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Abstract—In recent years, event cameras (DVS – Dynamic
Vision Sensors) have been used in vision systems as an alternative
or supplement to traditional cameras. They are characterised by
high dynamic range, high temporal resolution, low latency, and
reliable performance in limited lighting conditions – parameters
that are particularly important in the context of advanced driver
assistance systems (ADAS) and self-driving cars. In this work,
we test whether these rather novel sensors can be applied to the
popular task of traffic sign detection. To this end, we analyse
different representations of the event data: event frame, event
frequency, and the exponentially decaying time surface, and
apply video frame reconstruction using a deep neural network
called FireNet. We use the deep convolutional neural network
YOLOv4 as a detector. For particular representations, we obtain
a detection accuracy in the range of 86.9-88.9% mAP@0.5. The
use of a fusion of the considered representations allows us to
obtain a detector with higher accuracy of 89.9% mAP@0.5.
In comparison, the detector for the frames reconstructed with
FireNet is characterised by an accuracy of 72.67% mAP@0.5.
The results obtained illustrate the potential of event cameras in
automotive applications, either as standalone sensors or in close
cooperation with typical frame-based cameras.

Index Terms—event cameras, dynamic vision sensors, CNN,
traffic sign detection, event data processing

I. INTRODUCTION

Event cameras are neuromorphic sensors that asyn-
chronously record changes in pixel brightness in the form of
so-called events. They are increasingly used in the context of
autonomous vehicles, due to their high dynamic range and
high temporal resolution. Event cameras are suitable for very
strong and low-light conditions and situations when the object
moves very fast with respect to the sensor. In this work, we
use event data for traffic sign detection – a task that is very
relevant for autonomous vehicles, yet rather complex due to
significant differences between elements of the same class of
objects.

Implementing object detection for event data is problematic
because state-of-the-art solutions, including deep convolu-
tional neural networks (DCNN), are designed to work with
“classical” video frames. In this paper, we consider the use
of different methods to represent event data in the form of
frames: event frame, event rate, exponentially decaying time

surface, a fusion of the mentioned representation and frame
reconstruction with the use of the FireNet neural network [6].
We use the YOLOv4 network as the detector. The results
obtained allow us to evaluate the applicability of event cameras
in traffic sign detection systems.

The main contributions of this paper can be summarised as
follows:

• To the best of our knowledge, this is the first publication
which describes the implementation of traffic sign de-
tection using event data and classical deep convolutional
neural networks.

• We propose a methodology for filtering and verifying
the annotation correctness of an event dataset based on
video frame reconstruction and a simple classifier based
on a convolutional neural network.

• We propose the apply of a fusion of different event data
representations for the task of traffic sign detection using
DCNN, which may be applicable also to other detection
problems.

The remainder of this paper is organised as follows. In Section
II we introduce event cameras along with their properties
and data representation format. Section III describes different
event data representations in the form of event frames. Section
IV presents the methods used in the literature for object
detection based on event data, as well as the considered traffic
sign detection problem. Section V describes the dataset used,
as well as its filtering and verification process. The neural
network training process is presented in Section VI. The
paper ends with a discussion of conclusions drawn from the
conducted research and a description of plans for the further
development of the project.

II. EVENT CAMERAS

An event camera (also known as Dynamic Vision Sensor
– DVS) is a neuromorphic sensor that takes its inspiration
from the human eye [1]. Unlike classical cameras, which
record the brightness (colour) level for a given pixel every
specified time interval (frame per second parameter), a DVS
records brightness changes independently (asynchronously)
for individual pixels. Consequently, the data captured by the
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camera does not depend on the clock but the dynamics of the
scene. As a result, a stream of events is available on the output,
where each is described by 4 values:

e = {t, x, y, p} (1)

where: t is the event capture time (timestamp), x and y are the
pixel coordinates, and p is the value -1 or 1 corresponding to
the event polarity (positive or negative change in pixel value
reaching a fixed threshold).

Such an approach has a number of interesting consequences.
First, a single pixel consists of an analogue and a digital part.
Changes are detected in the analogue part, which results in low
latency (fast response time) and energy efficiency (insufficient
change means that the digital part will not be triggered).
In addition, the analysis of the logarithm of the change in
brightness of each particular pixel independently allows one
to obtain a high dynamic range (above 120 dB). Contrast
sensitivity of event cameras differs for particular sensors.
Typical DVS’s set thresholds between 10-50% illumination
change as too low setting can result in high number of noise
events. Consequently, DVS sensors are relatively resistant to
large differences in the brightness of the recorded scene, which
for classical cameras becomes a problem (part of the image
is overexposed or too dark). This property also enables the
correct detection of objects even under very high or limited
light conditions. Second, the transmission of information only
about the occurring changes eliminates the usually unwanted
redundancy (a traditional camera sends information about the
status of all pixels, even those whose brightness has not
changed). Another characteristic of event cameras is their high
sampling rate – the timestamp has a resolution of microsec-
onds. In addition, the camera data stream can reach up to
1200 MEPS (million events per second) depending on the
chip and hardware interface used. This speed was reported
in [2] for image resolution of 1280× 960 with 4.95 µm pixel
pitch (distance between pixels). The limitation of redundant
information and the high frequency enable the processing of
key information even under conditions of high variability, i.e.
when the objects registered by the camera move in relation to
it at high speed. It is worth noting that the above is true in
the so-called usual scenario. In the case when, due to rapid
changes of brightness or dynamic movement of the camera, all
pixels would start to generate events, the output data stream
will be larger than for traditional cameras (for example, due
to the larger representation of a single pixel).

However, it should be noted that the event camera data
stream, which can be described as a sparse point cloud in
space-time, presents significant challenges in terms of design-
ing analysis and recognition algorithms. First, the previous
achievements of over 60 years of computer vision cannot be
easily applied. Three main approaches are used: an attempt
to analyse the data as a point cloud (in a way similar to, e.g.
LiDAR data), transformation (accumulation) of event data into
various types of event frames, and reconstruction. The latter
two approaches will be discussed in more detail later in this
paper.

The features of event cameras described above are crucial
in the context of vision systems for autonomous vehicles
or advanced driver assistance systems. They perform well
for essential vision tasks for fast-moving objects, regardless
of lighting conditions and vehicle speed. However, event
representation presents a considerable challenge for designers
of vision algorithms, including object analysis and recognition.

III. EVENT-FRAME REPRESENTATION

Due to the non-traditional format of the data recorded by
event cameras, it is difficult to use them with state-of-the-
art computer vision algorithms. Therefore, various event data
representations in the form of frame-matrices analogous to
traditional video data are proposed in the literature.

To define some of the representations, we use a notation
analogous to the one used in the work [3]. We define a function
Σe that, for each pair of event coordinates u(x, y), matches
the time of its event t (Equation (2)) and a function Pe that,
for an event coordinate, matches its polarity (Equation (3)).

u : t = Σe(u),Σe : R2 → R (2)

u : p = Pe(u), Pe : R2 → {−1, 1} (3)

Additionally, τ was defined as the accumulation time of the
event data (the representation is created through aggregation).
During our ongoing research, the value of τ was set to 10 ms.

A. Event frame

The simplest form of event data representation is the “event
frame” proposed in the paper [4]. Each pixel is assigned a
polarity value of the recorded events. Therefore, it takes into
account only information about coordinates and polarisation
of pixel brightness changes, ignoring temporal information. A
representation defined in this way can be described as:

f(u, t) =

{
Pe(u) for t− Σe(u) ∈ (0; τ)
0 for t− Σe(u) ∈ (τ ; +∞)

(4)

An example event frame representation is shown in Figure
1. Any pixels for which no event have been registered are
marked with the value 127, and events are marked as 0 or 255
depending on the polarity.

B. Exponentially decaying time surface

An extension of the idea of an event frame is a represen-
tation that also takes into account the time of occurrence of
an event in a time window [4]. This method assumes that the
weight of information decreases exponentially with time to
zero. This representation is denoted by the Equation (5) and
is visualised in Figure 2.

f(u, t) =

{
Pe(u) ∗ e

Σe(u)−t
τ for Σe(u) ≤ t

0 for Σe(u) > t
(5)



Fig. 1. Event frame representation. White/black – positive/negative event,
gray – no event.

Fig. 2. Exponentially decaying time surface representation

C. Event frequency

The sigmoid representation uses information about the fre-
quency of events for a given pixel, which is ignored by the
approaches presented so far [5]. It is defined as:

f(x) = 255 ∗ 1

1 + e−x/2
(6)

The sum of the polarisation values present in a given pixel is
denoted as x. A visualisation of this reconstruction method is
presented in Figure 3.

D. Frame reconstruction with DNN

In addition to aggregating events over a specific time
window, another possibility is to use deep neural networks
to reconstruct video frames from event data. An example is
FireNet – a state-of-the-art fully convolutional recurrent neural
network [6]. It is characterised by a lower computational
complexity and higher performance than alternatives presented
in the literature (such as E2VID [7]). A sample reconstruction
is presented in Figure 4.

IV. OBJECT DETECTION FOR EVENT DATA

A. Previous work

Event cameras, due to the properties discussed in Section
II, are an attractive component of perception systems used in
autonomous vehicles. Hence, a number of works related to the
topic discussed can be found in the literature. The paper [8]

Fig. 3. Event frequency representation

Fig. 4. Frame reconstructed with FireNet

presents the use of traditional convolutional neural networks
for pedestrian detection. The authors used their own method
of representing event data in the form of frames called neigh-
bourhood suppression time surface, which assumes that the
intensity of each pixel on the time surface is only suppressed
by its local neighbourhood. The pedestrian detection system
implemented in this way achieved an accuracy of 86% AP
(Average Precision).

Another interesting approach in the context of object de-
tection is the use of data fusion – processing both event
data and frames from a traditional camera. In the paper [9],
it was shown that this approach can significantly improve
performance, especially in challenging lighting conditions and
in the case of fast movement of objects or the camera. A
Spiking Neural Network (SNN) was used to enable event data
to be processed directly. The idea of data fusion was also
applied in the paper [10], this time using data from a traditional
camera and a frequency representation of event data as input of
the same network. Designed in this way, the detector achieved
81.6 % AP for the DDD17 set [11].

B. Traffic sign detection

In the present study, we used event data for single-class
detection of traffic signs. This issue is very important in the
context of advanced driver assistance systems and autonomous
vehicles.

The described detection problem is characterised by a
relatively high complexity due to significant differences in



Fig. 5. Example of a mislabelled traffic sign

the appearance of objects belonging to the same class. Traffic
signs have different dimensions, shapes, and graphics on them.
Moreover, a number of objects can be observed in road
conditions that are similar to signs: car wheels, shop signs in
urban conditions, etc. This often is the cause of false positive
detections. The use of event cameras can potentially improve
the quality of traffic sign detection in challenging lighting
conditions (low light or high contrast), as well as in the case
of fast movement of objects in relation to the camera.

V. DATASET

We use the Prophesee 1 Megapixel automotive detection
dataset [12] in our research. It consists of more than 15 hours
of event data recorded in road conditions, divided into 60-
second sequences. The collected event data is supplemented by
annotations that take into account object classes characteristic
of autonomous vehicles – pedestrians, different vehicle classes,
traffic signs and traffic lights.

A. Data filtering

The dataset used contains a lot of information that is not
relevant to the traffic sign detection task. From the collected
event data, we have filtered out exclusively the sequences in
which there are traffic signs. For this purpose, we used the
annotations provided by the authors of the dataset. Next, in
order to visualise and verify the quality of the dataset, we
performed a reconstruction of the event data into video frames
using FireNet. After verifying different data accumulation
times, we decided to use 10 ms time windows as a compromise
between the increasing reconstruction time and the quality
of the reconstructed frames. In this way, we obtained more
than 1.4 million images with corresponding bounding boxes
that marked the positions of the traffic signs. On the basis of
manual verification of a portion of the set, we determined that
the annotation provided by the authors of the dataset was of
low quality – not infrequently were the actual signs in a sig-
nificantly different position than the corresponding bounding
box (Figure 5). Additionally, the collection contained a large
number of false positive detections in areas where no sign was
visible (Figure 6).

Fig. 6. False positive example

B. Automatic data verification

Due to the large number of false positive detections and
mislabellings of real objects within a given time window, we
decided to perform an automatic verification of the data quality
in the set used. For this purpose, we used the reconstructed
video frames and a simple classifier based on a deep con-
volutional neural network. Our proposed solution consisted
of 5 convolutional layers with ReLU (Rectified Linear Unit)
activation functions, batch normalisation and MaxPooling, and
2 fully connected layers (dropout layers were additionally
used). It was trained to classify objects as “sign” or “no sign”,
using the ADAM optimiser and the categorical crossentropy
loss function. During the training process, we used 12663
images from the GTSRB (German Traffic Sign Recognition
Benchmark) [13] dataset and 5379 images manually selected
from the prepared frame reconstructions. After 25 epochs of
training the network for an input size of 64x64 pixels, we
obtained a classifier with a performance of 95 % on the test
set.

C. Final dataset

We used the tool described in the previous section to select
the images reconstructed from the dataset that contain cor-
rectly annotated traffic signs. In this way, we obtained 27629
reconstructed images, which were identified by the classifier as
correctly labelled. The proposed solution significantly reduced
the number of false positive cases.

Based on the selected reconstructed images from the corre-
sponding 10 ms event time windows, we prepared additional
data representations described in Section III: 3 independent
single-channel event representations and a three-channel fu-
sion of all of them. Each representation included correctly
labelled traffic signs. We then used the data to implement the
traffic sign detection systems based on event data.

It is worth noting that the prepared dataset still contains
problematic cases. The used tool does not allow one to
eliminate false negative cases and this will be addressed in
our future research. However, the set prepared in this way is
characterised by significantly higher quality than the original
one.



VI. THE PROPOSED DETECTION SYSTEM

The deep convolutional neural network YOLOv4 was cho-
sen as the detector for this task [14], because of its high
accuracy and low inference time. Both proprieties are very
important in the automotive context. It is a very commonly
used solution, so it provides a good platform for studies
comparing detection performance for different types of input
data.

For the YOLOv4 model, we applied the CIoU loss func-
tion. We used DropBlocks for regularisation, and MOSAIC
augmentation. The YOLOv4 network training process was
performed using 4 GPU NVIDIA V100 cards for an input
size of 640x640x3 and a batch size of 64. In order to reduce
training time, we used a transfer-learning technique (using
weights adapted to detect objects for the MS COCO dataset
[15]) and high-performance hardware resources provided by
the PLGrid infrastructure and the CYFRONET Academic
Computer Centre computing cluster.

We have prepared 5 independent DCNN models – for each
of them, analogous parameters, input size, and architecture
were used. The learning process was carried out for equal
datasets (a division into a test set and a learning set in the
ratio of 0.25:0.75 was established). For each network, we
used representations corresponding to the same events from
the dataset.

The research started with the process of training networks
using one of the three considered representations as input:
event frame, event frequency, and the exponentially decaying
time surface. For each representation we achieved a rather
satisfactory accuracy in the range of 86.9-88.9% mAP@0.5
(as shown in Table I).

Then we prepared a detector using the fusion of the three
considered representations as consecutive input channels. The
motivation behind the proposed representation fusion was to
use as much information as possible from the source event
data. During the learning process, after 26500 iterations we
achieved a detector characterised by an accuracy of 89.9%
mAP0.5 (mean average precision with intersection over union
threshold 0.5) To compare the results obtained, we also per-
formed a training process for video frames reconstructed with
FireNet as CNN input. After 13600 iterations, we achieved a
performance value of 72.67% mAP@0.5. A comparison of all
the mentioned approaches is summarised in Table I.

We also tested the prepared detectors in terms of throughput.
For the Jetson AGX Xavier eGPU platfrom we achieved an
average of 7.7 fps (frames per second) for a few second
video sequences. The throughput of the solution is crucial
due to the application of detectors for automotive purposes,
and increasing it is the object of further planned research. It
can be improved by using TensorRT [16] optimisation for the
eGPU or quantisation and hardware acceleration for the FPGA
platform.

The study shows that the event data representation method
used in the training process does affect the quality of the de-
tection system. The fusion of representations that use different

TABLE I
ACHIEVED DETECTION QUALITY MEASURES FOR EACH SELECTED

YOLOV4 INPUT. OUR APPROACH TO APPLY A FUSION OF SELECTED
REPRESENTATIONS MADE IT POSSIBLE TO OBTAIN A DETECTOR WITH THE
HIGHEST ACCURACY. ON THE OTHER HAND, THE LOWEST ACCURACY WAS

ACHIEVED FOR THE FRAMES RECONSTRUCTED USING FIRENET.

Input Precision Recall F1-score mAP@0.5
Decaying time space 0.94 0.81 0.87 86.9%
Event frequency 0.94 0.84 0.89 88.67%
Event frame 0.93 0.82 0.87 86.93%
Fusion 0.94 0.86 0.90 89.9%
Reconstruction 0.97 0.72 0.83 72.67%

Fig. 7. Example of correct detection on frames reconstructed with FireNet

Fig. 8. Example of correct detection on the fused representations

features of event data is characterised by higher amount of
information and, consequently, makes it possible to achieve
higher object detection accuracy. The frames reconstructed
using FireNet’s deep neural network have the characteristics
of images recorded by traditional cameras and provide an
accessible form of representation of the scene captured by
the event camera. However, blurring and the limited level of
detail of the frames result in only moderate performance of
the object detection task.

VII. SUMMARY

In this paper, we have evaluated the possibility of using
event data for traffic sign detection using a YOLOv4 network.
The specific event data format (sparse point clouds in space-
time) and the desire to use a typical deep neural network
necessitated the use of i.e. event data representation or re-
construction. Experiments have shown that the use of single-



channel representations, such as event frame, event frequency,
and exponentially decaying time surface, does enable the task
of traffic sign detection to be performed with a rather satisfac-
tory accuracy in the range of 86.9-88.9%@mAP. The use of
fusion, i.e. the combination of individual representations into
a three-channel image, made it possible to obtain a detector
characterised by a higher accuracy of 89.9% mAP@0.5. It is
worth noting that individual representations take into account
other features of the event data, which made it possible to
obtain a synergy effect. The last solution considered was the
use of the FireNet video frame reconstruction network. Based
on the learning data prepared in this way, we obtained a
detector characterised by an accuracy of 72.67% mAP0.5.
The significantly lower performance can be justified by the
atypical nature of the data so obtained, namely, the frames
reconstructed by the network have the characteristics of im-
ages captured by classical cameras, but are accompanied by
significant blurring and relatively little detail.

Using event data and classical deep convolutional networks,
which in the context of computer vision are considered state-
of-the-art for detection and many other tasks, is possible,
effective and efficient – data aggregation and representation
are based on operations with low computational complexity,
and networks for frame reconstruction have surprisingly small
sizes. The prepared detection systems are characterised by a
rather high accuracy despite the low quality of the used dataset
and high complexity of the problem considered. However, we
should point out that implementing traffic sign recognition
with the same approach could be very challenging, as here
fine details presented in the sign are important. The research
conducted underlines the potential of event cameras for auto-
motive applications, as a stand-alone sensor or as a support
for traditional cameras.

As part of further work, first of all we plan to refine the
dataset analysis methodology and thus eliminate all prob-
lematic cases. In parallel, we also want to acquire our own
sequences (simultaneously from an event and a traditional
camera), also in very demanding situations such as driving
at night, entering and leaving a tunnel or during sunrise and
sunset. Another direction of research is the fusion of video
and event data, which should improve accuracy and enable the
implementation of a complete traffic sign recognition system.
We are also planning a hardware implementation of the
solution for SoC FPGA (System on Chip Field Programmable
Gate Arrays) platforms, which will enable real-time operation
of the vision system.
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