
Memory-Efficient Graph Convolutional Networks
for Object Classification and Detection with Event

Cameras
Kamil Jeziorek∗, Andrea Pinna †, Tomasz Kryjak ∗†

∗Embedded Vision Systems Group, Department of Automatic Control and Robotics, AGH University of Krakow, Poland
†Sorbonne Universite, CNRS, LIP6, F-75005 Paris, France

kjeziorek@student.agh.edu.pl, andrea.pinna@lip6.fr, tomasz.kryjak@agh.edu.pl

WAbstract—Recent advances in event camera research em-
phasize processing data in its original sparse form, which allows
the use of its unique features such as high temporal resolution,
high dynamic range, low latency, and resistance to image blur.
One promising approach for analyzing event data is through
graph convolutional networks (GCNs). However, current research
in this domain primarily focuses on optimizing computational
costs, neglecting the associated memory costs. In this paper,
we consider both factors together in order to achieve satisfying
results and relatively low model complexity. For this purpose, we
performed a comparative analysis of different graph convolution
operations, considering factors such as execution time, the num-
ber of trainable model parameters, data format requirements,
and training outcomes. Our results show a 450-fold reduction
in the number of parameters for the feature extraction module
and a 4.5-fold reduction in the size of the data representation
while maintaining a classification accuracy of 52.3%, which is
6.3% higher compared to the operation used in state-of-the-art
approaches. To further evaluate performance, we implemented
the object detection architecture and evaluated its performance
on the N-Caltech101 dataset. The results showed an accuracy of
53.7% mAP@0.5 and reached an execution rate of 82 graphs
per second.

Index Terms—event camera, dynamic vision sensors, event data
processing, graph convolutional networks

I. INTRODUCTION

Event cameras are modern vision sensors whose operating
principle is inspired by the human eye. Unlike traditional
cameras, which record frames at fixed intervals, event cam-
eras detect changes in light intensity in individual pixels,
resulting in the generation of an asynchronous stream of
information, into so-called events. This unique design offers
several advantages, including a high tonal range, high temporal
resolution and high resistance to motion blur effects. As a
result, event cameras have gained a lot of attention and have
found applications in a variety of challenging scenarios where
conventional video cameras face limitations, particularly in
advanced mobile robotics (autonomous vehicles: drones, cars)
and for broadly improving video capture (improvement in
uneven lighting conditions, increasing frame rates) [1].

Despite their clear advantages, event camera data processing
is difficult due to its sparse and spatial-temporal nature,

The work presented in this paper was supported by the programme
“Excellence Initiative – Research University” for the AGH University of
Krakow and partly by Sorbonne University

which requires approaches that differ from those developed for
traditional vision systems. Early approaches involved project-
ing events into dense two-dimensional pseudo-representations,
such as event frames, or reconstructing them into greyscale
frames using deep neural networks. Although these methods
have made it possible to exploit the potential of convolutional
neural networks, they have drawbacks. First of all, the pro-
jection or reconstruction process loses the key features of
event cameras, specifically the high temporal resolution and
the advantages of data sparsity (computational and energy
efficiency). In addition, the reconstruction process is quite
computationally complex, as shown in the work [2].

This has prompted researchers to look for alternative solu-
tions for processing event data while keeping it in a sparse
form. The first attempts to solve this problem involved filter-
based methods [3] and spiking neural networks (SNNs) [4].
However, filter-based methods require manual definition of
equations, which makes it difficult to achieve good results
for more complex tasks. SNN-based methods, on the other
hand, still have underdeveloped learning rules, and their im-
plementation can be more complicated compared to traditional
convolutional networks. Another relatively new proposal is the
use of graph neural networks. Recent advances in this field
have shown that event processing using graph convolutional
networks is possible [5] [6] [7]. The undoubted advantage of
this approach is to process event data in the form of the orig-
inal point cloud while exploiting the potential of convolution
operations. However, we saw that existing approaches focused
primarily on reducing computational complexity, placing less
importance on memory efficiency.

In this paper, our objective was to analyse the impact of
employing graph networks on memory complexity. To achieve
this, we conducted a comparison of various graph convolution
operations based on their data requirements and network size.
The findings demonstrated the potential to decrease both data
and network size while still achieving satisfactory performance
in comparison to state-of-the-art results. This study serves
as a valuable addition to current knowledge since previous
researchers have primarily concentrated on only optimising
computational complexity.

The remainder of the paper is organised as follows. Section
II presents event cameras, their advantages and the mecha-

ar
X

iv
:2

30
7.

14
12

4v
1

 [
cs

.C
V

]
 2

6
Ju

l 2
02

3

mailto:kjeziorek@student.agh.edu.pl
mailto:andrea.pinna@lip6.fr
mailto:tomasz.kryjak@agh.edu.pl

nism of information generation. Section III describes graph
convolutional networks and the principle of convolution and
pooling operations. Section IV discusses previous work on
event processing using graph convolutional networks and their
memory usage problems. Section V presents the experiments
we conducted to demonstrate improvements in memory usage.
Finally, we summarise our results and present future research
plans.

II. EVENT CAMERAS

Event cameras, also known as Dynamic Vision Sensors
(DVS), are bio-inspired cameras. Their unique operating prin-
ciple offers a number of advantages over traditional cameras,
changing the way visual information is captured and pro-
cessed.

One of the distinctive features of event cameras is their
asynchronous nature. Unlike conventional cameras, which
record brightness levels globally for all pixels at fixed inter-
vals, event cameras record brightness changes for individual
pixels. This independence at the pixel level enables event
cameras to capture precise temporal information, as events are
only generated when a significant change in the brightness of a
given pixel occurs (due to movement in the scene, the cameras’
own movement or a change in lighting). Consequently, event
cameras excel at capturing dynamic scenes with minimal
motion blur. The event generation process in DVS is controlled
by a threshold mechanism. When the logarithmic change
in light intensity ∆L at a specific pixel (xi, yi) exceeds a
predefined threshold value C, an event is generated. This can
be expressed as:

∆L(xi, yi, ti) = L(xi, yi, ti)− L(xi, yi, ti − t∗i) ≥ piC (1)

where ti represents the time of occurrence of the current
event and t∗i the previous event. This equation defines the
basic principle of event generation in event cameras, ensuring
that only significant and meaningful changes are recorded.
Each generated event includes four items of information: the
pixel coordinates (xi, yi), the exact timestamp ti derived from
the internal clock, and the polarity pi indicating whether the
change in light intensity was positive or negative. These events
together form a spatial-temporal sequence of asynchronous
data:

E = {ei}Ni=1, ei = (xi, yi, ti, pi) (2)

Moreover, thanks to their high dynamic range (over 120
dB), event cameras are able to faithfully reproduce scenes
containing both bright and dark areas, capturing a wide
range of light intensities. These features make event cameras
particularly well suited to difficult lighting conditions, such as
poorly lit environments or scenes with high contrast (uneven
lighting).

III. GRAPH CONVOLUTIONAL NETWORKS

Graph convolutional networks (GCNs) [8] are a type of
machine learning models that operate on graph-structured
data. Unlike traditional neural networks, which are mainly
designed for grid data, GCNs are able to extract the complex
relationships and dependencies present in graph data. A graph
is made up of vertices V and edges E , which represent
the relationships between two vertices. GCN uses this graph
structure to learn and propagate information between nodes,
enabling them to predict or perform tasks based on existing
connection patterns.

A. Graph Convolution

The convolution operation is a key element of graph neural
networks. It allows the propagation of information between
vertices in order to update their representation and obtain key
information about the graph. The general principle of this
operation is referred to as neighbourhood N(i) aggregation
and is performed for each vertex xi in three steps: message,
aggregation and update function.

The message function is responsible for generating the
information passed between vertices. It is defined at single
edge level between vertices xi and xj and can take into
account edge attributes ei,j if they are defined:

msgi,j = ϕ(xi, xj , ei,j) (3)

The aggregation function collects forwarded messages from
neighbouring vertices xj , which were obtained by the message
function, and combines them at the level of a single vertex xi:

agri =
⊕

j∈N(i)

msgi,j (4)

Finally, the update function is executed, which is responsible
for updating the vertex representation xi. In this phase, the
vertex representation is updated based on the aggregated
information from its neighbours.

x′
i = γ(agri) (5)

where the functions ϕ and γ can be represented as linear
or MLP functions, while the operation

⊕
can be specified

as a sum, mean or maximum value function. It is worth
noting that message, aggregation and update functions can
be defined in different ways depending on the specific model
of graph convolutional networks. Different GCN variants may
use different operations and transformations in these functions,
adjusted to the specific requirements and structure of the graph
data. The impact of different convolution variants for event
data processing is the topic of this article.

B. Graph Pooling

Pooling layers in GCNs serve a similar purpose to their
equivalents in convolutional neural networks: reducing the
dimensionality of the data while retaining key information and
generalisation.

In GCNs, the pooling layer involves grouping vertices based
on a regular grid of a specific dimension [9] or using methods
to cluster points in space [10]. The pooling process involves
selecting representative vertices or aggregating information
within each group or cluster. This selection can be based
on different criteria, such as the importance of a vertex,
the maximum value or the average among all vertices. The
result of this operation is a new vertex that represents the
group. By creating denser representations through pooling,
GCN reduces the computational complexity in subsequent
layers. This allows for more efficient processing of large-scale
data, while preserving essential features and information flow.
Furthermore, it also allows the use of fully connected layers
for data classification.

IV. PREVIOUS WORKS

This review focuses exclusively on graph convolutional
networks applied to event data processing. Due to the relatively
new approach, the amount of work on this topic is still small.

The initial works [11] [12] focused on constructing a graph
from incoming events and processing it in its entirety using
graph convolutional networks. Although these operations are
only performed on the relevant event information, which
reduces the computational costs associated with dense zero-
valued representations (as described in the II section), they
require repeated operations on previous events that are not
affected by new events. In practice, this means that it is
necessary to process the entire graph from the beginning for
new events, even if most of the information is unchanged.
Such computational redundancy can lead to inefficient use of
computing resources and time constraints.

Recent researches have focused on applying graph neural
networks to events, updating the network asynchronously
event by event. The aim of such an operation is to per-
form computations only on changing events, thus increasing
computational efficiency. In a series of publications [5], [6],
[7], a technique has been proposed in which propagation is
performed for a single event. A new event is merged with an
existing graph and the neighbouring vertices are updated. The
remaining vertices that do not have a new neighbour do not
need to be updated, leading to a reduction in the number of
operations.

However, in order to perform this operation, the layers in
these networks require information about their current state. In
the example described in the paper [5], a particular subset of
events is selected from the entire set of events, which is then
passed through the network as a simple graph to initialise
the internal layers. Then, for each new incoming event, the
neighbouring vertices that need to be updated are identified,
and the result of this operation is propagated to the next layers.
As each layer has its own copy of the graph, the memory
required to store it is considerable. The memory requirement
increases with the number of layers, the size of the camera
images (there are currently cameras with a resolution of 1
megapixel, i.e. HD 1280 x 720 pixels [13]) and the number

of vertices per graph. The total memory required to store all
copies may exceed the capacity of embedded systems.

On the other hand, events in their original form consist of
four values (x, y, t, p), as described in II. When the graph
is created, each event is represented as a vertex with a 3D
spatio-temporal location (x, y, t) and an attribute p, while
edge definition requires the indexes of two vertices to be
determined. As mentioned in the III-A section, there are
different versions of the graph convolution operation, some
of which only consider vertex attribute information, and edge
indices, while others also consider edge-specific attributes.
In the publications [5], [6], [7] applied convolution function
requires these values to be taken into account. This is achieved
using a Cartesian coordinates of linked nodes in which the
resulting value contains additional information. As the num-
ber of edges increases, the number of their attributes also
increases, leading to a larger memory requirement for data
storage and processing.

While all work focuses on minimising computational costs,
our aim is to present another aspect that involves the usage
of memory resources. This includes both the data generated
during graph construction and the network architecture, while
also aiming for good performance and low processing times.

V. EXPERIMENTS

All the presented experiments were conducted on the N-
Caltech101 dataset [14], which was created by using a mov-
ing event camera to capture the standard Caltech101 dataset
displayed on a monitor. The N-Caltech101 dataset consists of
100 classes, where the original version of the dataset includes
101 classes, including ’Faces’ and ’Faces Easy’, which were
merged in the neuromorphic version. It includes 8246 samples,
with data dimensions not exceeding 240 x 180. This data
allows it to be used in both classification and detection tasks,
as each sample contains a single object. During the training
process, the data was randomly split into an 80% training set
and a 20% test set, ensuring an equal distribution of samples
from each class.

For the experiments, we used the PyTorch Geometric library
[15], which provides convenient tools and features for working
with graph-structured data and allows seamless integration into
graph convolutional network architectures.

A. Graph size

To assess the size of the data required by the graph, we
conducted an experiment on the entire dataset. We used the
method outlined in [6] to create a graph for each sample. We
set the maximum number of events per graph equal to 25
000, where the events with the highest density within a certain
time window were selected. We set the neighbourhood radius
relative to which vertices were connected by edges to 5, and
to limit the number of edges generated, we set the neighbour
limit to 32 per vertex. We tested two different approaches: in
the first, we normalised the occurrence times of the events to
values close to the resolution of the data (in the range of 0 to
100), and in the second we did not normalise, where the time

Fig. 1. Presentation of the generated edges of the graph: On the left is the
data after normalisation, where edges only connect to the nearest vertices.
On the right is the graph without normalisation, where there are more edges,
spanning along the entire time axis.

values were in the range of microseconds. Normalising the
time has a significant impact on the training results, but also
affects the size of the data. If the time values are increased, the
vertices are further apart, resulting in local linking of events
based on a defined neighbourhood radius and a reduction in the
number of generated edges. Figure 1 illustrates the differences
between the two approaches.

For the entire N-Caltech101 dataset, the average number of
events is 24,457 (the lower value is due to samples with event
counts not exceeding 25,000 events), resulting in 24,457 vertex
p and spatial-temporal (x, y, t) values. The average number
of edges for the unnormalised data is 756,744, while for the
normalised data it is 381,563.

The PyTorch Geometric library represents vertex values
as int32 and spatial-temporal positions as float32 vectors.
Each edge is represented as a two-element vector with the
vertex indices as int32 values. Finally, the edge attribute value
consists of three float32 values. In total, each vertex requires
16 bytes, while each edge, including the attribute, requires 40
bytes. The average amount of memory used by the graph is
about 15 MB for normalised data, compared to 30.5 MB for
unnormalised data.

If the edge attribute values in the graph are excluded, the
data size for normalised graphs decreases to 3.5 MB, while
for unnormalised data it is 6.5 MB. Thus, omitting the edge
attribute values reduces the data size by an average of more
than 4.5 times. In comparison, a 240 by 180 pixel raw image
with a single channel using the uint8 data type takes up 0.04
MB, while a 3 channel image takes up 0.12 MB. This shows
how much memory such data representations require and how
important it is to reduce them.

It is important to note that the above values are specified for
low resolution and a limited number of events in the graph. For
larger data sizes generated with, for example, a 1 megapixel
camera [13], the number of events in the graph, and thus the
number of edges, will increase significantly. To remedy this,
the size of the input data can be rescaled, as is often practised
with classical convolutional networks (CNNs).

In this experiment, we only focused on omitting edge

attributes to reduce memory. However, it is also possible to
reduce memory by using smaller data types than those used
in the PyTorch Geometric library. For example, for a graph
with a maximum number of events of 25,000, vertex index
values can be represented as 15-bit numbers in FPGA, which
may be a topic for future research.

B. Convolution operations comparison

In order to study the effect of skipping edge features on
training results, we conducted a comparison of several con-
volution operations. As a reference, we chose the SplineConv
convolution operation [16], which is used in recent publica-
tions [6] [7]. It uses both vertex and edge features. We chose
two standard operations as models that do not consider edge
features: GCNConv [17] and SAGEConv [18], which only
require edge indices and vertex features, and two convolutional
operations whose main purpose is to process point cloud data
– EdgeConv [19] and PointNetConv [20].

The EdgeConv function uses only information about vertex
features and edge indices, and the convolution operation is
defined as:

x′
i =

∑
j∈N(i)

ϕ(xi||xj − xi) (6)

The PointNetConv operator uses vertex features, edge in-
dices but also vertex positions in space:

x′
i = γ(max

j∈N(i)
ϕ(xj , pj − pi)) (7)

It is worth noting that PointNetConv uses the positions of
vertices pi and pj in its message function, explained in Section
III-A, to determine the distance between them, without having
to first calculate the value of the edge attribute based on the
Cartesian metric and storing it.

The PyTorch Geometric library allows to define a custom
function ϕ for the EdgeConv model, and functions ϕ and γ
(optional) for the PointNetConv model. In our case, we de-
cided to define single linear layers with the minimum required
size. We did not use the γ function for the PointNetConv
model.

We compared the models in terms of three key aspects:
number of trainable parameters, execution time and achieved
accuracy. We used an identical architecture for each model,
as proposed in [6]. It consisted of seven convolution layers
with following output channels (8, 16, 32, 32, 32, 128, 128),
and the fifth convolution layer was followed by a MaxPooling
layer with a window size of (16, 12). The output of the feature
extractor was flattened to 2048, and the classifier consisted of
a single linear layer with an output size of 100, corresponding
to the number of classes.

In the first step, we checked the number of parameters for
each feature extraction layer and for the fully connected layer
– the results are presented in the table I. For the SplineConv,
the number of parameters needed for the feature extractor is
about 20.2 million, while for the other models the values are
about 41k for the GCNConv and SAGEConv models, 43k for

TABLE I
THE NUMBER OF LEARNING PARAMETERS IN THE FEATURE EXTRACTION

LAYER AND THE FULLY CONNECTED LAYER OF THE MODELS.

Layer Feature Extraction Layers Fully Connected Layers Sum
SplineConv 20.2 M 204 K 20.4 M
EdgeConv 81 K 204 K 285 K
GCNConv 41 K 204 K 245 K
SAGEConv 41 K 204 K 245 K
PointNetConv 43 K 204 K 247 K

TABLE II
OPERATION COMPUTATION TIMES AND NUMBER OF GRAPHS PER SECOND

FOR EACH MODEL.

Layer Computation Time [ms] Graphs per second
SplineConv 92.762 10.78
EdgeConv 37.159 26.91
GCNConv 14.869 67.25
SAGEConv 6.819 146.65
PointNetConv 33.421 29.92

the PointNetConv model, and 81k for the EdgeConv model.
Since the number of outputs from the feature extractor is the
same for all models, the fully connected layer has an identical
number of parameters for every model. This means that the
reduction in the number of parameters ranges from 249 to 492
times compared to the SplineConv model.

We then measured the execution time. We used an NVIDIA
GeForce RTX 3060 graphics card for the computation. We
measured the time for the network processing operation alone,
and the average value over the entire validation set is shown in
the table II. The best results were achieved by the SAGEConv
model, with an average processing time of 6.819 ms, which
is equivalent to 146 graphs per second (GPS). In contrast, the
worst results were achieved by the SplineConv model with a
time of 92.762 ms (i.e., 10.78 GPS).

The final test examined the results obtained by each model.
For learning, the Adam optimizer was used, with a learn-
ing rate parameter of 1e-3 and a weight decay value of 5e-3.
The number of epochs was limited to a maximum of 150,
and the number of batches was 8. The learning results for
each epoch are shown in Figure 2. Surprisingly, the Point-
NetConv model had the best results, achieving a maximum
accuracy of 52.3%. The SplineConv model performed slightly
worse, achieving an accuracy of 46%. Meanwhile, the Edge-
Conv model, which does not use vertex position information,
achieved the lowest accuracy of the three, at only 33.41%. The
learning process for the GCNConv and SAGEConv models did
not lead to convergent results.

Based on all the results, it can be concluded that the
PointNetConv model performed best, achieving the best results
in the classification task and providing a good number of
trainable parameters and a low execution time. On the other
hand, the low results of the EdgeConv model show that
information about the mutual position of vertices seems to
be crucial in this problem.

Fig. 2. Accuracy for each operation. The PointNet convolution performed
best, achieving a value of 52.3%. The Edge Spline and Edge convolutions
achieved 6.3% and 18.9% lower results, respectively. The GCN and SAGE
training process did not lead to convergent results.

Fig. 3. The proposed model created with PointNetConv blocks. The yellow
block shows the module without residual connections. The green block has a
residual connection between the 1st and 3rd convolution. The detection head
consists of a flattening and a fully connected layers.

C. Detection model

For the final analysis, we tested the PointNet operation in a
detection task. We created our own model for feature extrac-
tion, which differs from the model used in the classification
task. The architecture of this model is shown in Figure 3.

The model consists of two types of blocks. The first input
block contains two convolutions, and MaxPooling with 4x4
window is used at the end. The other three blocks consist of
three convolutions, and since the convolution operations do
not affect the graph structure, a residual connection is used
between the output of the first convolution and the output of
the third convolution. MaxPooling is also used at the end of
the first two blocks. In each subsequent block, the pooling
window size is twice as large as the previous one. In this
way, we wanted to replicate traditional CNN models, which
use many pooling layers with a 2x2 window size, and several
convolution layers preceding them.

During the training process, we again used the Adam
optimizer with a learning rate parameter of 1e-3 and a
weight decay factor of 1e-4. We set the maximum number
of epochs to 1000, and set the batch size to 16. The learning
results are shown in the Figure 4.

During the tests, we were able to achieve an accuracy of
mAP@0.5 of 53.7 %, as compared to the model in the [6]
paper that achieves an accuracy of 59.5 %, and the more
complex architectures presented in the [7] paper achieve accu-
racies in the range of 62.9-73.2 %. This result was achieved
using a model that has less than 100k trainable parameters
in the feature extraction part. A time performance analysis
performed on the entire validation set showed that this model

Fig. 4. The graph shows the mean average precision (mAP) of the detection
model at different epochs. Our proposed model achieved a score of 53.7% on
the N-Caltech101 dataset.

achieves an average processing time of 12.186 milliseconds,
which translates to an average of 82 graphs per second.

The tests performed allowed us to conclude that there is
potential to improve current approaches in terms of memory
consumption without significant loss in performance and sat-
isfactory processing times. The use of PointNet convolution
brought not only a reduction in the number of model param-
eters, but also a reduction in memory requirements due to the
fact that edge value information does not need to be stored.

VI. SUMMARY

In our work, we presented a new perspective on event
data processing using graph convolutional networks. In the
experiments, we conducted an analysis of different convolu-
tion operators for graphs, taking into account the memory
requirements and the number of trainable parameters of the
models, while maintaining high performance and efficient
operations. Our research has shown that the PointNet model
allows a reduction in the number of trainable parameters
by 450 times and a reduction in memory consumption for
data representation by 4.5 times compared to state-of-the-art
work. We also achieved relatively good classification results
of 52.3% accuracy and 53.7% detection mAP@0.5 during
network training, which are not significantly different from
existing achievements.

Current research shows the great potential of graph convolu-
tional networks in event data processing. However, our results
show that focusing only on computational costs can lead to a
significant increase in memory consumption. Thus, our work
seeks to improve existing solutions and change the approach
in future research, taking into account the important factor of
memory usage.

In further research, we plan to continue to reduce memory
consumption by modifying the graph description and using
a more efficient data representation. The research will also
include an analysis of other convolution operators and an
attempt to develop our own operator, tailored specifically for
event data. In addition, we intend to compare the benefits
obtained for much larger data sets. Our plans also include the

implementation of graph convolutional networks on hardware
platforms, such as SoC FPGAs or Jetson Nano, in order to
practically apply the model to real-world tasks.

REFERENCES

[1] G. Gallego et al., “Event-Based Vision: A Survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, no. 1, pp. 154–180,
2022, doi: 10.1109/TPAMI.2020.3008413.

[2] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High Speed and
High Dynamic Range Video with an Event Camera,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 43, no. 6, pp.
1964–1980, 2021, doi: 10.1109/TPAMI.2019.2963386.

[3] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. V. Thakor,
and R. B. Benosman, “HFirst: A Temporal Approach to Object Recogni-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, pp. 2028–2040, 2015.

[4] M. Gehrig, S. Shrestha, D. Mouritzen, and D. Scaramuzza, “Event-
Based Angular Velocity Regression with Spiking Networks,” 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp.
4195–4202, 2020.

[5] Y. Li et al., “Graph-based Asynchronous Event Processing for
Rapid Object Recognition,” in 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2021, pp. 914–923. doi:
10.1109/ICCV48922.2021.00097.

[6] S. Schaefer, D. Gehrig, and D. Scaramuzza, “AEGNN: Asynchronous
Event-based Graph Neural Networks,” in 2022 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2022, pp.
12361–12371. doi: 10.1109/CVPR52688.2022.01205.

[7] D. Gehrig and D. Scaramuzza, “Pushing the Limits of Asynchronous
Graph-based Object Detection with Event Cameras,” ArXiv, vol.
abs/2211.12324, 2022.

[8] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[9] M. Simonovsky and N. Komodakis, “Dynamic Edge-Conditioned Filters
in Convolutional Neural Networks on Graphs,” 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 29–38, 2017.

[10] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted Graph Cuts without
Eigenvectors A Multilevel Approach,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29, no. 11, pp. 1944–1957,
2007, doi: 10.1109/TPAMI.2007.1115.

[11] Y. Bi, A. Chadha, A. Abbas, E. Bourtsoulatze, and Y. Andreopoulos,
“Graph-Based Spatio-Temporal Feature Learning for Neuromorphic
Vision Sensing,” IEEE Transactions on Image Processing, vol. 29, pp.
9084–9098, 2020, doi: 10.1109/TIP.2020.3023597.

[12] Y. Bi, A. Chadha, A. Abbas, E. Bourtsoulatze, and Y. Andreopoulos,
“Graph-Based Object Classification for Neuromorphic Vision Sensing,”
2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 491–501, 2019.

[13] E. Perot, P. de Tournemire, D. O. Nitti, J. Masci, and A. Sironi,
“Learning to Detect Objects with a 1 Megapixel Event Camera,” ArXiv,
vol. abs/2009.13436, 2020.

[14] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Con-
verting Static Image Datasets to Spiking Neuromorphic Datasets
Using Saccades,” Frontiers in Neuroscience, vol. 9, 2015, doi:
10.3389/fnins.2015.00437.

[15] M. Fey and J. E. Lenssen, “Fast Graph Representation Learning with
PyTorch Geometric,” ArXiv, vol. abs/1903.02428, 2019.

[16] M. Fey, J. E. Lenssen, F. Weichert, and H. Müller, “SplineCNN: Fast
Geometric Deep Learning with Continuous B-Spline Kernels,” 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 869–877, 2017.

[17] T. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” ArXiv, vol. abs/1609.02907, 2016.

[18] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” NIPS, 2017.

[19] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic Graph CNN for Learning on Point Clouds,” ACM
Transactions on Graphics (TOG), vol. 38, pp. 1–12, 2018.

[20] C. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning
on Point Sets for 3D Classification and Segmentation,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
77–85, 2016.

	Introduction
	Event Cameras
	Graph Convolutional Networks
	Graph Convolution
	Graph Pooling

	Previous works
	Experiments
	Graph size
	Convolution operations comparison
	Detection model

	Summary
	References

