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ABSTRACT

LASSi is a tool aimed at analyzing application usage and contention caused by use of shared resources
(filesystem or network) in a HPC system. LASSi was initially developed to support the ARCHER sys-
tem where there are large variations in application requirements and occasional user complaints regarding
filesystem performance manifested by variation in job runtimes or poor interactive response. LASSi takes an
approach of defining derivative risk and ops metrics that relate to unusually high application I/O behaviour.
The metrics are shown to correlate to applications that can experience variable performance or that may
impact the performance of other applications. LASSi uses I/O statistics over time to provide application
I/0O profiles and has been automated to generate daily reports for ARCHER. We demonstrate how LASSi
provides holistic I/O analysis by monitoring filesystem I/O, generating coarse profiles of filesystems and
application runs and automating analysis of application slowdown using metrics.
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1 INTRODUCTION

High Performance Computing (HPC) jobs are usually scheduled to run on dedicated compute nodes, but
will share certain hardware resources with other jobs. In particular, the high-performance interconnect and
I/0 systems of a supercomputer are typically shared, and so contention can occur when multiple applica-
tions/users access these shared resources simultaneously. Shared resources can also be used inefficiently, for
example pathologically bad patterns of communication (affecting the network) or inefficient I/O (high meta-
data rate requirements or small-sized I/O operations) (National Computational Infrastructure 2018, NICS
2018, NASA GOV 2018). The combination of these two situations is that poor usage on the part of one user
can negatively affect the performance of the shared resource for other users. Users expect consistent run-
times but sizing and operating a system to deliver this on an unknown and varied workload is very difficult,
especially regarding shared resources. In extreme cases user jobs can fail by running unexpectedly past the
wallclock time limit requested by the user, resulting in loss of simulation data. Users are reluctant to deal
with this by, for example, checkpointing.

LASSi provides HPC system support staff the ability to a) monitor and profile the I/O usage of applications
over time b) identify and study metrics displaying the quantity and quality of application I/O over time
¢) study the risk of slowdown for applications at any time and identify causes for high risk d) study rogue
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applications in detail using profiling tools to identify issues at the application level and suggest functional
or code changes. LASSi aims to provide early warning and health status metrics to support staff, enabling
much faster triaging of potential I/O issues and the high-level diagnosis of I/O problems.

1.1 Background

The UK’s national supercomputing service ARCHER (https://www.archer.ac.uk) supports a highly-varied
workload of applications from a range of disciplines including Weather & Climate, Materials Science, Com-
putational Chemistry, Computational Fluid Dynamics, Turbulence research, Quantum Mechanics, High En-
ergy Physics, Biomolecular simulation and Mesoscale engineering along with emerging technologies in Al
and Data science. These applications have different compute and data requirements but share a common
Lustre (Braam et al. 2003) file system. This sharing can introduce contention that may impact performance.
The severity of the performance impact can be severe enough to affect a user’s ability to list directory infor-
mation.

Users can be quite sensitive to runtime variation or slowdown of submitted jobs. Application owners usually
submit many similar jobs and expect them to complete on time. A slowdown event is when a few loosely
concurrent jobs run slower than their respective expected runtimes. Unfortunately, there is no more precise
definition of expected runtime than to roughly correspond to the user’s wishes. ARCHER support staff
have the responsibility to analyse the reasons for slowdown and then suggest corrective actions. Slowdown
can be attributed to many factors that also include changes in scientific configuration, node configuration,
filesystem load and network traffic. It has been observed that a few rogue applications may cause slowdown
for all users. The diverse workload running on ARCHER does not allow a single solution for all such issues.

ARCHER supports many application that are I/O bound and a detailed study the system’s I/O load (Turner
et al. 2017) has discussed which file layouts and Lustre striping settings are to be used for optimal perfor-
mance and scaling. Many efforts have been made to educate the community through lectures and training
events (Henty 2018, EPCC 2018). Although these activities are helpful, problems continue to be seen and it
is important to focus on problem remediation as well as I/O optimization.

Analysing the slowdown of applications and modeling runtime of jobs in a HPC system is highly complex
and time-consuming. Thus, slowdown events incur a high cost to any HPC site or service provider in terms
of staff time. LASSi was developed to vastly decrease the amount of time and effort (and cost) required to
detect, diagnose and remediate such issues.

2 I/O MONITORING AND STATISTICS

LASSi combines Lustre statistics and job information in order to calculate derived metrics.
I/O statistics are collected using a bespoke tool called LAPCAT which in turn uses Cere-
bro (https://github.com/lmenezes/cerebro) to collect Lustre statistics, storing them in a MySql database on
a management server. LAPCAT was developed by Martin Lafferty of Cray UK. Job information is ob-
tained from the job scheduler and ALPS (Karo, Lagerstrom, Kohnke, and Albing 2006) logs. On ARCHER,
LASSi combines the per-node 1/O statistics with the job time information to attribute I/O statistics to indi-
vidual application launches. The jobstats feature available in newer versions of Lustre can provide some of
this information.
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2.1 ARCHER

ARCHER is the UK’s national supercomputing facility and is a Cray XC30 (Cray 2018) supercomputer. A
high-performance Lustre storage system is available to all compute nodes and is based on Cray Sonexion
1600 storage running Lustre 2.1. This storage system provides 4 filesystems configured from multiple
storage units - Object Storage Targets (OSTs). The fs/ filesystem has 8 OSTs, fs2 has 48 OSTs, fs3 has
48 OSTs and fs4 has 56 OSTs. These filesystems have to support the wide variety of application domains
which produce a complex workload with varying I/O requirements at any given time.

Application runtimes are a function of many factors that include compute clock speed, memory bandwidth,
I/0 bandwidth, network bandwidth and scientific configuration (dataset size or complexity). Application run
time variations due to change in compute resource and memory can be ignored. The I/O system and network
are shared resources and are the main causes of slowdown whereas changes to scientific configuration are
beyond the scope of LASSi.

2.2 Lustre

Lustre is a distributed parallel filesystem with two important components: the Object Storage Server (OSS)
and the MetaData Server (MDS). The I/O operation statistics on each server can be used to study applica-
tion I/O usage/performance. LASSi uses the following I/O statistics: a) OSS: read_kb, read_ops, write_kb,
write_ops, other b) MDS: open, close, mknod, link, unlink, mkdir, rmdir, ren, getattr, setattr, getxattr, setx-
attr, statfs, sync, sdr, cdr.

Statistics are aggregated over a time window of three minutes by LAPCAT. The OSS provides bulk data
storage for applications to store data in files. Statistics read_kb and write_kb refer to the amount of data
read and written respectively, while read_ops and write_ops refer to the number of Lustre operations that
are used to achieve corresponding read and writes. The statistic other in OSS refers to the sum of get_-
info, set_info_async, disconnect, destroy, punch, sync, preprw and commitrw operations - all relating to the
reading and writing of data on the OSS. The MDS operations relate to filesystem metadata information like
file open and close. The MDS supports creating and deleting objects and controlling application’s access to
files. Lustre servers provide statistics for both OSS and MDS operations in stats files on the filesystem.

2.3 1I/0 Statistics

ARCHER /O statistics covering a period of 15 months were collected. Initial analysis of the raw statistics
revealed great complexity of filesystem usage and individual application I/O profiles. LASSi derives higher-
level and more practically useful metrics than the raw I/O statistics. At a basic level, the Relative Standard
Deviation (RSD), a common measure of dispersion of a probability distribution, is calculated for each I/O
statistic as follows:
= — 1

V= ey
where o and u are the standard deviation and mean of the data, respectively. Some I/O statistics such as
getxattr, setxattr, sdr and cdr are ignored as previous experience shows that they are not prominent. Tables
1 and 2 show the Lustre statistics of the OSS and MDS respectively for a particular I/O operation that are
accumulated per hour. For example on fs2, applications create 105 directories per hour with RSD of 130.
A distribution is considered to be low variance if RSD is less than 1 and so a large RSD value signales a
high variance an I/O statistic. On ARCHER we generally see a high variance in 1/O statistics. For OSS
operational statistics, fs3 shows very high variance compared to f54 and fs2. For MDS operational statistics,
fs2 shows higher variance than f53 and fs4.
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fs1 is used for training and we will ignore herein. In terms of application hours, fs3 is used roughly twice as
heavily as other filesystems. The OSS statistics show a mixed picture, with more reads onto fs4 and more
writes onto fs3. Looking at the sum of all MDS operations, fs4 sees almost twice as many as fs3 or fs2.

Table 1: OSS Statistics for Lustre filesystems.

read_mb read_ops write_mb write_ops other

fs | App hours u Cy u Cy u Cy u Cy H Cy

1 3447 | 16585 4 | 150418 6 3783 7 4224 6 313150 6
2 1125513 5427 13 28680 14 | 19904 16 | 26396 14 157789 12
3 1940595 4452 26 14439 21 | 26187 33 | 33016 28 115807 18
4 717520 | 13929 5| 508683 11 | 22214 20 | 29367 18 | 1100889 10
Table 2: MDS Statistics for Lustre filesystems.

fs open close mkdir rmdir getattr setattr sync statfs
uo ¢ u ¢ u | U ¢ uocy uocy uo e ‘ oo
1] 45391 9(45282 9| 0.8 19]05 31| 1177 18| 541 541996 7| 8 6
2 | 24314 17 22040 18| 105 130 | 10 67| 13596 10|6793 14 |317 37|12 38
3 | 41547 1035389 12 40 22| 16 2913626 141794 22| 23 41| 5 16
4 | 118166 676457 71299 32| 37 1720311 16|2287 14| 32 31| 3 29

Slowdown events are usually reported to HPC support staff (ARCHER helpdesk) and historically fs2 has
the highest number of such events, with f53 seeing the second highest and fs4 fewer slowdowns. This does
not correlate with the combined raw 1/O statistics out of LASSi.

3 LASSI

LASSi extends the work of Diana Moise (Hoppe, Gienger, Bonisch, Shcherbakov, and Moise 2017) on the
Hazel Hen system at the High Performance Computing Center Stuttgart (HLRS), which identified aggressor
and victims based on "running at the same time" as an indicator. Grouping applications based on the exact
command line used, the study defines slowdown as a deviation from the average run times by 1.5 times or
more. This study did not use any I/O or network statistics.

Victim detection is based on observing applications that run slower than the average run time for an appli-
cation group. Aggressor detection is based on applications that overlap with the victims. The aggressor
and victim model based on concurrent running becomes difficult to apply when we move to a system like
ARCHER, where a large number of applications are usually running. Instead, the LASSi project has de-
fined metrics that indicate problematic behaviour. Ultimately, we have shown that there is less distinction
between victims and aggressor than expected. An alternative explanation, supported by the LASSi derived
data is that so-called victims are simply using the Lustre filesystem more heavily than so-called aggressors.

3.1 Risk-Metric Based Approach

We focus on I/O as the most likely cause of application slowdown and begin with the assumption that in
isolation, slowdown only happens when an application does more I/O than expected or when an application
has an unusually high resource requirement compared to normal. We expect that users will report slowdown
only when their applications run at a time when the filesystem is busier than usual.
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To characterise situations that cause slowdown means considering raw 1/O rate, metadata operations and
quality (size) of I/O operations. For example, Lustre filesystem usage is optimal when at least 1 MB is read
or written for each operation (read_ops or write_ops). Comparing the read_mb, write_mb with the read_-
ops and write_ops from Table 1, we can infer that the reads are usually sub-optimal (< 1MB) compared to
writes.

The central metadata server can sustain a certain rate of metadata operations, above which any metadata
request from any application or group of applications will cause slowdown. To provide the type of analysis
required, LASSi must comprehend this complex mixture of different applications with widely different
read/write patterns, the metadata operations running at the same time and how these interact and affect each
other. This requirement informs the LASSi metrics definition.

3.2 Definition of Metrics

Metrics for quantity and quality of application I/O operations must be defined. We first define the risk for
any OSS or MDS operation x on a filesystem f's as

x—axavgse(x)
axavgps(x)

riskgs(x) = (2)

« is a scaling factor and is set arbitrarily to 2 for this analysis. The risk metric measures the deviation
of Lustre operations from the (scaled) average on a filesystem. A higher value indicates higher risk of
slowdown to a filesystem.

We introduce metrics risk,ss and risk,,q5 that accumulate risks to OSS and MDS respectively and are defined
by
riskogs = riSkread_kb + riSkread_ops + riSkwrite_kh + riSkwrite_ops + riskother (3)
and
riskpgs = riSkopen + riskciose + riSkgetattr + riskgetarir + TisKmkdir
+ riSkrmdir + riSkmknod + riSklink + riSkunlink + riSkren (4)
+ riSkgetxatlr + riSksetxatlr + riSkstatfs + riSksync + riSkcdr + riSksdr-
Non-positive risk contributions are always ignored.

The above metric measures the quantity of I/O operations, but not the quality. On Lustre 1 MB is the optimal
size for read or write per operation. In order to have a measure for the quality of application reads and writes

we define the metrics
read_ops * 1024

read_kb

read_kb_ops = &)

and
write_ops *x 1024

write_kb

(6)

write_kb_ops =

The read or write quality is optimal when read_kb_ops = 1 or write_kb_ops = 1. A value of
read_kb_ops >> 1 or write_kb_ops >> 1 denotes poor quality read and writes. In general, risk measures
the quantity of I/O and ops measures the quality.
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3.3 LASSi Architecture

LASSi analytics consists of a complex workflow of data movement across different components developed
in PySpark (http://spark.apache.org/docs/2.2.0/api/python/pyspark.html) - a Python API for Spark - C and
Scala. I/0O metrics are computed per application per hour for all three filesystems of ARCHER. They need
to be computed in real-time to enable notification of users or triggering of events in the case of high risk.
Figure 1 shows the architecture of LASSi and the data-flow through different components of the tool.

LAPCAT :> Data Ingest App Analyser
(mysql) LASA (©) (pyspark) (pyspark)
LOG-Analytics
(Spark-DB)
APRUN-filter LogtoParquet
PBS ﬂ (py) :> (scala) ML Model

Figure 1: Architecture of LASSi showing different components and flow of data through the components.

As noted in Section 2, the I/O statistics are collected using a tool called LAPCAT at 3-minute granularity.
The discrete output may result in errors in I/O statistics attribution at the start and end of application runs. On
HPC machines (like ARCHER), applications usually run for many hours and sharp peaks in I/O operations
do not affect the application run time compared to sustained high levels in I/O operations. This means that
the discretization errors can be easily ignored. Application details including the start time, end time and the
compute node list are obtained from the job scheduler.

L ASSi could analyse over 3-minute periods but this might be very expensive. For practical purposes, LASSi
aggregates the data over 60 minutes for analysis. All statistics quoted below are using this hourly basis unless
mentioned otherwise. LASA is a C application that aggregates the I/O stats for each application over an hour
and stores them in a simpler mapping from application ID to I/O statistics for every hour of its run. This
data is generated in csv format.

Application ID and job ID are not informative but the exact command used to launch the application con-
tains valuable information that can be used to group applications. This grouping was the basis of the
victim-aggressor analysis for the initial work (Hoppe, Gienger, Bonisch, Shcherbakov, and Moise 2017).
This quantity can be used to find average run times and then study slowdown in application performance.
ARCHER uses a PBS scheduler (https://www.pbsworks.com), and APRUN-filter is a python application
that filters application information including the exact command in a csv format.

Spark (Zaharia et al. 2016) is used as the data analysis and data mining engine. Spark has an in-built
database that supports data import from csv files and also query using SQL. I/O statistics and job data are
stored in relational tables and analysed using SQL queries. The I/O statistics generated by LASA (in csv
format) are ingested by a Spark DB "Data ingest" python tool. The job data is also imported to the Spark-
DB using the LogtoParquet Scala script. Parquet stores the data in a vectorised format that improves the
performance of Spark queries.

This data is then aggregated to obtain hourly I/O statistics for all applications running on ARCHER. The
risk and ops metrics are generated for all application runs every hour by running Spark-based SQL queries.
The generated risk and ops profiles are then used for analysis. LASSi also aggregates statistics for whole
groups of applications based on the run command used.
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The average application run time statistic can be used to study slowdown in application runs. This metrics-
based framework was developed with the intention of automating analysis on a daily basis, auto-generating
plots and reports and potentially providing real-time analysis in the future. Current reporting and plots (see
Section 4) are generated using python and the matplotlib library.

4 LASSI USAGE AND ANALYSIS

The current LASSi workflow provides daily analysis of the previous day’s filesystem usage. Daily reports
generated by LASSi are accessible to helpdesk and support staff. Any slowdown in application run time
is usually reported to the helpdesk; the support staff can correlate reported slowdowns of applications to
the generated metrics and identify the application(s) that are causing the problem. This process of triag-
ing application issues previously consumed significant time and was often inconclusive regarding cause of
slowdown. In the case of one Python application that previously caused slow filesystem response, the inves-
tigation took several days - similar conclusions can now be reached in a moment using the LASSi tool with
automated daily reports.

4.1 Daily reports

LASSi generates daily reports showing I/O statistics and metrics of the previous day for all filesystems. The
daily reports contain plots of risk_stats, mds_risk, oss_risk and ops_metric. LASSIi can also generate reports
over a specified time period. The risk_stats plots show the MDS and OSS risk statistics for a filesytem on a
certain period. Figure 2 shows a sample report showing OSS and MDS risk over 24 hours of 2017-10-10 to
fs2. These plots can be early indicators of potential slowdown behaviour.

2017-10-10 fs2 riskstats 2017-10-10 fs2 oss risk

1200

—— risk_oss
risk_mds

B -n 512 ./bout -d aug-q8-M/part-16 restart
B -n 768 -N 24 ./wrf.exe
1000 B -n360-N24-S12-d 1 ./mitgcmuv_ad
0| === -n360-N24-512-d1./mitgcmuv_ad
| mmm -n360-N24-S12 -\1 -/mitgcmuv_ad
-
-—
\
—

800 -n 360 -N 24 -S 12 -d\1 ./mitgcmuv_ad
-n 2304 ./trace_

-n 2304 ./trace_|

./gs2 gs2-collless-gf.in
./gs2 gs2-collless-gf.in

600 -n 720 -N 24 MPPcr} |

-n 6336 -N 24 ./monc_driver.exe --config=job.013_config

400

200 /I

5 10 15 20 10
hour hour

Figure 2: Sample report showing the risk (from Figure 3: Sample report showing the OSS risk to
eqns 3 and 4) to filesystem fs2 over 24 hours of filesystem f52 over 24 hours of 2017-10-10 with
2017-10-10. applications that are contributing to the risk.

The oss_risk report shows OSS risk statistics along with the applications contributing to the risk over time.
Figure 3 shows a sample oss_risk report for filesystem fs2 on 2017-10-10 and the contributing applications.
Multiple different applications like bout, wrf, mitgcmuv, gs2, crystal and monc are shown to be causing risk
to the filessytem at different times. We see that tracing of gs2 has peaks in OSS risk, while applications
like wrf and mitgcmuv have sustained risk to OSS operations. These reports helped identify multiple cases
where slowdown was caused by different applications running at the same time.

The mds_risk report shows MDS risk statistics along with the applications contributing to the risk over time.
Figure 4 shows a sample mds_risk report for filesystem f52 on 2017-10-10 and the contributing applications.
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This is different from the risk_oss plot as we see tasks in a taskfarm contributing to the risk_mds. Each
task contributes to the overall high risk and these are very hard to study and analyse in isolation. Note that
these are not always submitted from a single job or job array. We have already identified a pattern of ‘task
farm’-like applications with similar I/O requirements scheduled at the same time causing considerable risk
and slowdown.

2017-10-10 fs2 mds risk 2017-10-10 fs2 ops metric
1200 16
-n 24 taskl.sh /\ —— read_kb_ops

\ B -n 24 taskl.sh | write_kb_ops
1000 \ BN -n 24 taskl.sh b \
\ mmm -n 24 taskl.sh \

/ \ = -n 24 taskl.sh 12

\\/\ -n 24 taskl.sh
—————mmm—n24-taskl.sh—

800 -y I
10
-n 24 taskl.sh | / \
[ == -n 24 taskl.sh | [ \
600 / mmE -n 24 taskl.sh 8 / \

: |
200 //\ /ﬂ\ / \/ v\

hour hour

risk_mds

~

Figure 4: Sample report showing the MDS risk to Figure 5: Sample report showing the read and write
filesystem f52 over 24 hours of 2017-10-10 with quality (from eqns 5 and 6) to filesystem fs2 over
applications that are contributing to the risk. 24 hours of 2017-10-10.

The ops_metric report shows read and write ops statistics for a filesystem over time. Figure 5 shows the
read_kb_ops and write_kb_ops metrics for fs2 on 2017-10-10. We observe that the writes are near optimal
whereas the reads are sub-optimal at different time periods. This is a recurring feature in our analysis as
application read quality is usually suboptimal compared to the quality of writes.

Reports allow HPC support staff to identify and triage the exact time of risk and the applications that cause
risk of slowdown. In the case of high OSS risk, attention should be given to the quality of reads and writes to
ensure that Lustre is optimally used. We observed one tracing application writing a few bytes every second
to Lustre, which is clearly suboptimal and the problem was resolved by buffering into scratch space. In case
of high MDS risk, the application should be carefully studied for high metadata operations that contribute
to the risk. One incorrectly configured application was creating millions of directories per second and this
was easily identified using the metrics. This information is usually passed to the application owner or deep
technical support available as part of the ARCHER service who can engage directly with the user.

In addition to daily monitoring, studying the metrics of the filesystem helps us understand standard usage of
filesystems, define application classes from an 1/O perspective and identify general issues in I/O usage on
the system.

4.2 Application slowdown analysis

The LASSI risk and ops metrics we have defined should capture the application slowdown. Through these
metrics and the associated reports, LASSi can identify application slowdown and assist root cause diagnosis.
All metrics are designed such that higher values are not optimal. Optimal values for risk and ops metrics
are 0 and 1 respectively. The main contribution factor for slowdown of an application is the I/O load (char-
acterised by the metrics) of the filesystem and the I/O profile of that application at any time. Applications
performing no reads and writes will not be impacted by the I/O load in a filesystem.
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# risk_oss risk_mds
8000
* .
6000 noy e
. ) * ¢ o .
s’ '3 1 Table 3: OSS and MDS risk to filesystem dur-
P o ' ing job runtime.
S‘ . *
& . H Job  risk_oss risk_mds H
2000 L L 3
¢ ¢ e w o, jobl 502 77
. Bost o job2 502 77
13000 18000 23000 28000 3I|0o00 J0b3 502 77
- job4 502 77
2, job5s 118 544
E: o job6 282 824
job7 164 280
job8 164 280

-6000
APPLICATION RUNTIME IN SECONDS

Figure 6: Scatter plot of application run time vs risk of
the filesystem for a set of weather/climate jobs.

LASSi was partly designed to assist in understanding situations where users report performance variation
(slowdown) of similar runs. There have been many such incidents reported in ARCHER and we have
successfully mapped application slowdown to high risks in filesystems at the time in question. The appli-
cation(s) causing high risk are then studied in detail to improve the I/O usage. For reported performance
variation, we depend on the application owner to clearly label similar job runs and identify slow run times.

For example, a user complained about performance variation over 2 days for a Computational Fluid Dynam-
ics (CFD) application. Table 3 shows the sum of risks to the file system during the job run time. Jobs 1 to 4
ran normally whereas jobs 5 to 8 ran slowly. The slowdown can be directly mapped to the high metadata risk
in the filesystem during the run times. The high risk to OSS does not affect these CFD applications. Using
LASSi we can also study the coarse application profile and this CFD application was found to be doing
thousands of meta-data operations (open and close) within each second. The high MDS risk to filesystem
was caused by faskfarm applications running in parallel. Thus we can map the slowdown to the I/O profile
of the application and the I/O load of the filesystem.

Grouping application runs is very difficult and usually requires the input of the application owner to label
the runs that are expected to have similar run time. LASSi metrics can be correlated with the run time of
application runs, by grouping based on the exact command used to launch the application. The launch com-
mand usually includes node count, exact node configurations like threads per core, application executable
and application arguments.

Figure 6 shows the scatter plot of application run time vs the encountered risk_oss (positive axis) and risk_-
mds (negative axis) in the filesystem for a set of climate and weather jobs. Here risk metrics are summed over
the run time of each application run. The superimposed line in the plot shows a possible linear relationship
between risk_oss and run times. This application group used here has an average runtime of 13500 seconds
and reads 106MB, writes 14.2 GB and performs 33K metadata operations per hour. The average read and
write quality are 1.2 and 2.1 and are close to optimal. All these application runs have zero risk with I/O
statistics well below the filesystem average.
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From the plot, we can see higher OSS and MDS risk on the filesystem when jobs with run time more than
13500s were running, with a cluster showing a possible linear relationship for risk_oss and application run
time. The high OSS risk was found to be caused by a python application that was reading and writing a few
bytes per second at that time. There is also a cluster of jobs with lesser OSS risk having a run time of more
than 23500s which cannot be explained from the risk metrics alone. A complete analysis is not possible
without understanding the application’s science, I/O profile and network bandwidth of each job run. This
slowdown analysis did not require the input of the application owner, unlike the previous analysis.

Although LASSi only considers I/O statistics, it has been successful in modeling and resolving slowdown
incidents reported by application users for over 6 months. In all cases applications causing slowdown have
been identified using risk and ops metrics and appropriate remedial action had been taken. This approach is
more generally applicable to any environment with a shared filesystem as long as the relevant data can be
collected.

5 RELATED WORK

UMAMI (Lockwood et al. 2017) uses an approach of analysing I/O statistics using meaningful metrics in
a similar fashion to LASSi. They stress a need for a holistic I/O analysis as their metrics do not capture
enough details to indicate performance loss. MELT (Brim and Lothian 2015), a unified Lustre performance
monitoring and analysis infrastructure tool, helps administrators analyse reported application slowdowns by
providing command line utilities to view 1/O statistics of clients, servers and jobs. Using MELT requires
expertise and does not provide an automatic root cause analysis solution for performance problems. ldiskfs
(Laifer 2015) is a tool for generating Lustre I/O stats for jobs. The script runs hourly and collects and
summarises the jobs I/O stats and then mails the user. Lustre Monitoring Tool (LMT) (Lustre 2018) is an
open-source tool for capture and display of Lustre file system activity. I/O statistics are stored in a MySQL
database with command line utilities for live monitoring. LMT does not map I/O statistics to jobs. Kunkel
et al. (Kunkel, Betke, Bryson, Carns, Francis, Frings, Laifer, and Méndez 2018) review existing tools for
analysing I/O performance of parallel system and online monitoring tools developed at DKRZ and LLView
by LLNL. They reveal how these tools can be used to study I/O issues. Mendez et al. (Mendez et al. 2017)
evaluated 1/0 performance of applications as a function of I/O characteristics and performance capacity of
the I/O system by defining a metric called I/O severity. This metric identifies the factors limiting the I/O
performance of a kernel or application but does not study the effects of multiple applications interacting
with the I/O system. Researchers at NERSC (Uselton and Wright 2013) introduced a new metric named
File System Utilisation (FSU) based on series of calibration experiments using IOR, to study I/O workload
on the file system. Many monitoring tools (Uselton and Wright 2013), (Uselton 2009), (Shipman, Dillow,
Oral, Wang, Fuller, Hill, and Zhang 2010), (Uselton, Antypas, Ushizima, and Sukharev 2010), and (Miller,
Hill, Dillow, Gunasekaran, Shipman, and Maxwell 2010) for raw I/O statistics of filesystems and jobs have
been used to study and improve I/O performance of applications. The tools described above provide raw
I/O statistics of filesystem or applications. LASSi moves beyond this by delivering a framework where it is
easy to identify applications with unusual I/O behaviour, and by targeting application interactions with the
filesystem. LLASSi is an non-invasive approach that does not perturb the filesystem. Additionally, LASSi
provides holistic I/O analysis by monitoring filesystem I/O, generating coarse profiles of filesystems and
application runs in time and automating analysis of application slowdown using metrics. LASSi can also be
used to study I/O patterns of application groups which is important for those that manage filesystems.

6 CONCLUSION

LASSi is a tool primarily designed to help HPC support staff triage and resolve issues of application slow-
down due to contention in a shared filesystem. LASSi uses a metrics-based analysis in which risk and ops
metrics correlate to the quantity and quality of an application’s I/O. The tool’s workflow is automated to
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produce near real-time analysis of filesystem health and application I/O profiles. Using the metrics and
analysis, LASSI is being used to study the I/O profile of applications, understand common I/O usage of
application groups, locate the reasons for slowdown of similar jobs and to study filesystem usage in general.
For example we have identified a particular class of jobs (task farms) that can generate excessive 1/0O load
even though individual applications are not a concern. This information can be used not only to optimise
applications and avoid slowdown but also in the planning and configuration of the HPC filesystem for dif-
ferent projects. We have shown that the application-centric non-invasive approach based on metrics that is
used by LASSi is valuable in understanding application I/O behaviour in a shared filesystem.

7 FUTURE WORK

ARCHER support staff continue to monitor the LASSi metrics against reported application slowdown and
contact application owners of rogue applications to better understand and optimise their I/O. Using these
reported incidents, LASSi metrics are continuously improved and tuned or new metrics added. Currently
our analysis uses a coarse time resolution of 1 hour, we plan to move to a 6 minute window with hourly
analysis of filesystem health. The ideas from this work can also be ready applied for network statistics and
this will be explored in the future.
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