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ABSTRACT

Recently, many works have been inspired by the success of deep learning in computer vision for plant
diseases classification. Unfortunately, these end-to-end deep classifiers lack transparency which can
limit their adoption in practice. In this paper, we propose a new trainable visualization method for
plant diseases classification based on a Convolutional Neural Network (CNN) architecture composed
of two deep classifiers. The first one is named Teacher and the second one Student. This architecture
leverages the multitask learning to train the Teac1her and the Student jointly. Then, the communicated
representation between the Teacher and the Student is used as a proxy to visualize the most important
image regions for classification. This new architecture produces sharper visualization than the existing
methods in plant diseases context. All experiments are achieved on PlantVillage dataset that contains
54306 plant images.

Keywords Plant diseases classification · Deep visualization algorithms · Convolutional Neural Networks (CNNs)

1 Introduction

Plant diseases cause great damages to agriculture crops by significantly decreasing production [1]. Protecting plants
from diseases is vital to guarantee the quality and the quantity of crops [2]. A successful protection strategy starts
with an early detection of the disease and the right treatment to prevent its spreading. Many studies proposed the
use of Convolutional Neural Network (CNN) to detect and classify diseases. This new trend produced more accurate
classifiers compared to shallow machine learning approaches based on hand crafted features [3, 4, 2, 5]. Despite all
these successes, CNN still suffers from the lack of transparency that limits its spreading in many domains. These CNNs
are complex deep models that yield good results at the expense of explainability and interpretability. High accuracy is
not sufficient for plant diseases classification. Users also need to be informed how the detection is achieved and which
symptoms are present in the plant.

In this paper, we propose a classification and visualization architecture based on multitask learning of two classifiers:
Teacher and Student. This architecture represents a trainable visualization method for plant diseases classification.
The main contribution is the design of an interpretable deep architecture able to do classification and visualization
simultaneously. The visualization algorithm is embedded directly in the network design instead of using it after the
training as post treatment.
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2 Related works

Visualization algorithms are used to explain CNN decision using a heatmap. This heatmap highlights the importance of
each pixel for the classifier’s decision. These methods backpropagate to the input image the discriminant features used by
the network for classification. Most of these methods use heuristics during the backpropagation. For example, gradients
based methods like deconvolution [6] and guided backpropagation [7] filter some signals during the backpropagation
according to heuristic rules. These filtered signals are ignored to produce sharp visualizations. Furthermore, Layer
Wise Relevance Propagation (LRP) methods [8, 9] are based on choosing the layer’s roots to determine propagation
rules for each layer in the network. The global visualization method GRAD-CAM [10] projects the features from the
penultimate convolution layer based on a linear interpolation which degrades the precision of the produced heatmaps.
These visualization algorithms can produce different heatmaps according to the chosen heuristics and propagation rules,
which makes the understanding of the classifier difficult. In the present paper, we combine two classifiers to extract
discriminant features from images. These discriminant features are extracted by the first classifier and projected as
an input for the second classifier. This trainable visualization is similar to segmentation architectures like U-Net [11]
where the supervision masks are replaced with a second classifier.

3 Proposed method
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Figure 1: Teacher/Student network architecture.

We propose a classification and visualization generic architecture, named Teacher/Student architecture, based on
learning transfer from a first classifier (Teacher) to a second one (Student). This learning transfer from the Teacher to
the Student is achieved using an autoencoder having the Teacher as an encoder. The decoder consumes the Teacher
latent representations to reconstruct an image with the same dimension of the input image. This image is used as an
input of the Student. The whole network (Teacher + Decoder + Student) is trained to minimize jointly the losses of
the two classifiers (Teacher and Student). More formally, the network has two outputs Y T (Teacher output) and Y S
(Student output). During the training, the loss function (1) is minimised. The hyperparameter α represents the tradeoff
between the Teacher loss (2) and the Student loss (3).
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Loss = α ∗ LossTeacher + (1− α) ∗ LossStudent (1)

LossTeacher = − 1

N

N∑
i=1

C∑
j=1

Y i
j log(Y T

i
j ) (2)

LossStudent = − 1

N

N∑
i=1

C∑
j=1

Y i
j log(Y S

i
j) (3)

The Teacher/Student network is designed to reconstruct an image containing the discriminant features formed by
the Teacher to help the Student training. As a side effect of this design, the reconstructed image can be used as a
visualization of the important regions for the classification. This architecture represents an autoencoder to denoise
the image from irrelevant features from the classification viewpoint. The difference between the usual denoising
autoencoder and this architecture lies in the loss function design. The denoising autoencoder minimizes a reconstruction
loss while this architecture minimizes the classification loss of two classifiers. This proposed architecture is also
designed to extract the important regions for classification without using masks. For this reason, any segmentation
architecture can be modified to fit the proposed architecture by modifying the loss function to include a Student classifier
and avoid the segmentation masks.

Fig. 1 details the Teacher/Student architecture. For the sake of simplicity, VGG16 [12] architecture is used as Teacher
and Student. Nevertheless, the Teacher/Student architecture is flexible and other classification architectures can be
used as Teacher or Student. To use another architecture, the decoder must be adapted to inverse the Teacher’s layers to
reconstruct the input of the Student.

The Teacher/Student architecture is composed of the following components:

3.1 Teacher/Student architecture

The Teacher and the Student architectures are identical to standard architecture VGG16 [12]. Skip connections (blue
arrows) are used from the Teacher to the decoder. This skip connections concatenate the input tensors of pooling layer
of each convolution block with deconvolution block tensors.

3.2 Reversed fully connected layers

Convolutional autoencoders reverse only convolution layers to do reconstruction task. Here, the decoder requires
discriminant features from fully connected layers. Therefore, two fully connected layers are used to reverse the Teacher’s
fully connected layers. Furthermore, a skip connection (red arrow) is used to reinforce the decoder by adding the vector
of the Teacher’s first fully connected layer.

3.3 Deconvolution blocks

Table 1: Deconvolution blocks details.

Layer Input tensor Output tensor
Upsampling2d (X,Y, Z) (2X, 2Y,Z)

Conv2D (2X, 2Y, Z) (2X, 2Y, Z1)
Concatenate (2X, 2Y,Z1) + (2X, 2Y,Z1) (2X, 2Y, 2Z1)

Conv2D (2X, 2Y, 2Z1) (2X, 2Y, Z1)
Conv2D (2X, 2Y,Z1) (2X, 2Y, Z1)

Deconvolution blocks reverse the flow of tensors to form the reconstructed image. The details of this block are shown in
Tab. 1. This block consumes an input tensor of dimension (x, y, z) and produce a tensor of dimension (2x, 2y, z1). In
each deconvolution block, tensor is upsampled, concatenated with the corresponding tensor of skip connection and the
depth of resulted tensor after concatenation is reduced. The first two deconvolution block (DECONV Block1, DECONV
Block2) double the input tensor spatially without changing its depth (z1 = z). However, the other deconvolution blocks
double the tensor spatially and reduce its depth (z1 = z/2).

3
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3.4 Reconstructed image refinement

After many stages of deconvolution, the spatial dimension of the produced tensor will be equal to input image spatial
dimension. However, the depth of the tensor must be reduced to match the depth of the input image. To do this, two
convolution layers are applied. The first one (red in Fig. 1) reduces the depth to two channels which applies pressure on
the data flow by throwing unnecessary details. The second convolution layer (green in Fig. 1) expands the tensor to
three channels to use it as the Student’s input. The last decoder’s convolution layer uses sigmoid activation function
to scale the values in the interval [0, 1]. This final tensor is used as Student’s input and can be used also as proxy to
understand the communication between the Teacher and the Student.

4 Experimental results

Experimental results are conducted using the segmented version of PlantVillage dataset with black backgrounds [13].
This dataset includes 54306 images of 14 crop species with 38 classes of diseases and healthy plants. The data set is
split into a training set that contains 32572 images and a validation set that contains 21734 images. The code source of
the proposed architecture is available at https: // github. com/ Tahedi1/ Teacher_ Student_ Architecture .

4.1 Classification results
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Figure 2: Classification results of the Teacher/Student architecture.

In this section, we present the results of training and validation of the proposed architecture. The training is based
on gradient descent algorithm with the following hyperparameters: (learning rate = 1e− 4, momentum = 0.9, batch
size= 16, number of iterations = 15, multitask hyperparamater α = 0.4). Training and validation are executed on a
workstation containing Graphical Processing Unit GPU Nvidia GTX 1080.

At the beginning of training, the Teacher is more accurate than the student. This may be explained by the dependency
of the Student on the representation constructed by the Teacher. However, the loss and the accuracy of the Teacher and
the Student converge at the end of the training because the communicated representation becomes stable. Furthermore,
the Student’s loss is more stable than the Teacher’s loss in validation which reinforce the hypothesis of the transfer
learning from the Teacher to the Student. This transfer learning is achieved through the quality of the reconstructed
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image. This reconstructed image focuses on discriminant regions and filters non-discriminant regions. To assess this
information filtering mechanism, we analyze the architecture as a visualization method in the following sections.

4.2 Visualization results

 

Figure 3: Visualization images of the Teacher/Student architecture.

The visualizations depicted on Fig. 3 represent the reconstructed three channels images used as an input for the
Student. In Fig. 4, important regions are segmented using a simple binary thresholding algorithm (threshold = 0.9).
The thresholding algorithm is applied after a simple aggregation across channels of reconstructed image (noted V ) to
produce one channel heatmap. To produce this heatmap from the reconstructed image V , the formula (4) is applied.
This formula measures the distance between pixel’s color and black (0, 0, 0).

Heatmap(i, j) =
√
V (i, j, 0)2 + V (i, j, 1)2 + V (i, j, 2)2 (4)

 

Figure 4: Heatmaps after threshoulding the visualizations images.

The produced heatmaps (Fig. 4) show clearly the symptoms of the plant disease. Furthermore, these heatmaps are
sharp and precise. The healthy regions of the leaves are filtered and only the important regions are highlighted. In the
next section, the proposed method is compared quantitatively to other methods using perturbation curves to show its
effectiveness.

4.3 Comparison with visualization algorithms

In this section, the proposed method is compared to the following visualization algorithms : visualization based on
gradient [14], Grad-CAM [10] and Layer-wise Relevance Propagation (LRP) methods (Deep Taylor [9], LRP-Epsilon
[8], LRP-Z [8]).
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4.3.1 Heatmaps comparison

                                                                                            

Orignal image Proposed Method Gradient Deep Taylor LRP-Z LRP-Epsilon 

Figure 5: Comparison with visualization algorithms.

                                                                                            

Orignal image Proposed Method Grad-CAM Orignal image Proposed Method Grad-CAM 

Figure 6: Comparison with Grad-CAM.

Fig. 5 shows the difference between the heatmaps of the visualization algorithms. The proposed algorithm’s heatmaps
are sharper than the other heatmaps. Indeed, gradient, LRP-Z and LRP-Epsilon heatmaps are noisy and difficult
to explain. The gradient heatmaps are noisy because the gradients measure the pixel’s sensitivities instead of their
contributions. Beside, the presence of negative and positive contributions in LRP heatmaps makes them difficult to
understand. On the other hand, Deep Taylor algorithm has good and clear heatmaps compared to other algorithms. The
heatmaps of Deep Taylor algorithm highlight almost the same highlighted regions by our algorithm, but with some
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activated regions on the background. In the proposed algorithm, the background is completely deactivated which gives
clean heatmaps.

Fig. 6 shows the difference between the proposed method and Grad-CAM. The Grad-cam algorithm localizes globally
the important regions. Furthermore, the Grad-CAM visualizations miss some important regions highlighted by the
proposed method. This inaccurate localization is due to the resizing used by Grad-CAM to propagate the contributions
from the last convolution layer to the input image. In the Teacher/Student architecture, this propagation is ensured by a
trainable decoder which makes the visualizations more precise.

4.3.2 Histograms of heatmaps values

all the produced heatmaps are normalized in the interval [0, 1] to analyze the distribution of values in each method.
This normalization based on equation (5) where Min and Max are the minimum and the maximum of Heatmap
respectively.

Heatmap(i, j) =
Heatmap(i, j)−Min

Max−Min
(5)
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Figure 7: Histograms of the visualization algorithms.

Histograms of methods are shown in Fig. 7. We notice that the heatmaps values distribution of the proposed method is
different from the other methods. Grad-CAM, gradient and Deep Taylor distributions are concentrated in very small
values while the density decreases gradually as values increase. LRP-Epsilon and LRP-Z have gaussian-like distribution
centered on 0.5. In contrast, the proposed method distribution has three clusters:

• Cluster1 (C1): 72% of deactivated pixels where the heatmap values are zeros (Heatmap(pixel) = 0). This
cluster represents the background and non-discriminant pixels.

• Cluster2 (C2): 15% of pixels having small heatmap’s values (0.2 < Heatmap(pixel) ≤ 0.3).

• Cluster3 (C3): 13% of pixels having high heatmap values (0.9 < Heatmap(pixel) ≤ 1) and can be
considered as important pixels for the classifier.

4.3.3 Perturbation curves

To measure the quality of visualization method quantitatively, the produced heatmap is considered as a ranking function
of pixels. Good heatmap ranks the pixels correctly according to their importance for the classification. Therefore, if we
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Algorithm 1: Perturbation curve experiment for one image X .
Input: X : Input image,

Heatmap : Heatmap of input image X
Output: PC : Points list of the perturbation curve,

AOCP : Area over perturbation curve
X0 ← X
PC.Append((0, f(X0)))
AOPC ← 0
B ← 1
j ← 1
for j ← 1 to 11 do

if j < 11 then
R← {pixel : B − 1

10 < Heatmap(pixel) ≤ B}
else

R← {pixel : Heatmap(pixel) = 0}
Xj ← Erase(Xj−1, R)
PC.Append((j, f(Xj)))
AOPC ← AOPC + (f(X0)− f(Xj))
B ← B − 1

10

AOPC ← AOPC
11

return PC,AOPC

start erasing the pixels having high values in the heatmap then the classifier output decreases rapidly. To evaluate this
ranking, the heatmap values are discretized into intervals of size 1

10 . Afterwards, pixels are erased iteratively according
to their heatmaps values in descending order. This erasing procedure is formulated in Algorithm.1To erase one pixel, a
small black square with a size of three pixels centered on the pixel of interest is used. All dataset images have a black
background which motivates the use of black color as reference to erase with. The function f(Xj) gives the classifier
estimation of the probability that Xj has the same class of initial image X0 = X . The perturbation curve is traced
using points (j, f(X(j))) to track the evolution of the classifier output during the erasing. To produce this perturbation
curve that characterizes a visualization method, the perturbation curves of validation images are averaged.
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AOPC =
1

11

N∑
i=1

11∑
j=1

(
f(Xi)− f(X(j)

i )
)

(6)

Fig. 8 shows the perturbation curves of tested methods. The proposed method’s curve decreases rapidly after erasing

Table 2: Over the Perturbation Curve (AOPC).

Proposed method 0,907
Grad-CAM 0,587

Gradient 0,372
Deep Taylor 0,294

LRP-Z 0,558
LRP-Epsilon 0,550

the pixels of the cluster C3. Afterwards, before erasing pixels of the cluster C2 the curve is stationary. Erasing pixels of
the cluster C2 decreases slightly f . Cluster C1 does not contribute to the decreasing of the classifier output because this
cluster contains background and non-discriminant pixels.

Fig. 8 shows that the perturbation curves of the other methods decrease gradually because of the distribution of values
in their heatmaps. On the other hand, the perturbation curve of the proposed method decreases steeply because the
pixels of C3 contains the most important pixels in respect to the classifier.

Tab. 2 shows Area Over the Perturbation Curve (AOPC) for each method. This quantity measures the decreases of the
curve compared to its first value formulated in (6) and Algorithm.1.

The proposed method has better AOPC = 0.907 than other methods AOPC < 0.6 because of the concentration of
important pixels in C3. In the proposed method, erasing only 13% of image can decrease of f to 0.1.

5 Conclusion and further research

In this work, we have proposed an interpretable Student/Teacher architecture for plant diseases classification. This
architecture leverages the multitask to produce a trainable visualization method. Our experiments demonstrate the
benefit of adding the Student classifier to guide the architecture in order to reconstruct a sharp visualization images.
This reconstructed images contain the discriminant regions, which helps to explain the classifier’s decision. In the
future, our objective is to test the Student/Teacher architecture on other classification problems. Besides, we will work
to optimize the computation cost of this architecture.
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