted output labels to the existing ground
truth. The confusion matrix consists of the following metrics:
True Positive (TP), i.e. the number of correct classification
of attacks, True Negative (TN) i.e. the number of correct
classification of normal instances, FP, i.e. the number of
incorrect classification of normal instances as attacks, and
FN, i.e. the number of incorrect classifications of attacks as
normal instances. In addition to SVMs, Random Forests were
employed in order to classify the relevance of features and to
detect attacks in the data set. A summary of the evaluation
is shown in Table VII. The columns on the left describe
DS1 while the columns on the right describe DS2. For both
the datasets, full feature models of Random Forest classifiers

TABLE VII
SUMMARY OF THE EVALUATION OF INDIVIDUAL METHODS

DS1 DS2

Method Acc(%) Exec. time (s) Acc(%) Exec. time (s)
SVM 92.53 11712 90.81 0.019
RF 99.84 281 99.98 52.31

worked well with accuracies of 99.7% and 99.9% for DS1
and DS2 respectively. On setting a threshold to filter out least
relevant features, the accuracy of both the datasets reduced:
To 91% when model was trained with 9 most important
features for DS1 and 92% when model was trained with ten
most important features from the derived rankings. The first
data set, DS1 consists of Modbus-based traffic of a simulated
process of a gas pump. Random Forests reach a significantly
higher accuracy than SVMs while exhibiting a more linear time
behaviour. As they converge quickly, the take less time for the
larger data set DS1.

VI. CONCLUSION

In this work, two data sets captured in industrial environ-
ments are analysed for attack-based anomalies. SVMs are used
to detect attacks of seven different categories and 35 different
subtypes. With accuracies and F1-scores of up to 92.5%
and 85.2% respectively, this approach is promising. Lots of
missing data in this data set do not impact the performance of
the algorithms. The second data set, DS2 consists of OPC UA-
based traffic derived from a real-world hardware, a Festo
Didactic MPS PA Compact Workstation. In this case, one class
SVMs are used, as only two instances of attacks are present.
This leads to slightly worse accuracy of 90.8%. However, due
to an almost perfect recall, the f1-score is performing pretty
well with 94.9%. In this work, handling of missing data as
well as feature selection are addressed, as real-world data
often lacks features for some instances and contains noise
and irrelevant information. Random Forests provide means
to calculate the significance of individual features. They can
also be employed to detect anomalies in the data set, with
satisfactory results. Additionally, approaches such as PCA
decrease the feature space and provide the most relevant
features. As attacks on industrial environments are occurring
more frequent and becoming more critical in their effects,
effective detection is crucial. Methods of machine learning,
such as SVM and Random Forests, are capable of enhancing
the detection capabilities of common industrial IDSs. Machine
learning-based approaches profit from a limited state set in
industry as well as a large amount of training data in a given
environment, as industrial environments produce loads of data.
The algorithms presented in this work do detect between 90%
and 95% of the attacks in the data. This will, in practical
application, leave undetected attacks in industrial networks and
thus pose security threats. Additional means are required to
enhance the level of security [41]–[43].
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