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Abstract—This paper addresses the formulation of an opti-
misation problem that assigns a user to a multi-network base
station for rural broadband access. The base station in this work
is a fully off-grid—powered by renewable energy—system with
a wireless backhaul link. The solution proposed in this paper
relies on a dynamic programming approach, implementing a cost
function that balances power consumption and quality of service.
The cost is then aggregated using penalties based on the energy
harvested and battery charge. The implemented algorithm is
demonstrated (in simulations) able to adapt the user assignment
to the network load and energy production.

I. INTRODUCTION

Information and communications technologies (ICTs) cur-
rently represent approximately 10% of the world electricity
consumption, and is forecast to reach 50% accounting for
23% of the humans carbon footprint by 2030 [1]. From those
figures arises the question of the impact of ICTs on the
environment. On the other hand, there is a substantial part of
the world population with no or limited access to the internet;
this is also true in remote area of economically developed
countries such as the United Kingdom (UK) [2].

Typical broadband access solutions use an optical fibre
network that is locally distributed to users through the copper
twisted-pairs legacy phone network. However, the deployment
of optical fibres is a very expensive process, which makes this
technology unprofitable for service providers in low density
areas. Adding to the network access issues, an unavailable or
unreliable power grid at the base station site can represent
further challenges and costs.

The suitability of wireless technologies for rural broadband
has been studied in developing [3]-[6] and developed coun-
tries [7]-[9], both from a technical and economical standpoint.
Several wireless technologies were proposed in the context
of rural broadband access, including Wireless Fidelity (WiFi)
and TV white space (TVWS) approaches. The latter has been
strongly motivated by the spectrum release that followed the
Digital Television (DTV) switch-over in numerous countries
such as the UK [10]. The remoteness of such base stations
(BSs) might require the introduction of energy harvesters
to supply power [11]-[13]. The introduction of renewable
energy harvesting strongly affects the available power, two
approaches are then possible to maintain service, either the
energy system need to be overdimensioned to guarantee a
minimum service [9] or resource management has to be
introduced [14].

Previous studies [9] used wireless BSs to provide broadband

in remote areas, which have been successfully combined with
various energy harvesters for power supply. Furthermore, the
user spacial distribution in rural environments into the form of
clusters—villages—surrounded by sporadically placed users
renders the rural area well suited for the use of multiple radio
access technologies with different propagation characteristics,
allowing to serve both the close-by and farther away users
to optimise the user data rate [15]. Several studies showed
that energy savings are achievable by optimising the user
assignment in a heterogeneous network scenarios [16], [17].

In this paper, using the BS design proposed in [9], we
present a formulation of an optimisation problem of the user
assignment on a base station concurrently employing two
radio access technologies to provide broadband in rural area.
The problem focussed on the minimisation of the power
consumption of the BS under network capacity and harvested
power constraints and is expressed to facilitate the use of a
dynamic programming (DP) approach.

In Sec. II, we give details on the BS design, while Sec. III
focuses on the power consumption and load model for the
radio hardware and the energy production from the various re-
newable energies harvesters. We then describe our formulation
of the optimisation problem—based on a DP approach—in
Sec. IV and finally provide results and analysis via simulation
in Sec. V.

II. MULTI-RADIO OFF-GRID BASE STATION
A. Radio Systems

In our study we consider a similar design to the one pre-
sented in [9]; the BS is equipped with 3 radios; a point to point
(PTP) high throughput wireless link provides the backhaul
connection to the internet, the service is then redistributed
using two point to multi-points (PTMP) radios operating in
two different parts of the spectrum. Is selected on one hand
a TVWS ultra high frequency (UHF) network for its long-
range due to the better propagation characteristics of the lower
frequencies [18]. However overcrowding of the TV spec-
trum [19] limits the achievable throughput, thus restricting the
number of users to whom such a network can provide high
speed broadband. The TVWS network is then assisted by a 2.4
GHz WiFi network for its high throughput, but limited range
reduces the GHz network to solely operate for users within
line-of-site. The geographical organisation of rural areas in
villages allows to consider a scenario where the WiFi network
provides the village with service while the users scattered
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Fig. 1: Multi-radio access network scenario.

in the countryside are served by the TVWS network. This
rural broadband access scenario—proved suitable in previous
studies [3], [9], [15]—is presented in Fig. 1.

To optimise the assignment of users to either network, we as-
sume that the users possess radio hardware that can be recon-
figured for either the GHz or TVWS transmission channels.
The user assignment to either of the TVWS or GHz network
is managed by the BS. User radio hardware configurations as
well as connection requests are transmitted using a low power,
low data rate network covering the community in its entirety.

B. Power Supply and Storage

As in [9], the base station is powered by a single wind
turbine (SuperWind SW350) with a peak output power of
350 W and two photovoltaic solar panels producing up to
250 W each. The use of multiple types of renewable energy
sources provides the diversity to better safeguard a continuous
power supply. In addition to the energy harvesters above, the
base station uses a bank of Li-Ion batteries—12 V and 600Ah
equivalent to a 7.2 kWh capacity—as an energy buffering and
storage system.

III. SYSTEM MODEL

In this section, we present the various models we will be
using in the cost and penalty function formulation.

A. Network Model

1) User Spatial Repartition: Rural environment is often
composed of clusters of houses (i.e. a village) while other
houses are spread sparsely around the community, sometime
kilometres away from each other. In this study, we consider
a village covering a circular area of 6 km in diameter, sur-
rounded by single users located up to 14 km from the BS. To
simplify the system model we place a single BS in the centre
of the community and assume similar channel characteristic
in all directions. Thus the users’ positions can then be simply
expressed as their distance relative to the BS. Based on these
assumptions, we used the half normal distribution shown in
Fig. 2 to generate the position of N = 30 users in the
community.
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Fig. 2: User spatial distribution model.
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Fig. 3: Mean load variation throughout the day.

2) Load Model: As with every communication network the
number of active users and thus the load on the base station
varies, a typical approach would be to use a Maier model [20]
to represent the evolution of the traffic over time. However,
previously a study [9] of the ADSL traffic on the Isle of Tiree
(UK) has shown that the load varied following the model
presented in Fig. 3. The variation in the number of active
users around the mean is modelled using a normal distribution
with a standard deviation of 3 users. We assume however that
at least one user is active at all times. This assumption while
in theory not perfect represent a good approximation of a
practical case in which we would need to keep at least the
TVWS radio active to maintain service.

B. Power Consumption Model

In this paper, we used the power consumption model for
the PTMP radio presented in [21]. The power consumption
P, (in watts) of the radio system a € {g,u}, where ¢g and u
refer to the GHz and UHF radio access networks, respectively,
can be expressed as follows:

Pu(t) = aq (PI(t) — GI)** 4, (1)

where ay, 84,7, are coefficients characterising the radio a
power consumption model determined empirically by fitting
to power consumption data from the BS in [9], [21]. The
parameter G is the transmitting antenna gain and P! (t) is
the minimum transmission power in dB required a the time
step ¢,

P (t) = Lo (d) + PJ* — GI°, @)
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Fig. 4: GHz radio power consumption.

where G the receiving antenna gain, P,* the minimum
receiving power; d is the distance from the BS, d = 144
for the TVWS network (a = u), where 7.« 1S the distance
to the farthest user and d = r(¢) is the reach of the WiFi
network at the time step ¢. The simplified pathloss L,(d) is

La(d) = Ko + 1 x 101og (d), 3)

as defined by [18]. Values of K, and 7, where determined
by pathloss measurement on the Isle of Tiree (UK) [21].
Using the parameters presented in Tab. I, we can then express
the power consumption of the GHz radio as a function
of the distance reached by the link, as shown in Fig. 4.
Due to licensing issues the maximum transmit power for
WiFi devices is limited to 30 dBm [22], thus restricting the
maximum power consumption of the transmitting hardware.
To guaranty a full coverage of the community at all times
the UHF network transmission power is set to reach the
farthest user from the base station, we then have P!*(t) =
P (rmax). In addition to the PTMP radio consumption, the
PTP backhaul link and the network equipment is estimated to
consume approximately 45 W and 9 W, respectively [9].

C. Power Generation and Storage Models

As with most renewable energy sources, the instantaneous
power output of solar panels and wind turbines varies hourly,
daily and monthly, thus we need a way to predict the available
power at each time-step taking into account the time distri-
bution of each energy source. Our work is based on data for
energy harvested on the west coast of Scotland— Isle of Tiree
and Bute—as presented in [9] The mean energy production of
the two types of harvesters, listed in Sec. II-B, is presented in
Fig. 5. These statistics show that the wind represents the main
energy source during the winter months and that the increase

TABLE I: Power Consumption Model Parameters [15].
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Fig. 5: Average daily energy generation on Tiree, Scotland [9].

in solar energy during the summer counterbalances the lack
of wind power.

1) Solar Power: Photovoltaic electricity generation varies
according to the weather, the time of the year and the hours of
the day. In this work, the hourly energy distribution, as shown
in Fig. 6, is estimated from the day length; for simplicity we
suppose that the maximum energy can be harvested at midday.
The instantaneous power output of a solar panel strongly
depends on the amount of sunlight it receives, with its power
output dropping down to 10% of its nominal output on a
cloudy day. Using both hours of sunshine data [23] and hours
of daylight per month, we compute the likelihood of a day
to be sunny. This information is then used to randomly select
the energy produced by the solar panels each day.

2) Wind Power: To keep the model simple we suppose that
the wind is a slow varying resource at a day scale [24] while
the solar energy varies greatly depending on the time of the
day. However on a larger time-scale the wind is very unsteady
and there can be a great difference in generation from one day
to the next. Thus, we model the variation of energy in between
days using a wide normal distribution with o, = p,, /2. After
randomly selecting a value for each day, we model the slow
hourly variation using interpolation between the produced data
points.

3) Energy Storage: In this work we consider batteries with
a capacity of 7.2 kWh and a charge/discharge efficiency of
80% [25]. This allows us to model the energy losses within
the power management system as well as the natural self-
discharge of the battery.
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IV. ENERGY OPTIMISATION

We assume coverage areas as outlined in Fig.1, and want to
determine the boundary between the GHz and UHF networks
based on energy optimisation. In the analysis in this section,
terms such as E,, a = {b,G,U, BS, ...}, represent an energy
amount expressed in Joules (J), obtained from the correspond-
ing power define in the models presented in Sec. III. For this
study we discretised the time into 30 minutes time step J;,
indexed on the variable ¢.

A. Optimisation Problem

We aim to extract an optimum GHz radio reach rop(z = t)
for the current time step ¢ out of the optimal breathing policy
over a sliding window of 24 hours centred on the current
time ¢ for which we aim to find the best user assignment.
This takes into account the current battery level and load,
its values for the past 12 hours, and the forecasted energy
generation and load for the next 12 hours. This relatively short
window, indexed by z € [t — 24 - 0;;t + 24 - &;], is motivated
by the limited reliability of forecasting [26]. We formulate
the problem to determine the optimum policy ropy over the
24-hour window

ropt = argmin E(r) st.  Ey(t) > Eby min » 4)

NU S NU,max )

where E(r) is an energy function related to the energy
generation and consummation at the BS site over the each
of the 24-hour window time steps, under quality of service
constraints. The constraints for battery level Ey (¢) left after
we selected rop¢(t) and the number of users Ny assigned to
the TVWS limits the formed to a minimum value E}, 1i,, and
the latter to the maximum number of supported users Ny max,
at any given time. The vector r = [R;_24.5,, - -- Rito4.6,]T
over which the optimisation is to be performed, contains the
range values of the GHz RAN, which for simplicity can take
on the discrete distance values of the N users, thus allowing us
to index the possible values of R using n =1,..., N. There
are therefore 30%° different ways in which the GHz radio
access network can breath, and rope represents the optimum
assignment over time.

The problem (4) can be addressed by a DP algorithm [27],
which is divided into three steps. First we build a cost space
based on the possible values for the reach of the GHz network
and the BS load. Secondly, it aggregates the cost using a
penalty function related to the harvested energy. Lastly, it
generates a cost space were each cost related to a specific
r takes into account the past and future possible states of the
network.

’

B. Cost Function

The cost function for the nth user at time step z

C(z,n) = Cp(n) + poad - Ci(z, 1), (5)

is a linear combination of the power consumption Cp(n) of
the GHz network and the TVWS network load C(z,n), with
a control value p10,4. We express the power consumption as

_ Ec(n) + Eu + Egs + Evackhaul
EG . + Eu + EBs + Evackhaul

max

Cp(n)

(6)

i.e. as the ratio between the BS energy consumption associated
with Eg(n) and the maximum power consumption of the
BS, linked to the maximum GHz radio energy consumption
Eg,..... To balance the energy used by the GHz network to
the energy requirements of the rest of the BS, we introduce
the energy consumption of the TVWS radio hardware, Ey,
the energy consumption of the backhaul link radio, Fhackhaul,
and the consumption of other subsystem in the BS, Epg.

While the cost Cp(n) increases with the coverage of the
GHz network, the C|(z,n) decreases. We formulate Cj(z,n)
as

No(z) —n
Cilzm) = 'Na(z)—N‘ when N,(z) < N e
Fload when Na(z) =N

where N, (z) is the number of active number in the commu-
nity at time ¢. To prevent an infinite cost we introduce I'jaq
when the number of active users N, (z) is equal to the total
number of users N. The value of I'},,q is always set to be
greater than any other C|(z,n).

C. Cost Aggregation

Once the cost space C(z,n) is built, we proceed to the
aggregation of the cost in both time directions. The aggregated
cost towards negative time can be written as

Ly(z,n) = C(z,n) + min (1;%17111 (Pap(2) + L=y (2 — 64,9)),

min (Pdown(z) + L—y(z — &, z)))

i>n

®)

with P, and Pyow, the penalties associated with an in-
crease or decrease, respectively, of the GHz reach, such as

P{up,down} (Z) = M{up,down} (t) ! G(Z) where G(Z) is
Ew(z) + Es(2)

@2 = max (Ew(t) + Es(t)) ’

)

where Evw(:) and Eg(-) are the energy produced by the
wind turbine and the solar panels, respectively. To keep the
penalty values similar to the cost C'(z,n) we normalise G(z)
using the maximum energy produced over the entire data.
The parameter (i {yp,down} (t), constant over the considered 24-
hour window, allows for a finer control of the penalty as well
as providing information on whether there is an increase or
reduction in reach w.r.t. the previous time step ¢ — d;:

fiup(t) = max (E"(t - 52; Eomin 0) (10)

/J/down(t) =1- Mup(t) 5 (11)
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Fig. 7. Two days simulation in January at full harvesting
capacity.

with C}, the battery energy capacity expressed in Joules and
Ey(t — 0;) the energy available in the battery at the current
time step ¢ on which the considered window is centred. The
aggregated costs in each direction are then added together to
produce an overall cost

L(z,n) = L—y(z,n) + L(1)(z,n) ; (12)

where L(1)(z,n) represents the aggregation in positive time
based on forecasted values. The quantity L, (z,n) is define
analogously to L(_)(z,n) in (8) by replacing z—d; with z+4;.

D. Optimum GHz Range Selection

The optimum reach breathing policy is selected by choosing
for each z the value of n which minimises L(z,n), those
values can be gathered into a vector nep form which we can
get the optimal reach values rope . The minimisation over
n is how restricted to users that are reachable by the GHz
network. Furthermore, we have to ensure that the number of
total active user Ny assigned to the TVWS network is lower
than the maximum number of users which the TVWS radio
can serve under a quality of service constraint. By extracting
the optimum reach policy we can determine the optimum
reach for z = ¢ and thus compute a related GHz radio energy
consumption E¢(t). We then calculate the energy left in the
battery at the end of the time step ¢, F},(t) such as

Eb(t) = OLbEb(t — 5t) + 1Bs (Ew(t) + Es(t))

1 (13)
T ns (Ec(t) + Ev + Es + Evackhaut)

the coefficient ay, accounting for the battery self discharge
and 7pg the efficiency of the power conversion systems. We
are then ready to run the algorithm at the time step ¢ + J;.

V. RESULTS

In order to test the performances of our algorithm, we ran
simulation with a year worth of data randomly generated using
the models described in Sec III, under two energy harvesting
scenarios. The first considers the harvesting performances
described in Secs. II-B and III while the second considers
that the BS is equipped with harvesters providing only 25%
of the energy output from the first scenario. The value of
25% was chosen empirically to maintain the battery level
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Fig. 8: Mean hourly GHz network reach on a day in January
and July under full and reduced harvesting capacity.

above 10% over the all simulation. This reduced harvesting
capacity simulation allows us to get a better understanding of
the behaviours of the algorithm and considers the possibility
to reduce the harvesting capacity of future BS designs. We
used three metrics to judge the algorithm behaviour: the reach
variation, the power consumption of the GHz radio as well
as the number of users assigned to the TVWS network.
We compute those metrics on a monthly basis and draw
conclusions on the algorithm behaviours with regards to the
mean harvested power presented in Fig. 5

Fig. 7 shows the active users positions as well as the reach
for the GHz network selected by the algorithm with respect
to those positions over a two-day window. The number of
active users confirms that the algorithm behaves as expected
by adapting the GHz reach to the user activity, increasing
the reach when numerous users are active and reducing it
all the way to shutting down the GHz radio when all user
can be served by the TVWS network. Fig. 8 presents the
hourly average reach of the GHz network of the month of
January and July, under the two considered scenario whereby
January and July represent month with high and low harvested
energy, respectively. The algorithm reduces the reach of the
GHz radio in low energy condition, which is especially visible
for the month of July under reduced harvesting capacity.
This behaviour is corroborated by the reduction in power
consumption for the GHz radio in Fig. 9, which is linked
to the increase in the number of users assigned to the TVWS
network as evident from Fig. 10.
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VI. CONCLUSIONS

In this paper, we have presented an energy model and
optimisation process for the assignment of users in a single
base station multi-radio network for rural broadband access.
The algorithm uses a dynamic programming approach over
a cost function defined as the linear combination of a power
consumption and a network load related cost over a 24 hours
sliding window.

The algorithm is effective in reducing the power consump-
tion of the GHz PTMP radio, providing up to 3% energy
saving against a maximum reach policy. Together with efforts
towards a low-power basestation implementation [9], [28],
[29], this algorithm can permit a downsizing of the power
supply systems (harvesters and batteries), thus reducing the
cost of the base station, as demonstrated in simulation by
reducing the harvesting capacity of the BS to 25%. Further-
more the algorithm can provide a better balance between the
number of users assigned to each of the networks, and is
therefore capable of enhancing the quality of service.
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