
 
 

Delft University of Technology

Interactions between Congestion Control Algorithms

Turkovic, Belma; Kuipers, Fernando A.; Uhlig, Steve

DOI
10.23919/TMA.2019.8784674
Publication date
2019
Document Version
Accepted author manuscript
Published in
2019 Network Traffic Measurement and Analysis Conference (TMA)

Citation (APA)
Turkovic, B., Kuipers, F. A., & Uhlig, S. (2019). Interactions between Congestion Control Algorithms. In S.
Secci, I. Chrisment, M. Fiore, L. Tabourier, & K. W. Lim (Eds.), 2019 Network Traffic Measurement and
Analysis Conference (TMA) : Proceedings of the 3rd Network Trac Measurement and Analysis Conference
(pp. 161-168). Article 8784674 IEEE. https://doi.org/10.23919/TMA.2019.8784674
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.23919/TMA.2019.8784674
https://doi.org/10.23919/TMA.2019.8784674


Interactions between Congestion Control Algorithms
Belma Turkovic∗, Fernando A. Kuipers† and Steve Uhlig ‡
∗ † Delft University of Technology, Delft, The Netherlands

‡ Queen Mary University of London, London, United Kingdom
Email: {∗B.Turkovic-2, †F.A.Kuipers}@tudelft.nl, ‡Steve.Uhlig@qmul.ac.uk,

Abstract—Congestion control algorithms are crucial in achiev-
ing high utilization while preventing overloading the network.
Over the years, many different congestion control algorithms
have been developed, each trying to improve over others in
specific situations. However, their interactions and co-existence
has, to date, not been thoroughly evaluated, which is the focus
of this paper. Through head-to-head comparisons of loss-based,
delay-based and hybrid types of congestion control algorithms,
we reveal that fairness in resources claimed is often not achieved,
especially when flows sharing a link have different round-trip
times or belong to different groups.

I. INTRODUCTION

In the wake of the growing demand for higher bandwidth,
higher reliability, and lower latency, novel congestion control
algorithms have been developed. For example, in 2016, Google
published its bottleneck bandwidth and round-trip time (BBR)
congestion control algorithm, claiming it was able to oper-
ate without filling buffers [1]. Around the same time, TCP
LoLa [2] and TIMELY [3] were proposed, focusing on low
latency and bounding of the queuing delay. Moreover, new
transport protocols such as QUIC allow the implementation
of algorithms directly in user space, which facilitates quick
development of new transport features. However, congestion
control algorithms have been typically developed in isolation,
without thoroughly investigating their behaviour in the pres-
ence of other congestion control algorithms, which is the goal
of this paper.

In this paper, we first divide existing congestion control
algorithms into three groups: loss-based, delay-based, and
hybrid. Based on experiments in a testbed, we study the
interactions over a bottleneck link among flows of the same
group, across groups, as well as when flows have different
Round-Trip Times (RTTs). We find that flows using loss-based
algorithms are over-powering flows using delay-based, as well
as hybrid algorithms. Moreover, when flows using loss-based
algorithms fill the queues, increase in queuing delay of all
the other flows sharing the bottleneck is determined by their
presence. Non-loss-based groups thus cannot be used in a
typical network, where flows typically rely on a loss-based
algorithm. In addition, we observe that convergence times
can be large, which may surpass the flow duration for many
applications. Finally, we find that hybrid algorithms, such as
BBR, not only favour flows with a higher RTT, but they also
cannot maintain a low queuing delay as promised.

In Section II, we provide an overview and classification of
congestion control mechanisms. In Section III, we (1) identify
a set of key performance metrics to compare them, (2) describe

RFC 793

Loss-based
algorithms

Delay-based
algorithms

Hybrid
algorithms

Tahoe

Reno

NewReno

SCTP

HS-TCP

H-TCP

Hybla

BIC

Cubic

Westwood

Westwood+

TCPW-A

LogWestwood+

DUAL

Vegas

VegasA

NewVegas

FAST

VFAST

LoLa

TIMELY

Veno

Vegas+

TCP AR

Africa

Compound

Fusion

YeAH

AReno

Libra

Illinois

BBR

PCC

Fig. 1: Classification of different congestion control algo-
rithms. Dotted arrows indicate that one was based on the other.

our measurement setup, and (3) present our measurement
results. Additional measurements are given in an extended
version [4].

II. BACKGROUND

Since the original TCP specification (RFC 793 [5]), numer-
ous congestion control algorithms have been developed. In
this paper, we focus mostly on algorithms designed for wired
networks. The algorithms we consider can be used both by
QUIC and TCP and can be divided into three main groups
(see Fig. 1): (1) loss-based algorithms that detect congestion
when buffers are already full and packets are dropped, (2)
delay-based algorithms that rely on RTT measurements and
detect congestion by an increase in RTT, indicating buffering,



and (3) hybrid algorithms that use some combination of the
previous two methods.

A. Loss-based algorithms

The original congestion control algorithms from [5] were
loss-based algorithms with TCP Reno being the first widely
deployed one. With the increase in network speeds, Reno’s
conservative approach of halving the congestion window
became an issue. TCP connections were unable to fully
utilize the available bandwidth, so that other loss-based al-
gorithms were proposed, such as NewReno [6], Highspeed-
TCP (HS-TCP [7]), Hamilton-TCP (H-TCP [8]), Scalable TCP
(STCP [9]), Westwood (TCPW [10]), TCPW+ (TCP West-
wood+ [11]), TCPW-A [12], and LogWestwood+ [13]. They
all improved upon Reno by including additional mechanisms
to probe for network resources more aggressively. However,
they also react more conservatively to loss detection events,
and discriminate between different causes of packet loss.

However, these improvements did not address any of the
existing RTT-fairness issues, but introduced new ones [14],
[15]. Indeed, when two flows with different RTTs share the
same bottleneck link, the flow with the lowest RTT is likely
to obtain more resources than other flows. To resolve this
issue, BIC [14] and Hybla [15] were proposed. Hybla modified
NewReno’s Slow Start and Congestion Avoidance phases and
made them semi-independent of RTT. However, the achieved
RTT-fairness meant that flows with higher RTTs behaved more
aggressively. The main idea of BIC was to use a binary search
algorithm to approach the optimal congestion window size.
However, later evaluations showed that BIC can still have
worse RTT-fairness than Reno [16]. In response, Cubic was
proposed in [16]. Since Cubic is the current default algorithm
in the Linux kernel, we will use it as a reference for loss-based
algorithms throughout this paper.

B. Delay-based algorithms

In contrast to loss-based algorithms, delay-based algorithms
are proactive. They try to find the point when the queues in the
network start to fill, by monitoring the variations in RTT. An
increase in RTT, or a packet drop, causes them to reduce their
sending rate, while a steady RTT indicates a congestion-free
state. Unfortunately, RTT estimates can be inaccurate due to
delayed ACKs, cross traffic, routing dynamics, and queues in
the network [3], [17].

The first algorithm that used queuing delay as a congestion
indicator was TCP Dual. The first improvement to this algo-
rithm was Vegas [18]. It focuses on estimating the number of
packets in the queues and keeping it under a certain threshold.
However, several issues were identified. First, when competing
with existing loss-based algorithms, Vegas flows suffer from
a huge decrease in performance [19], [20]. Second, it has a
bias towards new flows and, finally, interprets rerouting as
congestion [20]. To address these issues several modifications
to Vegas were proposed, including VegasA [20], Vegas+ [19],
FAST [21], VFAST [22], and NewVegas [23].

Recently, as low latency became important, several new
algorithms have been proposed. Hock et al. designed LoLa [2],
focusing on low latency and convergence to a fair share be-
tween flows. To improve performance in datacenter networks,
Google proposed TIMELY [3], which relies on very precise
RTT measurements. Since Vegas is used as the base algorithm
by many other delay-based and hybrid algorithms, we use it
as a reference for delay-based algorithms.

C. Hybrid algorithms

Hybrid algorithms use both loss and delay as congestion
indicators. The first hybrid algorithm was Veno [24]. It is a
modification of the Reno congestion control that extends the
additive increase and multiplicative decrease functions by also
using queuing delay as the secondary metric. To efficiently
utilize the available bandwidth in high-speed networks, many
algorithms use similar modifications based on the Vegas or
Dual network state estimations. Some of the most important
ones are Africa [25], Compound [26], and YeAH [27]. Other
algorithms modify the congestion window increase function
to follow a function of both the RTT and the bottleneck link
capacity, such as Illinois [28], AR [29], Fusion [30], TCP-
Adaptive Reno (AReno) [31], and TCP Libra [32].

In 2016, Google developed the bottleneck bandwidth and
round-trip time (BBR) algorithm. However, several problems,
mostly related to the Probe RTT phase, were discovered: (1)
bandwidth can be shared unfairly depending on the timing of
new flows and their RTT, and (2) unfairness towards other
protocols, especially Cubic [33], [34], [35].

At the same time, a new approach to congestion control
using online learning was proposed in PCC [36]. We use BBR
as our representative for hybrid algorithms, since it is actually
deployed (in Google’s network) and implemented in the Linux
kernel (since v4.9).

III. EVALUATION

Using the metrics described in Sec. III-A and via the set-up
described in Sec. III-B, in Sections III-C and III-D we evaluate
the representatives of the three algorithm groups (Cubic, Vegas
and BBR). Additional measurements and results of all other
algorithms that have been implemented in the Linux kernel
can be found in the extended version of this paper [4].

A. Performance metrics

Sending rate represents the bit-rate (incl. data-link layer
overhead) of a flow generated by the source, per time unit.

Throughput measures the number of bits (incl. the data-
link layer overhead) received at the receiver, per time unit.

RTT (round-trip time) represents the time between send-
ing a packet and receiving an acknowledgement of that packet.

Goodput measures the amount of useful data (i.e., excl.
overhead) delivered by the network between specific hosts,
per time unit. This value is an indicator of the application-
level QoS experienced by the end-users. Additionally, we use
the goodput ratio, i.e., the amount of useful data transmitted
divided by the total amount of data transmitted.



Fairness describes how the available bandwidth is shared
among multiple users. We consider three different types of
fairness: (1) intra-fairness describes the resource distribution
between flows running the same congestion control algorithm;
(2) inter-fairness describes the resource distribution between
flows running different congestion control algorithms, and
(3) RTT-fairness describes the resource distribution between
flows having different RTTs. Fairness is represented by Jain’s
index [37]. This index is based on the throughput and indicates
how fair the available bandwidth at the bottleneck is shared
between all flows present. This fairness index ranges from 1/n
(worst case) to 1 (best case), where n is the number of flows.

B. Experiment setup

Each server in our testbed has a 64-bit Quad-Core Intel
Xeon CPU running at 3GHz with 4GB of main memory and
has 6 independent 1 Gbps NICs. Each server can play the
role of a 6-degree networking node. All nodes run Linux
with kernel version 4.13 with the txqueuelen set to 1000, and
were connected as shown in Fig. 2 with degree 1 ≤ n ≤ 4
(consequence of the limited number of NICs per server in
the testbed). Given that the performance of congestion control
algorithms is affected by the bottleneck link on the path,
such a simple topology is sufficient for our purposes. The
maximum bandwidth and the bottleneck (between s1 and s2)
was limited to a pre-configured value (100Mbps in the case
of TCP and 10Mbps in the case of QUIC to make sure
that the sending rate of the end-user applications is enough
to saturate the bottleneck link) with the use of ethtool. To

1

Cn

C1

2

S1

Sn
. .. .. .

Bandwidth of the bottleneck
Clients Servers

Fig. 2: Experiment topology.

perform measurements, we rely on tshark, iperf, QUIC client
and server (available in the Chromium project [38]) and socket
statistics. From traffic traces (before and after the bottleneck),
we calculate the metrics described in Sec. III-A. All the values
are averaged per flow, using a configurable time interval. We
consider the following two scenarios:

BW scenario. Each analyzed algorithm is compared to itself
and all others. Host Ci generates TCP flows towards servers
running at Si using different congestion control algorithms.

RTT scenario with flows having different RTTs. The
purpose of this scenario is to test the RTT-fairness of different
congestion control algorithms. In addition to the setup of the
previous scenario, the delay at links between Si and node 2
is artificially increased using Linux TC (adding 0− 400ms).

We ran these scenarios five times. For all of them, the
results we observe lead to qualitatively similar interactions,
as presented in Sections III-C and III-D.

C. Results: BW scenario

Intra-Fairness. Delay-based and loss-based algorithms
have the best intra-fairness properties, with an average fairness
index within 0.94 − 0.95 (Table I). Fig. 3 shows that Jain’s
index is always close to 1, indicating that all present flows
receive an equal share of the resources. In addition, delay-
based algorithms operate without filling the buffers, in contrast
to the loss-based algorithms that periodically fill the buffers
and drop packets (Fig. 3). Further, the convergence time of
loss-based algorithms is higher (≈ 20 s, compared to 5s
needed for 2 Vegas flows) and their throughput oscillates the
most from all the evaluated approaches (Fig. 3). When the
number of Cubic flows increases to 4, bandwidth oscillations
increase as well, and fairness decreases to 0.82 [4].

In contrast, hybrid-based algorithms (BBR) unexpectedly
had the worst intra-fairness properties. Fig. 3 shows that they
rarely converge to the same bandwidth, but oscillate between
30 Mbps and 70 Mbps (every probeRTT phase), even in
scenarios in which they claim a similar share of the available
resources on average. The flow that measures a higher RTT
adopts a more aggressive approach and claims more resources,
even if the measured RTT difference is very small (≤ 0.5ms).
Hence, they are not particularly stable. Unexpectedly, when the
number of flows increases to 4, the fairness index improves,
and although oscillations go down they are still present.

Inter-Fairness. As expected, flows that use delay-based
algorithms experience a huge decrease in throughput if they
share the bottleneck with loss-based flows (Fig. 4). This is
because they detect congestion earlier, at the point when
the queues start to fill. Loss-based algorithms on the other
hand continue to increase their sending rate as no loss is
detected. This increases the observed RTT (Fig. 3) of all flows,
triggering the delay-based flow to back off [19], [20].

A similar behaviour is observed when a bottleneck is
shared between flows from a hybrid and a delay-based al-
gorithm: BBR outperforms Vegas. However, the difference in
the throughput is less significant than the one observed in
the previous scenario, with the Vegas flow claiming almost
40Mbps on average (Table I). When we increase the number
of Vegas or BBR flows at the bottleneck to four, the new
flows increase their bandwidth at the expense of the BBR
flow, reducing its share from 50Mbps down to 20Mbps, and
increasing the fairness index to 0.9 − 0.94 [4]. This is a
consequence of the fact that BBR tries to operate without
filling the queues, allowing the delay-based algorithm to grow
and claim more bandwidth. Thus, we conclude that, in contrast
to loss-based algorithms, delay-based algorithms can co-exist
with hybrid-based ones.

When the bottleneck is shared between a hybrid and a
loss-based algorithm, Cubic outperforms BBR, reducing its
share of resources to as little as 8% on average (Table I),
confirming results from [39]. The fairness index at the start of
the connection is very low as Cubic claims all the available
bandwidth at the expense of the BBR flow. After the Cubic
flow fills the buffers, BBR measures an increased RTT and



0 20 40 60
0

50

100

150

200

t [s]

R
T

T
[m

s]

Cubic Cubic

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
hr

ou
gh

pu
t
[b
p
s] Cubic Cubic

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
de

x

2xCubic

0 20 40 60
0

1

2

3

4

t [s]

R
T

T
[m

s]

Vegas Vegas

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]
T

hr
ou

gh
pu

t
[b
p
s] Vegas Vegas

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
de

x

2xVegas

0 20 40 60
0

2

4

6

8

t [s]

R
T

T
[m

s]

BBR BBR

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
hr

ou
gh

pu
t
[b
p
s] BBR BBR

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
de

x

2xBBR

Fig. 3: BW scenario: Comparison of average RTT, average throughput, and fairness index for representatives of the congestion
control algorithm classes groups in case the link is shared by 2 flows using the same algorithm (time unit 300ms).

TABLE I: BW scenario with 2 flows: Different metrics for representatives of the three congestion control algorithm groups
(calculated for 5 different runs).

Protocol Group Algorithm Average Average Average Average Average Average
goodput goodput ratio RTT sending rate throughput Jain index
[Mbps] [%] [#packets] [ms] [Mbps] [Mbps]

TCP

Loss- vs. Loss-based Cubic 44.98 93.57 76.65 48.77 46.59 0.95Cubic 43.15 93.78 78.32 50.98 46.59

Delay- vs. Delay-based Vegas 43.81 94.81 1.66 48.65 45.47 0.94Vegas 42.72 94.76 1.68 49.79 44.38

Hybrid vs. Hybrid BBR 44.98 92.32 3.21 52.18 46.70 0.86BBR 42.72 94.39 3.24 46.89 44.36

Loss-based vs. Hybrid Cubic 82.29 94.27 70.37 90.91 85.05 0.59BBR 7.56 88.86 174.38 8.87 7.89

Loss- vs. Delay-based Cubic 87.73 94.34 67.16 97.30 90.66 0.52Vegas 1.74 91.57 139.79 2.00 1.82

Delay-based vs. Hybrid Vegas 38.37 94.34 4.55 37.31 39.83 0.84BBR 48.56 94.68 4.25 61.65 50.37

adopts, as a consequence, a more aggressive approach (Fig. 3).
However, packet loss triggers Cubic’s back-off mechanism, al-
lowing BBR to measure a lower RTT estimate. Consequently,
BBR reduces its rate, allowing the Cubic flow to claim more
bandwidth again. Moreover, when we increase the number of
Cubic flows to three, the throughput of the BBR flow drops
close to zero. Similarly, even three BBR flows are not able
to compete with one Cubic flow, with each of them claiming
approximately 5% of the total bandwidth on average [4].

Delay. Even if one loss-based algorithm is present at the

bottleneck, the observed delay is determined by it, nullifying
the advantages of delay-based and hybrid algorithms, namely
the prevention of the queue buildup. BBR, as well as Vegas,
which claim to be able to operate with a small RTT, suffer
from a huge increase in average RTT (by more than 100 ms,
Table I) when competing with Cubic (compared to 1 − 5ms
without Cubic). However, when a link is shared between a
hybrid and a delay-based flow, both of them are able to
maintain a low RTT. In such scenarios, hybrid algorithms, such
as BBR, due to their more aggressive approach compared to



0 20 40 60
0

100

200

300

t [s]

R
T

T
[m

s]
BBR Cubic

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
hr

ou
gh

pu
t
[b
p
s]

BBR Cubic

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
de

x

BBR & Cubic

0 20 40 60
0

100

200

300

t [s]

R
T

T
[m

s]

Vegas Cubic

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]
T

hr
ou

gh
pu

t
[b
p
s]

Vegas Cubic

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
de

x

Vegas & Cubic

0 20 40 60
0

2

4

6

8

t [s]

R
T

T
[m

s]

Vegas BBR

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
hr

ou
gh

pu
t
[b
p
s] Vegas BBR

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
de

x

BBR & Vegas

Fig. 4: BW scenario: Comparison of average RTT, average throughput and fairness index for representatives of the congestion
control algorithm groups in case the link is shared by 2 flows using different algorithms (time unit 300ms).

delay-based algorithms, determine the RTT. Vegas flows, as
a consequence, suffer from a small increase in RTT (from
1.68ms to 4.55ms, Table I).

Summary. In terms of fairness, the only combination that
works well together is delay and hybrid algorithms. In such
a scenario, delay is low and the throughput fairly shared, the
more flows the fairer the distribution of resources. Hybrid, as
well as delay-based algorithms, suffer from a huge increase in
the observed delay if even one loss-based algorithm is present
at the bottleneck making them unusable in typical networks
consisting of many different flows. We observe that the most
popular TCP flavour, Cubic, is prone to oscillation and has a
high convergence time (≈ 20s). Further, we observe that BBR
is not stable, reacting to very small changes in the observed
RTT, which was not previously reported in the literature.

D. Results: RTT scenario

We observe RTT-fairness issues for all three groups of
algorithms. Even though loss-based algorithms such as Cubic
claim good RTT-fairness properties, they favour the flow with
a lower RTT [40]. This is most noticeable when analyzing
two Cubic flows in Fig. 5. Even when the number of flows in-
creases to 4 (Fig. 6), the flow with the lowest RTT immediately
claims all the available resources, leaving less than half to the
other flows in the first 30 s. Several improvements addressing
this problem, such as TCP Libra [32] have been proposed.

However, current kernel implementations do not capture these
improvements.

The fairness index for delay-based algorithms slowly in-
creases over time, but due to a very conservative congestion
avoidance approach of Vegas, even after 60s, flows do not
converge (Fig. 6). When we increase the number of Vegas
flows to four, the dynamics at the bottleneck becomes more
complex with the newest flow (with the highest RTT) claiming
the largest share of resources at the end (Fig. 6). Moreover,
contrary to the previous scenarios, in the slow start phase,
Vegas flows fill the bottleneck queue and the observed queuing
delay increases to 70ms. However, after 30s the queues are
drained, fairness improves, and the observed queuing delay is
very low for all flows (2− 3ms, Fig. 6).

Hybrid-based algorithms, such as BBR, favour the flow
with the higher RTT, confirming results from [33], [39].
The flow with a higher RTT overestimates the bottleneck
link, claiming all the available resources and increasing the
queuing delay (Fig. 5) by a factor of more than 10 (from
≈ 4ms to ≈ 50ms). Moreover, when we increase the number
of BBR flows to four, contrary to expectations, the average
RTT increases significantly (by a factor of almost 30) reaching
values comparable to the ones observed by the loss-based
algorithms in the same scenario although only BBR flows were
present at the bottleneck (Fig. 6, Table III).

Summary. We observe that RTT-fairness is poor for all



0 20 40 60
0

200

400

600

t [s]

R
T

T
[m

s]
2 Cubic flows

0ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
hr

ou
gh

pu
t
[b
p
s]

2 Cubic flows
0ms 200ms

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
de

x

2 Cubic flows

0 20 40 60
0

100

200

t [s]

R
T

T
[m

s]

2 Vegas flows

0ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
hr

ou
gh

pu
t
[b
p
s]

2 Vegas flows
0ms 200ms

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
de

x

2 Vegas flows

0 20 40 60
0

100

200

300

t [s]

R
T

T
[m

s]

2 BBR flows

0ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
hr

ou
gh

pu
t
[b
p
s]

2 BBR flows

0ms 200ms

0 20 40 60

0.6

0.8

1

t [s]

Ja
in

in
de

x

2 BBR flows

Fig. 5: RTT scenario: Comparison of average RTT, average throughput, and fairness index for representatives of the congestion
control algorithm groups in the case the link is shared by 2 flows using the same algorithm (time unit 300ms).

TABLE II: RTT scenario: Different metrics for representatives of the congestion control algorithm groups in case the link is
shared by two flows using the same algorithm (calculated for 5 different runs).

Protocol Group Algorithm Average Average Average Average Average Average
goodput goodput ratio RTT sending rate throughput Jain index
[Mbps] [%] [#packets] [ms] [Mbps] [Mbps]

TCP

Loss- vs. Loss-based Cubic(0ms) 65.67 94.07 233.09 75.47 67.88 0.76Cubic(200ms) 21.88 93.80 435.53 25.36 22.92

Delay- vs. Delay-based Vegas(0ms) 14.99 94.21 32.03 18.91 15.62 0.66Vegas(200ms) 72.60 94.31 228.96 81.48 75.08

Hybrid vs. Hybrid BBR(0ms) 8.90 91.98 50.08 9.87 9.24 0.56BBR(200ms) 79.54 94.39 249.56 90.97 82.1

groups of algorithms. Delay-based algorithms are the only
ones that can maintain a low delay compared to the other two
groups. However, they still do not converge towards their fair
share. Loss-based algorithms such as Cubic perform poorly,
contrary to expectations and their own claims, favouring flows
with lower RTTs. When loss-based algorithms converge to a
fair share, the convergence time is so slow that the average
fairness index is still low (0.69 on average). Finally, hybrid
algorithms such as BBR suffer from significant dynamics in
the sharing among its own flows, favoring those with higher
RTT and significantly increasing the queuing delay. Hence, we
observe that even when only BBR flows are present on the
bottleneck, the claim of being able to operate without filling
the buffers is not true.

E. Results: QUIC

When QUIC is used with different congestion control algo-
rithms, we observe similar interactions as earlier. With BBR,
we observe the same RTT-unfairness properties as with the
TCP BBR, which always favours the flows with a higher RTT
(with an average fairness index of 0.59). Similarly, QUIC with
Cubic always favours the flow with a lower RTT. However, the
difference between the throughput of the two QUIC Cubic
flows is much smaller than the one observed for the TCP
equivalent, with an average fairness index of 0.93. In all our
QUIC scenarios where hybrid (BBR) and loss-based (Cubic)
flows compete, Cubic outperforms BBR. Over time, as QUIC
BBR flows detect a higher RTT and adopt a more aggressive



0 20 40 60
0

200

400

t [s]

R
T

T
[m

s]
4 Cubic flows

50ms 100ms
150ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
hr

ou
gh

pu
t
[b
p
s]

4 Cubic flows
50ms 100ms
150ms 200ms

0 20 40 60

0.4

0.6

0.8

1

t [s]

Ja
in

in
de

x

4 Cubic flows

0 20 40 60
0

200

400

t [s]

R
T

T
[m

s]

4 Vegas flows
50ms 100ms
150ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
hr

ou
gh

pu
t
[b
p
s]

4 Vegas flows
50ms 100ms
150ms 200ms

0 20 40 60

0.4

0.6

0.8

1

t [s]

Ja
in

in
de

x

4 Vegas flows

0 20 40 60
0

200

400

t [s]

R
T

T
[m

s]

4 BBR flows

50ms 100ms
150ms 200ms

0 20 40 60
0

0.2

0.4

0.6

0.8

1
·108

t [s]

T
hr

ou
gh

pu
t
[b
p
s]

4 BBR flows
50ms 100ms
150ms 200ms

0 20 40 60

0.4

0.6

0.8

1

t [s]

Ja
in

in
de

x

4 BBR flows

Fig. 6: RTT scenario: Comparison of average RTT, average throughput, and fairness index for representatives of the congestion
control algorithm classes in case the link is shared by 4 flows using the same algorithm (time unit 300ms).

TABLE III: RTT scenario: Different metrics for representatives of the congestion control algorithm classes in case the link is
shared by four flows using the same algorithm (calculated for 5 different runs).

Protocol Group Algorithm Average Average Average Average Average Average
goodput goodput ratio RTT sending rate throughput Jain index
[Mbps] [%] [#packets] [ms] [Mbps] [Mbps]

TCP

Loss-based

Cubic(50ms) 47.48 93.86 216.60 53.66 49.59

0.69Cubic(100ms) 15.32 92.39 264.99 17.71 16.09
Cubic(150ms) 11.70 91.62 316.87 13.62 12.32
Cubic(200ms) 13.68 92.33 368.14 15.78 14.39

Delay-based

Vegas(50ms) 27.32 92.98 94.50 31.09 28.54

0.62Vegas(100ms) 41.85 93.88 144.11 47.13 43.63
Vegas(150ms) 7.50 90.80 196.87 8.62 7.90
Vegas(200ms) 11.57 91.47 245.18 13.22 12.16

Hybrid

BBR(50ms) 7.11 88.01 203.63 42.56 7.44

0.63BBR(100ms) 15.23 91.61 253.49 21.43 16.06
BBR(150ms) 22.20 93.59 302.70 18.81 23.45
BBR(200ms) 42.39 94.18 353.22 15.97 44.70

approach, BBR grabs more bandwidth at the expense of the
Cubic flows. However, this process is slow and the throughput
of the BBR flow remains low. Detailed measurements of QUIC
can be found in the extended version of this paper [4].

IV. CONCLUSION

After dividing existing congestion control algorithms into
three groups (loss-based algorithms, delay-based algorithms,
and hybrid algorithms), we studied their interactions.

We observed multiple fairness issues, among flows of the
same group, across different groups, as well as when flows
having different RTTs were sharing a bottleneck link. We
found that delay-based, as well as hybrid algorithms, suffer
from a decrease in performance when competing with flows
from the loss-based group, making them unusable in a typical
network where the majority of flows will rely on a loss-based
algorithm. Not only do they get an unfair share of the available
bandwidth, but they also suffer from a huge increase in the
observed delay when the loss-based algorithms fill the queues.



The only combination that worked well together was delay and
hybrid algorithms: the observed RTT was low and resources
shared fairly (the more flows the fairer the distribution of
resources). Finally, we found that hybrid algorithms, such as
BBR, are very sensitive to changes in the RTT, even if that
difference is very small (≤ 0.5ms). They not only favour the
flow with a higher RTT at the expense of the other flows, but
they also cannot maintain a low queuing delay as promised
even if they are the only flows present in the network.

Our work therefore shows that to support applications that
require low latency, a good congestion control algorithm on
its own won’t be enough. Indeed, guaranteeing that flows of
a given group (in terms of type of congestion control) will
receive their expected share of resources, requires that resource
isolation be provided between the different groups.

REFERENCES

[1] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” Queue, vol. 14, no. 5,
pp. 20–53, 2016.

[2] M. Hock, F. Neumeister, M. Zitterbart, and R. Bless, “TCP LoLa:
Congestion Control for Low Latencies and High Throughput,” in 2017
IEEE 42nd Conference on Local Computer Networks (LCN), 2017, pp.
215–218.

[3] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-based
Congestion Control for the Datacenter,” pp. 537–550, 2015.

[4] B. Turkovic, F. A. Kuipers, and S. Uhlig, “Fifty shades of congestion
control: A performance and interactions evaluation,” arXiv preprint
arXiv:1903.03852, 2019.

[5] J. Postel, “Transmission control protocol specification,” RFC 793, 1981.
[6] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,” RFC

5681 (Draft Standard), Internet Engineering Task Force, September
2009. [Online]. Available: http://www.ietf.org/rfc/rfc5681.txt

[7] S. Floyd, “HighSpeed TCP for large congestion windows,” Tech. Rep.,
2003.

[8] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long-distance
networks,” in Proceedings of PFLDnet, vol. 2004, 2004.

[9] T. Kelly, “Scalable TCP: Improving performance in highspeed wide area
networks,” ACM SIGCOMM computer communication Review, vol. 33,
no. 2, pp. 83–91, 2003.

[10] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP
westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proceedings of the 7th annual international conference on
Mobile computing and networking. ACM, 2001, pp. 287–297.

[11] L. A. Grieco and S. Mascolo, “Performance evaluation and comparison
of Westwood+, New Reno, and Vegas TCP congestion control,” ACM
SIGCOMM Computer Communication Review, vol. 34, no. 2, pp. 25–38,
2004.

[12] K. Yamada, R. Wang, M. Y. Sanadidi, and M. Gerla, “TCP westwood
with agile probing: dealing with dynamic, large, leaky pipes,” in
2004 IEEE International Conference on Communications (IEEE Cat.
No.04CH37577), vol. 2, June 2004, pp. 1070–1074 Vol.2.

[13] D. Kliazovich, F. Granelli, and D. Miorandi, “Logarithmic window
increase for TCP Westwood+ for improvement in high speed, long
distance networks,” Computer Networks, vol. 52, no. 12, pp. 2395–2410,
2008.

[14] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” in INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications
Societies, vol. 4. IEEE, 2004, pp. 2514–2524.

[15] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement for het-
erogeneous networks,” International journal of satellite communications
and networking, vol. 22, no. 5, pp. 547–566, 2004.

[16] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed
TCP variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, 2008.

[17] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-host
congestion control for TCP,” IEEE Communications surveys & tutorials,
vol. 12, no. 3, pp. 304–342, 2010.

[18] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, TCP Vegas: New
techniques for congestion detection and avoidance. ACM, 1994,
vol. 24, no. 4.

[19] G. Hasegawa, K. Kurata, and M. Murata, “Analysis and improvement of
fairness between TCP Reno and Vegas for deployment of TCP Vegas to
the Internet,” in Proceedings 2000 International Conference on Network
Protocols, Nov 2000, pp. 177–186.

[20] K. Srijith, L. Jacob, and A. L. Ananda, “TCP Vegas-A: Improving the
performance of TCP Vegas,” Computer communications, vol. 28, no. 4,
pp. 429–440, 2005.

[21] C. Jin, D. Wei, S. H. Low, J. Bunn, H. D. Choe, J. C. Doylle,
H. Newman, S. Ravot, S. Singh, F. Paganini, G. Buhrmaster, L. Cottrell,
O. Martin, and W. chun Feng, “FAST TCP: from theory to experiments,”
IEEE Network, vol. 19, no. 1, pp. 4–11, Jan 2005.

[22] S. Belhaj and M. Tagina, “VFAST TCP: An improvement of FAST
TCP,” in Computer Modeling and Simulation, 2008. UKSIM 2008. Tenth
International Conference on. IEEE, 2008, pp. 88–93.

[23] J. Sing and B. Soh, “TCP New Vegas: improving the performance
of TCP Vegas over high latency links,” in Network Computing and
Applications, Fourth IEEE International Symposium on. IEEE, 2005,
pp. 73–82.

[24] C. P. Fu and S. C. Liew, “TCP Veno: TCP enhancement for transmission
over wireless access networks,” IEEE Journal on selected areas in
communications, vol. 21, no. 2, pp. 216–228, 2003.

[25] R. King, R. Baraniuk, and R. Riedi, “TCP-Africa: An adaptive and fair
rapid increase rule for scalable TCP,” in INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 3. IEEE, 2005, pp. 1838–1848.

[26] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Compound TCP
Approach for High-Speed and Long Distance Networks,” in Proceed-
ings IEEE INFOCOM 2006. 25TH IEEE International Conference on
Computer Communications, 2006, pp. 1–12.

[27] A. Baiocchi, A. P. Castellani, and F. Vacirca, “YeAH-TCP: yet another
highspeed TCP,” in Proc. PFLDnet, vol. 7, 2007, pp. 37–42.

[28] S. Liu, T. Başar, and R. Srikant, “TCP-Illinois: A loss-and delay-based
congestion control algorithm for high-speed networks,” Performance
Evaluation, vol. 65, no. 6-7, pp. 417–440, 2008.

[29] H. Shimonishi and T. Murase, “Improving efficiency-friendliness trade-
offs of TCP congestion control algorithm,” in Global Telecommunica-
tions Conference, 2005. GLOBECOM’05. IEEE, vol. 1. IEEE, 2005,
pp. 5–pp.

[30] K. Kaneko, T. Fujikawa, Z. Su, and J. Katto, “TCP-Fusion: a hybrid con-
gestion control algorithm for high-speed networks,” in Proc. PFLDnet,
vol. 7, 2007, pp. 31–36.

[31] H. Shimonishi, T. Hama, and T. Murase, “TCP-adaptive reno for
improving efficiency-friendliness tradeoffs of TCP congestion control
algorithm,” in Proc. PFLDnet. Citeseer, 2006, pp. 87–91.

[32] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Sanadidi, and M. Roccetti,
“Tcp libra: Exploring rtt-fairness for tcp,” in International Conference
on Research in Networking. Springer, 2007, pp. 1005–1013.

[33] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a Deeper Understanding of TCP BBR Congestion
Control,” in IFIP Networking 2018, Zurich, Switzerland, May 2018.

[34] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of BBR
congestion control,” in 2017 IEEE 25th International Conference on
Network Protocols (ICNP), Oct 2017, pp. 1–10.

[35] S. Ma, J. Jiang, W. Wang, and B. Li, “Towards RTT Fairness of
Congestion-Based Congestion Control,” CoRR, vol. abs/1706.09115,
2017. [Online]. Available: http://arxiv.org/abs/1706.09115

[36] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “{PCC}:
Re-architecting congestion control for consistent high performance,”
in 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), 2015, pp. 395–408.

[37] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A Quantitative Measure
of Fairness and Discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, 1984.

[38] “The chromium projects: Chromium,” https://www.chromium.org/
Home, accessed: 04-03-2019.

[39] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of bbr
congestion control,” in 2017 IEEE 25th International Conference on
Network Protocols (ICNP). IEEE, 2017, pp. 1–10.

[40] T. Kozu, Y. Akiyama, and S. Yamaguchi, “Improving rtt fairness on
cubic tcp,” in 2013 First International Symposium on Computing and
Networking, Dec 2013, pp. 162–167.


