1903.09466v1 [cs.CR] 22 Mar 2019

arxXiv

Surfing the Web quicker than QUIC
via a shared Address Validation

Erik Sy
University of Hamburg

ABSTRACT

QUIC is a performance-optimized secure transport protocol and
a building block of the upcoming HTTP/3 standard. To protect
against denial-of-service attacks, QUIC servers need to validate
the IP addresses claimed by their clients. So far, the QUIC protocol
conducts address validation for each hostname separately using val-
idation tokens. In this work, we review this practice and introduce
a new QUIC transport parameter to allow a shared address valida-
tion across hostnames. This parameter indicates to the client, that
an issued validation token can be used to abbreviate the address
validation when connecting to specific other hostnames. Based on
trust-relations between real-world hostnames we evaluate the per-
formance benefits of our proposal. Our results suggest that a shared
address validation saves a round-trip time on almost 60% of the
required handshakes to different hosts during the first loading of an
average website. Assuming a typical transatlantic connection with
a round-trip time of 90 ms. We find that deploying our proposal
reduces the delay overhead to establish all required connections
for an average website by 142.2 ms.

CCS CONCEPTS

« Security and privacy — Security protocols; « Networks —
Transport protocols.

KEYWORDS

QUIC transport protocol, address validation token, performance
enhancement

1 INTRODUCTION

The world wide web is closely tied to the HTTP network protocol.
The upcoming version HTTP/3 will replace the traditional TLS over
TCP stack with the new QUIC protocol [3]. Thus, it is likely that
QUIC will be widely adopted on the web within the next couple of
years. Further potential use cases include, but are not limited to the
Domain Name System (DNS) [6].

A principal goal of the QUIC protocol is to reduce the delay
overhead required to establish secure connections. To achieve this
goal QUIC provides the feature of a zero round-trip time handshake
that conducts the transport and the cryptographic connection estab-
lishment at the same time. However, this feature is only applicable
when reconnecting to a QUIC server as it requires cached state of
a prior connection. The first connection to a hostname requires up
to two additional round-trips. One additional round-trip is caused
by the cryptographic connection establishment and the other by
the transport handshake.

In this work, we are addressing the performance limitations
caused by this additional round-trip of the transport handshake that
is used to validate the client’s source address. To illustrate the short-
comings of QUIC’s current design, we assume that a client connects

sequentially to the hostnames example.com and www.example.com.
Furthermore, we assume both of these hostnames are operated by
the same entity and a strict address validation is deployed by the
responding QUIC servers. We find that the default QUIC behavior
causes per connection one additional round-trip for the validation
of the client’s address. As a result of this process, the client’s address
has been validated at the expense of two additional round-trips by
the same entity via different hostnames.

We propose a performance-optimized approach that allows to
reuse address validation tokens across hostnames that have a trust-
relation to each other. The client connects to the first hostname with
an additional round-trip to validate the client’s address and receives
a validation token. The second handshake to the other hostname
uses the validation token received during the first connection to
pass the address validation without an additional round-trip. This
approach saves in total a round-trip time compared to the default
QUIC behavior

In summary, this paper makes the following contributions:

e We propose a new transport parameter for the QUIC proto-
col that enables a shared address validation across different
hostnames.

e We demonstrate the performance gains yielded by our pro-
posal for loading popular websites. Our results indicate that
deploying the introduced transport parameter saves a round-
trip time on almost 60% of the required connection estab-
lishments to different hosts during the first loading of an
average website.

The remainder of this paper is structured as follows: Section 2
describes the performance problem of the QUIC transport protocol
that we aim to solve. Section 3 summarizes the proposed shared
address validation and evaluation results are presented in Section 4.
Related work is reviewed in Section 5, and Section 6 concludes the

paper.

2 PROBLEM STATEMENT

In this section, we briefly review the connection establishment of
the IETF QUIC protocol [7]. Subsequently, we describe the problem
that we aim to solve and our threat model.

2.1 Connection establishment with IETF QUIC

Google developed and deployed the initial design of the QUIC pro-
tocol [8], which we will refer to as Google QUIC (gQUIC). In 2016,
the Internet Engineering Task Force (IETF) started to standardize
QUIC [7], which is still a work in progress. The IETF’s draft of
QUIC differs significantly from gQUIC, e. g., it uses TLS 1.3 [9] to
conduct the cryptographic handshake. However, both QUIC vari-
ants aim to improve the performance of HTTPS traffic by conduct-
ing the cryptographic and the transport handshake concurrently,
while the widespread approach using TLS over TCP conducts these



Client Server Client

—— Copocry |

CryptO(SH) , Crypto{EE, CERT, CV, FIN},

Crypto(SH

Cryplo{FIN}, [Application Data]

Cr

regular QUIC data
flow can follow...

a) Initial handshake

Crypto(CH)
{cation Data] \
AR Crypto(CH), token
). Crypto{EE, CERT, CV, FIN},
Application Datal [ —clonDaw]
% Crypto{FIN}, [Application Data]

YPto{FIN}, [Application Data]
regular QUIC data
flow can follow...

b) Initial handshake with retry

Erik Sy

Server Client Server
Crypto(CH), token,

(Application Data)

Crypto(SH), Crypto{EE. FIN},

L Application Data)

regular QUIC data
flow can follow...

¢) 0-RTT handshake

Figure 1: Handshakes in IETF QUIC protocol, where the brackets indicate different levels of encryption. Round brackets in-
dicate no encryption and curved brackets denote encryption based on the handshake traffic secret. Square brackets signal
encryption using the application traffic secret and angle brackets indicate the use of the early traffic secret for encryption.

handshakes sequentially. Figure 1 shows a schematic of QUIC’s
connection establishment.

Initial handshake with and without retry. As shown in Figure 1 a),
the client starts with the ClientHello (CH) message containing lists
of supported cipher suites, protocol versions, TLS extensions, and
public keys suitable for key exchange. All messages that are part of
the cryptographic connection establishment follow the TLS 1.3 [9]
protocol and are emphasized with Crypto in Figure 1. The server
responds with its unencrypted ServerHello message, which is in-
dicated by round brackets in Figure 1. Subsequently, the server
computes the handshake traffic secret and sends the Encrypted
Extensions (EE), the server’s certificate (CERT), the Certificate Ver-
ify (CV), and the handshake finished (FIN) messages encrypted
with this secret, shown as curved brackets in Figure 1. In the CV
message the server provides a fresh proof for its ownership of the
certificate’s private key. Whereas FIN messages signal a successful
handshake and contain hashes of the exchanged handshake mes-
sages to verify that both peers observed the same messages. The
server can now calculate the application traffic secret and may send
encrypted application data. This encryption type is indicated with
square brackets in Figure 1.

Upon receiving the ServerHello message, the client computes
the handshake traffic secret. This enables the client to decrypt the
received EE, CERT, CV, and FIN messages. The client can now
authenticate the server’s identity based on the provided CERT and
CV messages. Then, the client validates the hashes contained in the
server’s FIN message and calculates the application traffic secret.
Finally, the client responds with its own FIN message and may send
encrypted application data to the server.

After a connection is successfully established, the server can
provide the client with TLS resumption tickets and address valida-
tion tokens that can be used on subsequent connections. Resump-
tion tickets allow resuming previous connections via abbreviated
handshakes that decrease the delay overhead and save expensive
cryptographic computations during connection establishment. A
validation token is an encrypted and authenticated data block which
is opaque to the client. It usually contains the client’s visible IP

address as seen by the server. If the client provides such a token dur-
ing a subsequent connection establishment, this allows the server
to compare the client’s claimed IP address with the previously
observed clients’ IP address in the token.

Depending on its configuration, the server may per default or
dynamically decide to strictly validate the client’s IP address before
proceeding with the cryptographic handshake. Figure 1 b) shows an
initial handshake that validates the client’s source address with an
additional round-trip. Here, the server sends a retry message and an
address validation token to the IP address claimed with the client’s
first message. To proof the ownership of the claimed IP address,
the client is required to provide the received token along with its
ClientHello message. Upon receiving the token from the client, the
server validates it, which involves a comparison of the IP address
stored in the token with the one claimed by the client. If the token
is valid, the client-server pair will proceed with a standard initial
connection establishment starting from the ServerHello message
(see Figure 1 a).

0-RTT connection establishment. Furthermore, the QUIC protocol
provides zero round-trip time (0-RTT) connection establishments
as shown in Figure 1 c). Here, the client can send data encrypted
with the early traffic secret without waiting for a response from the
server using TLS resumption. Thus, the client requires a previously
retrieved resumption ticket and a pre-shared key (PSK) to encrypt
these early data and to signal the used PSK to the server. Optionally,
the client can provide an address validation token as shown in
Figure 1 c) to anticipate a server’s retry request.

Upon receiving these messages, the server starts to validate the
client’s token and IP address. In case of a positive validation re-
sult, the server begins with its own cryptographic operations. To
derive the early traffic secret, the server uses also information pro-
vided in the pre_shared_key extension of the ClientHello message.
Assuming, that the server can successfully decrypt the provided
early data, it will signal this with the pre_shared_key extension in
the ServerHello message. After sending the ServerHello message,
the server will derive the handshake traffic secret and use it for
encrypted transmission of the EE and FIN messages. Note, that



Surfing the Web quicker than QUIC
via a shared Address Validation

this handshake does not require the server to provide a CERT and
CV message to authenticate its claimed identity. Instead, the peers
authenticate each other by successfully resuming the previous TLS
session using the pre-shared key. This abbreviated authentication
during resumed connections significantly decreases the delay and
saves expensive cryptographic operations. Subsequently, the server
can derive its application data secret and respond with encrypted
application data to the client’s early data.

Upon receiving the server’s messages, the client will derive the
handshake traffic secret and decrypt the server’s EE and FIN mes-
sage. Then, the client reviews the validation data contained in the
server’s FIN message to validate, that the exchanged messages have
not been tampered with during transit. If the client did not deter-
mine a modification of the received data, it will provide the server
its own FIN message. Finally, the client can derive its application
traffic secret and the regular data flow follows.

Note, that application data encrypted with the early traffic secret
does not provide forward-secrecy and might be replayed in other
connections. For a comprehensive discussion on the weaker security
guarantees of early data, we refer readers to RFC 8446 [9].

2.2 Performance limitation of address
validation

A QUIC server can validate the IP address claimed by a client by
sending it a retry message with a token. Only, if the client returns
this issued token, the server proceeds with the cryptographic hand-
shake. This practice protects the server from spending expensive
cryptographic operations on malicious handshake attempts claim-
ing an illegitimate IP address. As a drawback, this IP spoofing de-
fense increases the delay overhead of the connection establishment
by a round-trip time.

To avoid this additional delay during the establishment of a new
connection, a client can present a token from a previous connection
to the same hostname along with the ClientHello message. If the
server accepts this token as valid for the IP address claimed by the
client, then it will directly proceed with the cryptographic connec-
tion establishment. This practice requires the client to retrieve a
token in a previous QUIC connection to the same hostname.

QUIC does not consider using a retrieved address validation
token to connect to new hostnames not matching the connection
that has been used to retrieve the token. As a result, connections
to every fresh hostname cannot present an address validation to-
ken leading to the described additional delay overhead if the server
enforces address validation. This is a performance limitation if trust-
relations between different hostnames are available. To illustrate
this limitation, we assume a trust-relation between the hostnames
example.com and www.example.com, which mutually accept their
issued address validation tokens. Assuming the same network la-
tency to both hostnames, a client establishing fresh connections
to both hostnames experiences an additional delay overhead of
twice the round-trip time due to address validation. However, if the
client sequentially connects to these hostnames and reuses a token
obtained in the first connection to establish the latter connection,
this bisects the additional delay overhead to a single round-trip
time.

To put this into perspective, a typical latency in North America
is <45 ms and <90 ms for transatlantic connections [13]. However,
several regions in the world exist which suffer from high network
delays, often exceeding 300 ms [5]. In total, this example illustrates
that using address validation tokens across different hostnames can
provide significant performance gains, especially for connections
experiencing high latencies.

2.3 Threat Model

To clarify the security aspects of the described problem, we define
our threat model in the following.

The considered adversary is able to spoof the source address of
its packets. However, we assume the address validation tokens to
be cryptographically secure, thus attackers cannot generate valid
tokens. In total, our adversary affects the security objective of
availability. By spoofing the IP address of a victim’s endpoint, the
attacker causes the QUIC server to send its response to the victim,
which is also known as a reflection attack. Moreover, the attacker
can also directly attempt to exhaust the resources of the server by
requesting connections from various spoofed IP addresses.

3 SHARED ADDRESS VALIDATION ACROSS
HOSTNAMES

This section describes our approach of a shared address validation
across hostnames for the QUIC protocol. For that, we introduce the
new transport parameter validation_group that aims to enable a
shared address validation across hostnames.

Deviating from the standard initial handshake, the server uni-
laterally includes the validation_group value in its list of transport
parameters. In detail, the validation_group presents a one-bit value,
which is set to one if this feature is supported and zero otherwise.

The client finds the declared validation_group value in the server’s
EE message. If this value is set to zero, then the client reasons that
the server does not support this feature and proceeds with its de-
fault behavior.

In case the validation_group value is set to one, the client con-
cludes that the server supports a shared address validation across
the hostnames, for which the presented TLS certificate is valid. We
define a validation group to be a list of hostnames for which a single
TLS certificate is valid and that mutually support address validation
using tokens issued by any member of the same group. To support
a shared address validation, the client associates received tokens
during that connection with the validation group at hand.

To open a new connection to any member of a validation group,
the client can use cached tokens associated to the same group.
Tokens received during such a new connection must be associated
with the same validation group.

The QUIC server does not provide a TLS certificate during a
resumed connection establishment. In this case, the tokens received
during the connection should be associated with the TLS certificate
of the original connection, for which the server’s identity was
authenticated using a TLS certificate.

To mitigate tracking via address validation tokens [11], a client-
side expiration mechanism is required for them. The lifetime of
these tokens presents a performance versus privacy trade-off, where



shorter lifetimes lead to better privacy protection. Based on an anal-
ysis of characteristic Internet traffic, the authors of [10] recommend
a lifetime of ten minutes to address this trade-off in web browsers.

To support a shared address validation across hostnames, the
cryptographic secret used to generate and decrypt the tokens needs
to be shared across the servers serving these hostnames. Note, that
address validation tokens are designed for single-use only. If a
member of a validation group is not properly configured and fails
to validate a legitimate token, then this process uses up a cached
token of the respective validation group. In the worst case, this
behavior can lead to reduced performance compared to the status
quo. For example, if the client needs to respond to a retry message
of a server because it used up its cached tokens on not properly
configured servers.

4 EVALUATION

In this section, we evaluate the performance benefit of our proposal
for web browsing. For this purpose, we simulate shared address
validation across hostnames for the Alexa Top 1K Sites [1]. We start
by describing our assumptions for this evaluation. Subsequently,
we introduce the analyzed data set and summarize our results.

4.1 Assumptions

To simulate the loading behavior of popular websites, we assume
that each established connection enforces a strict address validation.
This assumption describes the current practice of TCP Fast Open [4]
and gQUIC [8]. However, IETF QUIC provides an operation mode
with a relaxed address validation. Nonetheless, we believe the strict
address validation to become the most popular operation mode
of QUIC servers. As the draft on IETF QUIC is still in an early
stage, we are not aware of online services deploying IETF QUIC at
a production level. Thus, we cannot determine the configuration
of real-world deployments of IETF QUIC to assess the accuracy of
this assumption at the moment.

Moreover, this evaluation assumes that the investigated websites
deploy the QUIC protocol to support their HT'TPS connection estab-
lishment. To justify this assumption, we point out that numerous
browser vendors and content delivery networks contribute to the
draft of the QUIC protocol [7] and intend to deploy this protocol in
their products. Furthermore, the upcoming HTTP/3 uses the QUIC
protocol [3] by default, thus it will be deployed to serve websites. In
total, it seems likely that the QUIC protocol will be widely deployed
on the Internet within the next couple of years.

In addition, to simulate our proposal for popular websites we
require information on real-world hostnames that trust each other
with regard to the availability of their servers. To approximate
this information, we assume that hostnames trusting each other
with respect to the confidentiality of their communications are also
willing to have a trust-relation concerning the availability of their
servers. We define that a trust-relation with respect to confiden-
tiality exists, if hostnames share a secret cryptographic state with
each other such as the private key of their TLS certificate or they
enable the resumption of TLS sessions across their hostnames. From
our perspective, it seems reasonable that such closely cooperating
hostnames, which are often operated by the same entity, are willing

Erik Sy

google.com

www.google.com

www.google.de www.gstatic.com adservice.google.com consent.google.com ssl.gstatic.com

apis.google.com

Figure 2: Domain tree of the website google.com.

to trust each other in terms of the validation of their clients’ IP
addresses.

4.2 Data set

This paper uses a data set on trust-relations of the Alexa Top 1K
Sites, that is described and evaluated in [12]. The data set aggre-
gates a scan of the Alexa Top 1K Sites [1] performed on the 8th of
November 2018. In total, the scan successfully retrieved the domain
trees of 839 websites. A domain tree describes an overview on the
sequence of established connections to different hostnames during
the retrieval of a website (see Figure 2). Furthermore, the data set
collected real-world TLS trust-relations between the different host-
names within each domain tree. For that, the data set defines a TLS
trust-relation between two hostnames if they either share the same
TLS certificate or enable the resumption of TLS sessions between
their hostnames.

4.3 Results

In this section, we demonstrate the performance benefits of our pro-
posal for the first loading of popular websites, respectively. First, we
investigate the amount of connections necessary for the retrieval of
an average website, that can each save a round-trip time during the
connection establishment by deploying shared address validation.
Subsequently, we observe that most websites require a client to
sequentially establish connections to different hosts. Based on this
practice, we analyze our proposal by measuring the aggregated
delay overhead for establishing all QUIC connections necessary for
the retrieval of the respective website successively. This evaluation
of successive retrievals allows to approximate the benefit of our
proposal for the loading time of a website.

Share of abbreviated handshakes. The analyzed data set [12] indi-
cates, that TLS trust-relations are a common practice on the web. In
total, the average Alexa Top 1K Site requires the client to establish
20.24 encrypted connections to different hostnames. Figure 3 plots
the distribution of the share of these websites over the number of
required initial handshakes with retry for their retrieval. The plot
marked by the red squares indicates that 95.2% of these websites re-
quire more than a single secure connection. Note, that 73.3% of the
investigated sites can be loaded with at most 25 initial handshakes



Surfing the Web quicker than QUIC
via a shared Address Validation

124 - Using proposal

= Without proposal
10

Share of Alexa Top 1K Sites [%o]

1 5 10 15 20 25
Required initial handshakes with retry to load the website

Figure 3: This plot shows the share of Alexa Top 1K Sites in
dependence on the number of required initial handshakes
with retry to retrieve the website. The green circles mark the
values considering the introduced shared address validation,
while the red squares plot the current default. Note, that this
plot is cut off at 25 handshakes.

with retry. Thus, we cut off this plot after 25 of these handshakes
for reasons of clarity.

The plot marked with green circles presents the results of our
simulation using a shared address validation in case of a trust-
relation between the corresponding hostnames. Thus, it converts
an initial handshake with retry to an initial handshake where the
client presents an address validation token received from a member
of the same validation group. As a result, each of these conversions
reduces the delay overhead of the specific connection establishment
by a round-trip. Figure 3 shows that the use of a shared address
validation shifts the distribution of the Alexa Top 1K Sites towards
less required initial handshakes with retry. For example, the share
of sites requiring a single initial handshake with retry increased
from 4.8% to 12.9% by using our proposal. Furthermore, we find
that 42.1% of the investigated websites can be retrieved with less
than five initial handshakes with retry by using the introduced
proposal compared to 14.1% without deploying the proposal. In
total, we find that 96.0% of the Alexa Top 1K Sites can be retrieved
with at most 25 initial handshakes with retry by deploying a shared
address validation.

Table 1: Mean number of required initial QUIC handshakes
with retry to different hostnames to download a website of
the Alexa Top 1K list for the first time in absolute and rela-
tive numbers.

Without shared With shared Savin
address validation address validation &8
20.24 8.35 11.89
100.0% 41.25% 58.75%

°\? 40 ‘ e  Using proposal

E = Without proposal

% u

iz 301 °

-

5

= [

= 201

P>

2 |

< °

5 101 8 . -

2

< |

53 0_ ® [ J = n
2 4 6 8

Number of sequential initial handshakes with retry
required to load the website

Figure 4: This plot shows the share of Alexa Top 1K Sites
over the number of required sequential initial QUIC connec-
tions with retry to load the respective website. The green cir-
cles represent the values considering the introduced shared
address validation, while the red squares plot the current de-
fault.

Table 1 provides an overview of the performance benefit of our
proposal for the average Alexa Top 1K Site. Our results suggest,
that a shared address validation reduces the number of initial hand-
shakes with retry from 20.24 to 8.35 for the first visit of an average
website. Thus, 11.89 initial QUIC connections can be converted to
use an address validation token received from a member of the
same validation group. In total, the proposed practice saves for
58.75% of the established QUIC connections a round-trip time. This
yields a reduction of 11.89 round-trips during the establishment of
the required connections.

Delay overhead. The studied data set [12] provides insights into
the sequence of established connections and which retrieved re-
sources triggered the establishment of additional connections. Fig-
ure 2 provides the domain tree of google.com that marks initi-
ated connections to different hostnames with arrows. We observe
that the longest path within the domain tree requires four se-
quential connection establishments via the hostnames google.com,
www.google.com, www.gstatic.com, and apis.google.com. Thus, the
website retrieval of google.com is impacted by about four times the
delay overhead of a single connection establishment.

Figure 4 plots the distribution of Alexa Top 1K Sites over the
length of their longest paths of initial handshakes with retry. The
plot using the red squares indicates the current status quo. We
observe, that the Alexa Top 1K Sites require no more than eight
sequential connections for their retrieval. The single most popular
configuration requires four sequential connections and is used by
33.1% of the Alexa Top 1K Sites. In total, we find that 63.0% of the
Alexa Top 1K Sites can be retrieved with four or less sequential
connections.



The plot marked with green dots provides the results for deploy-
ing a shared address validation. In our simulation, we convert if
applicable an initial handshake with retry to an initial handshake,
where the client presents an address validation token obtained from
another member of the same validation group. Each of these con-
verted handshakes saves a round-trip time during the corresponding
connection establishment. Note, that our evaluation repeats the
computation of the longest paths of initial handshakes with retry af-
ter simulating the shared address validation. Thus, the longest paths
with and without using the introduced shared address validation
can deviate from each other.

We find, that the deployment of our proposal leads to a signifi-
cant reduction of necessary initial handshakes with retry for the
Alexa Top 1K Sites. For example, using a shared address validation
reduces the share of websites requiring more than five sequential
connections from 37.0% to 2.3%. Furthermore, the number of web-
sites requiring less than three connections increased from 15.4% to
56.5% when using our proposal.

Table 2 provides an overview of the average benefit of our pro-
posal. Our results indicate, that the average Alexa Top 1K Site re-
quires 4.04 sequential initial handshakes with retry. The proposed
shared address validation reduces this value to 2.46. In total, our pro-
posal saves 1.58 times the round-trip time until the last connection
required for loading an average website is established. This presents
a reduction of the longest path of initial handshakes with retry by
39.1% for the average website. Assuming a transatlantic connec-
tion with a round-trip time of 90 ms [13], our proposal reduces the
delay overhead for establishing all required QUIC connections by
142.2 ms.

Table 2: Mean length of the longest path of required initial
QUIC handshakes with retry to different hostnames to re-
trieve an average website of the Alexa Top 1K list for the
first time in absolute and relative numbers.

Without shared With shared Savin
address validation ~address validation &8

4.04 2.46 1.58
100.0% 60.89% 39.10%

5 RELATED WORK

To the best of our knowledge, we are the first to investigate the
benefit of a shared address validation across hostnames for trans-
port handshakes. Prior work includes the current draft of the QUIC
transport protocol, as it is designed to support a shared address
validation across servers serving the same hostname.
Furthermore, related work [12] investigated trust-relations within
the domain trees of the Alexa Top 1K Sites. However, that work
focused on performance improvements for the cryptographic hand-
shake when using TLS session resumption across hostnames.
Moreover, HTTP version 2 (HTTP/2) [2] can be considered as
related work as it allows to reuse TLS connections across different
hostnames. This approach in HTTP/2 aims to reduce the number
of established connections to yield performance gains. However,

Erik Sy

our proposal reduces the delay overhead of the connection estab-
lishment itself.

6 CONCLUSIONS

This work proposes a new transport parameter for the QUIC pro-
tocol to support clients to use address validation tokens across
hostnames. Our evaluation demonstrates, that such a shared ad-
dress validation significantly reduces the delay overhead of QUIC’s
connection establishment on the real-world web.

REFERENCES

[1] Alexa Internet Inc. 2019. Alexa Top 1,000,000 Sites. Retrieved March 13, 2018
from http://s3.amazonaws.com/alexa-static/top- 1m.csv.zip

[2] Mike Belshe, Roberto Peon, and Martin Thomson. 2015. Hypertext Transfer
Protocol Version 2 (HTTP/2). RFC 7540. https://doi.org/10.17487/RFC7540

[3] Mike Bishop. 2019. Hypertext Transfer Protocol Version 3 (HTTP/3). Internet-Draft
draft-ietf-quic-http-19. Internet Engineering Task Force. https://datatracker.ietf.
org/doc/html/draft-ietf-quic-http-19 Work in Progress.

[4] Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind Jain. 2014.
TCP Fast Open. RFC 7413. https://doi.org/10.17487/RFC7413

[5] Agustin Formoso, Josiah Chavula, Amreesh Phokeer, Arjuna Sathiaseelan, and
Gareth Tyson. 2018. Deep Diving into Africa’s Inter-Country Latencies. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 2231-2239.

[6] Christian Huitema, Melinda Shore, Allison Mankin, Sara Dickinson, and Jana
Iyengar. 2019. Specification of DNS over Dedicated QUIC Connections. Internet-
Draft draft-huitema-quic-dnsoquic-06. Internet Engineering Task Force. https://
datatracker.ietf.org/doc/html/draft-huitema-quic-dnsoquic-06 Work in Progress.

[7] Jana Iyengar and Martin Thomson. 2019. QUIC: A UDP-Based Multiplexed and
Secure Transport. Internet-Draft draft-ietf-quic-transport-19. Internet Engineering
Task Force. https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-19
Work in Progress.

[8] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,

Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.

The QUIC transport protocol: Design and Internet-scale deployment. In Proceed-

ings of the Conference of the ACM Special Interest Group on Data Communication.

ACM, 183-196.

Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.

RFC 8446. https://doi.org/10.17487/RFC8446

Erik Sy, Christian Burkert, Hannes Federrath, and Mathias Fischer. 2018. Tracking

Users Across the Web via TLS Session Resumption. In Proceedings of the 34th

Annual Computer Security Applications Conference (ACSAC ’18). ACM, New York,

NY, USA, 289-299. https://doi.org/10.1145/3274694.3274708

Erik Sy, Christian Burkert, Hannes Federrath, and Mathias Fischer. 2019. A QUIC

Look at Web Tracking. Proceedings on Privacy Enhancing Technologies 3 (2019).

Erik Sy, Moritz Moennich, Tobias Mueller, Hannes Federrath, and Mathias Fischer.

2019. Enhanced Performance for the encrypted Web through TLS Resumption

across Hostnames. arXiv preprint arXiv:1902.02531 (2019).

Verizon. 2019. IP Latency Statistics.  Retrieved March 13, 2019 from https:

//enterprise.verizon.com/terms/latency/

[9

[10

[11

[12

[13


http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://doi.org/10.17487/RFC7540
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-19
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-19
https://doi.org/10.17487/RFC7413
https://datatracker.ietf.org/doc/html/draft-huitema-quic-dnsoquic-06
https://datatracker.ietf.org/doc/html/draft-huitema-quic-dnsoquic-06
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-19
https://doi.org/10.17487/RFC8446
https://doi.org/10.1145/3274694.3274708
https://enterprise.verizon.com/terms/latency/
https://enterprise.verizon.com/terms/latency/

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Connection establishment with IETF QUIC
	2.2 Performance limitation of address validation
	2.3 Threat Model

	3 Shared address validation across hostnames
	4 Evaluation
	4.1 Assumptions
	4.2 Data set
	4.3 Results

	5 Related Work
	6 Conclusions
	References

