
Hic Sunt Proxies: Unveiling Proxy Phenomena in
Mobile Networks

Raffaele Zullo†, Antonio Pescapé† Korian Edeline‡, Benoit Donnet‡,
†Università di Napoli Federico II, Italy - r.zullo@studenti.unina.it, pescape@unina.it
‡Montefiore Institute, Université de Liège, Belgium - firstname.name@ulg.ac.be

Abstract—Over the years middleboxes have established them-
selves as a solution to a wide range of networking issues,
progressively changing network landscape and turning the end-
to-end principle into a reminder of an Arcadian age of the
Internet. Among them, proxies have found breeding ground
especially in mobile networks that, moreover, have become the
most popular way to access the Internet.

In this paper, we present Mobile Tracebox, an Android
measurement tool, and describe how its methodology, coping
with the lack of privileges of mobile devices, can not only detect
proxies but also characterize different facets, from their transport
layer behavior to their location inside the network. Data collected
from a crowdsourced deployment over more than 90 carriers
and 350 Wi-Fi networks contributes to describe the potential
of the tool and to draw a panorama of proxies across mobile
networks. Our study confirms their prevalence and reveals that
their scope is not limited to HTTP but can include several TCP
services and even non standard ports. We detail the different
implementations observed and delve into specific aspects of their
configuration, like the initial Receive Window, the Window Scale
factor or the set of Options supported, to understand how proxies
can affect performance or obstruct extensions. Finally, we focus
on fingerprinting and attempt to draw a dividing line between
packet modifications performed by proxies and those performed
by other classes of middleboxes.

I. INTRODUCTION AND RELATED WORK

Internet landscape has gradually changed over the years
with middleboxes relentlessly gaining ground and embracing
a broadening range of functions. The end-to-end principle, a
pillar of Internet’s early days [1], has increasingly come into
question from various directions [2], [3]. Not only network
infrastructure has changed but also the way we access the
Internet has mutated with the rise of mobile devices at
the expense of desk-based and notebook computers. Mobile
networks, indeed, with their limited resources (in terms of
spectrum, IP address space, etc.) and their innate complications
due to user mobility have revealed themselves as the perfect
environment for middleboxes proliferation.

Proxies are one of the most popular middleboxes [4], acting
as an intermediary between a client and a server. They can
be deployed for a wide range of reasons: from enhancing
performance on network paths where native performance suf-
fers due to characteristics of the link (Performance Enhancing
Proxies) [5] to serving specific tasks at application layer, e.g.,
HTTP caching, transcoding, even malicious code filtering.
Unfortunately, they may also serve less benevolent purposes
like content blocking or censorship and sometimes can expose
user’s security and privacy to unexpected vulnerabilities; even

tasks implemented to improve performance, e.g., lowering
images quality to reduce fetch time, can on the other hand
lead to user’s QoE (Quality of Experience) degradation.

Recent works have shed the light on the prevalence of mid-
dleboxes and their impact. Sherry et al. [4] demonstrated that
networks may contain as many middleboxes as routers, while
McQuistin et al. [6] showed how middleboxes are crippling
the deployment of transport layer alternatives. In the last few
years, the measurement paradigm has also evolved [7] with the
rise of crowdsourcing: a novel approach in which users can
cooperate to collect measurement data drawing a panorama of
Internet that cannot be achieved from fixed observation points
[8]. With this approach Wang et al. [9] surveyed more than
100 carriers revealing NAT and firewall policies. Weaver et
al. [10], leveraging a wide crowdsourced dataset and multiple
detectors at the transport and application level, drew a detailed
taxonomy of web proxies based on the purposes for which
they are deployed. Vallina-Rodriguez et al. [11] analyzed 71
mobile providers in 6 countries showing, along with network
configurations, business models and relationships between
operators, how pervasive HTTP and DNS proxies are. Xu et
al. [12] used an experimental testbed to investigate transparent
web proxies in the four major US mobile providers and
how they behave in presence of real web workloads. Recent
works has also shown how proxies can degrade performance
instead of improving it compared to the old fashion end-
to-end communication [13]. Furthermore, Honda et al. [14]
focused on how proxy can interfere with TCP options. While
it’s acknowledged that proxies are part of today’s Internet, it
is not well known if they are limited to a few services (HTTP,
DNS) and what is their detailed behavior at transport level.

In this paper we present Mobile Tracebox, a network mea-
surement app for Android that embodies different techniques
to cope with the multifaceted nature of proxies as well as with
the innate limitations of mobile devices as measurement tools,
and provide an overview of proxies in mobile Internet resulting
from its crowdsourced deployment. Unlike other works that
rely on application-level interference to discover proxies, we
investigate TCP-terminating proxies by analyzing TTL alter-
ations. This broadens the range of detectable proxies to all
TCP ports, even non-standard. To complete the picture we
also investigate the presence of packet-rewriting proxies that
modify traffic as it flows through them without splitting the
connection. Furthermore we detail the different configurations
observed and discuss their impact on several performance



Version IHL DSCP ECN Total Length
ID D

F
M
F Frag Offset

TTL Protocol Checksum
Source Address

Destination Address

Source Port Destination Port
Sequence Number

Ack Number
Offset NC E UA P R S F Window

Checksum Urg Pointer

Read / write
Read only
Available in
rooted mode only

Fig. 1: Mobile Tracebox: IP and TCP header of TCP probe
packets forged in non rooted mode.

aspects, including the initial and the maximum TCP Receive
Window, the handshake latency, the set of TCP extensions
supported. Finally we propose a new detection methodology
based on packet modifications performed by proxies and not
by other middleboxes.

II. MOBILE TRACEBOX

Methodologies to detect proxies, and more generally mid-
dleboxes, are diverse and can rely on active measurements
as well as passive measurements [15]. Mobile Tracebox [16],
belongs to the first school of thought: it sends specially crafted
packets to highlight intermediate boxes that modify those
packets or alter the path between source and destination. The
way the app forges probe packets is dual: when root privileges
are available it relies on raw sockets to set every single bit of
the packet, when root privileges are not granted it uses system
calls on regular sockets to manipulate IP and transport headers
of the packet sent (other than the payload). In rooted mode,
that has been presented in our previous work [17], the poten-
tially altered copy of the probe packet is retrieved either from
a controlled server or from the quoted packet inside ICMP
Time Exceeded messages generated during traceroute[18]. To
cope with the lack of privileges of Android devices available
to the vast majority of users and thus achieve a wider audience
for a crowdsourced measurement campaign, Mobile Tracebox
also resorts to non raw sockets to send probe packets: using
bind(), setsockopt(), etc, the value of a number of
IP and TCP header fields can be explicitly set or at least
manipulated; for a few other fields, that cannot be altered,
it is still possible to retrieve the value set by default. Probe
packets forged in non rooted mode are sent to a controlled
server that returns them to the app in the exact shape they
have been received: the app in turn partially reconstructs the
packet sent and then compares the fields eligible to be tested.
Fig. 1 summarizes IP and TCP header fields that can be tested
in non rooted mode. In addition the following TCP Options
can be tested on SYN probe packets: Maximum Segment Size
(MSS), Sack Permitted (SP), Timestamp (TS) and Window
Scale (WS). The app can detect if each Option is removed
by a middlebox and for MSS and WS if the Option value
is altered along the path (for TS the value cannot be tested,
while SP has no explicit Option value). It is also possible
to detect if those Options are present in the received SYN

TABLE I: Mobile Tracebox: TCP Options on SYN probe
packets forged in non rooted mode.

Option Kind Value Note

MSS 2 Read / write
WS 3 Read / write
SP 4 -
TS 8 No access
TFO (Exp.) 254 - Android 6.0 or later

ACK allowing to test both directions of the path. Starting
from version 6, TCP Fast Open is available on Android
(using the experimental kind, 254, and the magic number
0xF989): a specific probe to test it is included in the suite.
Table I summarizes TCP Options supported in non rooted
mode. Since direct access to ICMP messages requires root
privileges, the standard tracebox probe cannot be ported to
non rooted devices. In order to test path length it is replaced
by a pseudo-traceroute probe in which a regular TCP socket
is used and connect() is iteratively called with incremental
TTL: this allows to identify the number of hops necessary to
reach the responding host, whether the intended destination
or a TCP-terminating proxy. The range of non rooted probes
is completed by a non-responding test in which a SYN is
sent to a non-responding server to discover a spoofed SYN
ACK. Mobile Tracebox makes use of payload packets other
than SYN packets for probing: for instance it can send well
crafted HTTP requests allowing to detect interference also
at application layer. Although it is the main service tested,
probes are not limited to HTTP (port 80): available probes
also test FTP (21), SMTP (25), HTTPS (443), SIP (5060) and
a non standard port (10000). Destination port as well as other
parameters can be widely customized by users.

Measurement campaign. We deployed Mobile Tracebox
by the means of crowdsourcing, recording more than 800
downloads. In this work we analyze data collected in the first
30 months after the release of the non rooted version of the
app, from July 2016 till December 2018. Due to the nature
of our analyses we had to exclude networks tested only in
rooted mode and also tested in non rooted mode but without
preserving the default settings on the analyzed fields. In light
of this the dataset studied in this work covers 96 carriers and
385 Wi-Fi networks in 69 countries. We will resort to rooted
probes collected from a subset of these (17 cellular and 32
Wi-Fi networks) only to delve into a few specific aspects that
could not be discerned otherwise. Although the app supports
IPv6 in both modes, IPv6 probes collection was quite limited,
especially from carriers, and, thus, this work will focus on
IPv4 measurements only.

III. UNVEILING PROXIES

Unlike other works that rely on application-level interfer-
ence [11] [19] [20] [21] to reveal the presence of a proxy
along a path, we primarily rely on the concept that a proxy
splits a TCP connection in two parts and analyze path length
anomalies ascribable to TTL rewriting that emerged from
different kinds of probes; for the sake of completeness, we also



TTLReceived

Pr
ob

es
(L

og
)

0 32 64 96 128 160 192 224 255
100

101

102

103 No Proxy TTL set to 128
TTL set to 64 TTL set to 255

Fig. 2: Proxy detection through TTL rewriting: TTL distribu-
tion of received probe packets sent with an initial TTL of 32.

explore the possibility of proxies modifying HTTP content or
more generally TCP payload without actually splitting TCP
connection.

When a SYN sent by the client reaches the proxy it responds
with a SYN ACK either immediately or upon SYN ACK recep-
tion from the intended destination (to which it has forwarded
its own SYN). SYN generated by the proxy is expected to carry
a default TTL value (e.g., 64) potentially causing an inconsis-
tency in the path length, measured as the number of hops
necessary to reach the responding node (pseudo-traceroute
probes) or as the difference between sent packet and received
packet TTL (server-based probes). Analyzing path length of
pseudo-traceroute probes a considerable amount of anomalous
values, especially ranging from 1 to 5 hops, emerged: although
the invariance of the path length when targeting different
destinations can further confirm the presence a proxy, it’s not
easy to rigorously draw a dividing line between paths with and
without a proxy solely based on the path length. Server-based
probes classification can instead be more accurate. Default
TTL values used by Mobile Tracebox are 32 and 64: since
64 is a typical TTL value also used by proxies, only probes
using TTL of 32 are suitable for proxy detection. In Sec. IV,
we will discover how we can extend proxy revelation also
to probes using a TTL of 64 (i.e., without relying on TTL
alterations). Fig. 2 displays the TTL distribution of received
SYN probe packets sent with an initial TTL of 32. The bell
curve of the values compatible with the initial value is clearly
visible in the region on the left of the dashed line, ranging
from 3 to 25, but there are also three replicas above 32 that are
instead compatible with a proxy along the path rewriting TTL
respectively to 64, 128 and 255. The only TTL values outside
of these 4 areas (158-160) were recorded from devices with a
US sim card roaming in Europe: since roaming can indeed add
further variability to measurements, roaming probes have been
isolated in the data cleansing phase, and, thus, those values
are not reported in the figure. The plot also shows that 64
is the most common default TTL among proxies analyzed in
our dataset, confirming why probes with initial TTL of 64 are
not eligible for this classification. The other probes collected
can help to further validate our methodology: (i) path length
distribution of pseudo-traceroute probes targeting our server
suggests that portion of paths with a length >32 is negligible;
(ii) probe packets sent with initial TTL of 64 were received
with a minimum TTL of 34, sign that no proxy using a default
TTL of 30-32 was observed.

Proxy scenarios. The previous classifications can be easily
extended to probes using payload packets instead of SYN:
this is crucial to check if payload modifications (especially
HTTP) are always performed by TCP-terminating proxies or,
in absence of a TTL alteration, are ascribable to packet-
rewriting proxies [10]. It is also necessary to highlight a class
of proxies that don’t alter TTL on SYN but rewrite it on
following payload packets: TCP handshake takes place as the
proxy was not present, while subsequent packets are actually
reforged by the proxy with its default TTL (Fig. 3b). Results of
the non-responding server test instead can be used to further
discriminate whether a proxy altering SYN responds with a
SYN ACK immediately (Fig. 3d) or after SYN ACK reception
from the destination server (Fig. 3c). We will further delve in
the early SYN ACK scenario in the following section.

IV. RESULTS

Proxy prevalence. We now use the classification described
in the previous section to assess the prevalence of proxies
across mobile networks. Fig. 4 displays the percentage of
networks exhibiting a proxy on HTTP port as well as on the
other ports tested by Mobile Tracebox. Our results confirm
how HTTP proxies are widely deployed in mobile Internet and
also how their detection is not necessarily constant throughout
all the measurements recorded from a single network, espe-
cially if cellular. This phenomenon is not limited to proxies:
data collected shows that also the presence and properties of
other middleboxes (Carrier-Grade NATs, middleboxes adding
or bleaching TCP Options, remarking IP DSCP, etc) can vary
within the same carrier. We also tried to understand if the
cellular technology used by the device played a role with
regard to proxy presence: only 6 networks actually showed
a significant difference in percentages (>20%) when probed
with distinct technologies. Our findings also show that proxies
are not limited to HTTP but can involve several TCP services
and sometimes all TCP traffic. Although the presence of only
an HTTP proxy is still the most common scenario, we also
found networks in which only another specific service (e.g.
SIP or SMTP) is proxied, or HTTP is proxied along with
other services (e.g. HTTP, HTTPs and FTP). We also observed
networks where all ports tested, including non-standard port
(10000), exhibited a proxy. With regard to the last case we
further tested 3 networks on up to 100 non-standard ports and
all of them revealed a proxy, leading us to infer that all TCP
traffic was actually routed through a proxy.

Packet-rewriting proxies. Our dataset also reveals a num-
ber of HTTP request manipulations operated by proxies
(HTTP Header injections and modifications): almost all these
alterations are accompanied by TTL anomalies, sign that they
are performed by TCP-terminating proxies and not by packet-
rewriting proxies. We identified one carrier and two Wi-Fi in
which HTTP alterations occurred without showing an anoma-
lous TTL. For the carrier we collected also a rooted tracebox
probe [18], that confirmed the Header injection performed by
a node along the path: that middlebox was not reforging the
packet (neither TTL nor other fields were altered) but just



Client No Proxy Server

(a) No proxy

Client ServerProxy

(b) Proxy not altering
SYN

Client Proxy Server

(c) Proxy altering SYN
(without early SYN ACK)

Client Proxy Server

(d-1) SYN not deferred

Client Proxy Server

(d-2) SYN deferred till ACK

Client Proxy Server

(d-3) SYN deferred till Payload

(d) Proxy with early SYN ACK

Fig. 3: Observed scenarios.

HTTP FTP SMTP HTTPS SIP 10000
0

20

40

Port

N
et

w
or

ks
(%

) Cellular
Wi-Fi
Variable presence

Fig. 4: Proxy detection on different TCP Ports.

TABLE II: Proxy implementations statistics.

Scenario Fig. Cellular Wi-Fi

SYN not altered 3b 14% 15%
SYN altered, no early SYN ACK 3c 4% 8%
SYN altered, early SYN ACK 3d 82% 77%

modifying the payload of the packet as it traversed it, without
splitting the connection.

TCP-terminating proxies. We now evaluate the extent of
the different proxy scenarios depicted in Fig. 3. Table II shows
the proportion of the implementations observed, with the proxy
with early SYN ACK being the most common typology in both
categories of mobile networks.

Deferred Handshake. Early SYN ACK decouples the hand-
shake between client and proxy from the handshake between
proxy and server: Fig. 3d-1 shows a proxy that concomitantly
responds with a SYN ACK to the client and forwards its SYN
to the original destination but it is also possible that the proxy
delays the transmission of its SYN. To discern this aspect we
set up a specific test that operates in 3 phases: (i) the client
sends a SYN to the server; (ii) the client sends a SYN and the
following ACK; (iii) the client performs handshake and sends a
payload packet. At the end of each phase the client interrogates
the server to check if a SYN has been received from the
previously verified server-reflexive address of the client. This
test reveals if the proxy retains SYN waiting for client’s ACK
or payload packet prior to contacting the destination. Although
it is required to gain root privileges to expose this subtle
dynamic, this probe does not rely on synchronization between
client and server [12], that is a requisite harder to be achieved
in a crowdsourced measurement. Xu et al. already exposed
with their experimental testbed HTTP proxies in US carriers
that defer handshake till reception of the actual HTTP request
(Fig. 3d-3) [12]. With this test we also unveiled an additional
deferred connection scenario in which proxy’s handshake with

the server is deferred till the completion of the handshake with
the client (Fig. 3d-2). Although implications on latency must
be taken into account in both cases, scenario in Fig. 3d-2 is
less harmful when a client establishes a connection in advance
and not immediately before payload is ready to be transmitted.

Initial Receive Window. We now delve into specific as-
pects of proxies configuration, to understand their impact on
performance. We start from the Receive Window advertised on
the first payload packet sent by the client after the handshake:
Fig. 5 displays the CDF of the initial Receive Window as
set by Android devices and by proxies. A preliminary survey
on several Android devices revealed that this parameter, as
well as the Window Scale factor, can vary depending on the
network interface used (cellular or Wi-Fi) and therefore those
values are plotted separately. We can easily acknowledge how
the most recurring values for proxies are in range between
14K and 30K while for devices are around 64K and above:
and in fact in 55% of the probes the Window Size advertised
by the proxy is lower than the one originally advertised by
the device: this can slow down initial data transmission by
the server compared to the non-split connection. The Initial
Receive Window limits the number of bytes that can be sent
by the counterpart after the first request without waiting for
an ACK. RFC6928 [22] recommended in 2013 to increase the
initial Congestion Window (IW) to 10 segments. In 2017 Ruth
et al. [23] observed how 85% of HTTP servers and 80% of
TLS servers from Alexa top 1M list already supported this
recommendation. In order to realize the full benefit of the
large IW on server side, implementations on client side need
to advertise an initial Receive Window of at least 10 segments.
To understand this aspect we scaled the values in Fig. 5 by
the MSS advertised on the SYN preceding the payload packet
and compared devices and proxies settings to the current
specification of 10 segments in Table III: the percentage of
proxies that cannot benefit from servers supporting IW10 is
higher than the the percentage of devices.

TCP Options. Mobile Tracebox can detect if TCP Options
tested (see Table I) are actually carried by the SYN that reaches
the controlled server but also if they are carried by the SYN
ACK received from the responding host, and thus, in presence
of a proxy, can test if the proxy supports those Options on both
connections. Fig. 6 reports the percentage of proxies adopting
the tested Options. Although the overall support of SP, TS
and WS options is always above 80%, from our analysis it
emerged that some cellular proxies support an Option only



Initial TCP Received Window (KB)

C
D

F

0 8 16 24 32 40 48 56 ≥64
0

0.2

0.4

0.6

0.8

1
Android (Cellular IF)

Android (Wi-Fi IF)

Cellular Proxies

Wi-Fi Proxies

Fig. 5: Initial TCP Window as set by Android devices (using
cellular and Wi-Fi interfaces) and by proxies.

TABLE III: Initial TCP Receive Window (in number of
segments) as set by Android devices and by proxies.

Window Cellular Wi-Fi
(# of segments) Device Proxy Device Proxy

<10 7% 15% 0% 20%
=10 30% 31% 29% 18%
>10 63% 54% 71% 62%

MSS SP TS WS TFO
0

20

40

60

80

100

Options

Pr
ox

ie
s

(%
)

Cellular
Wi-Fi
Proxy to Client only
Proxy to Server only

Fig. 6: TCP Options adoption by proxies.

on the connection between proxy and client and not on the
connection between proxy and server; the symmetric behavior
has been observed for Wi-Fi proxies. Since those options are
designed for large Bandwidth-Delay Product (BDP) networks,
a possible explanation of these settings is that in cellular net-
works the portion of the path with higher delay is presumably
from the client to the proxy while in Wi-Fi is from the proxy to
server. No proxy was traversed by the TFO Option: this shows
that analyzed proxies don’t support the TFO implementation
tested (i.e., using experimental kind, 254) but also suggests that
the set of Options on proxy’s SYN is fixed and do not depend
on client’s SYN: where available, rooted probes using SYN
with MPTCP Option, an unassigned Option kind or without
any Options corroborate this hypothesis.

Window Scale factor. The Window Scale factor determines
the maximum Receive Window that can be advertised, which
is crucial, especially on paths with a high round-trip time,
since the throughput is limited by the ratio RWIN/RTT. Fig. 7
displays the CDF of the values set by Android devices and by
proxies (proxies that don’t support WS on the connection with
the server are excluded). In this case the distributions are very
close and in fact only in 40% of the recorded probes the proxy
sets a WS value lower than the original. The plot reports the
WS advertised by proxy’s SYN: we also observed that 22% of
proxies advertised different WS factors on the connection to
the client and to the server.

TCP ECN. TCP ECN is not enabled by default on Android

TCP Window Scale

C
D

F

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

Android (Cellular IF)

Android (Wi-Fi IF)

Cellular Proxies

Wi-Fi Proxies

Fig. 7: TCP Window Scale as set by Android devices (using
cellular and Wi-Fi interfaces) and by proxies.

and, thus, it could not be tested on client-to-proxy connection.
However to investigate ECN deployment across proxies we
inspected SYN packets sent by all the proxies tested, checking
if the flags used to negotiate ECN (CWR and ECE) were set:
we identified only one UK carrier proxy supporting ECN by
default on outgoing connections.

Proxy location. We now investigate proxy location inside
the network. As detailed in Sec. III a single traceroute probe
is not enough to assert the presence of a proxy: for this reason
we consider only probes in pseudo-traceroute mode preceded
by a server-based probe that has highlighted the presence of
a proxy altering SYN. Fig. 8 shows how cellular proxies are
located at up to six hops away from the source while Wi-Fi
proxies are generally closer, with the majority of them located
at the first node.

Fingerprinting. Finally, we attempt to fingerprint proxies
in terms of packet modifications drawing a dividing line with
other classes of middleboxes. Fig. 9 compares modifications
detected on paths with a proxy and without. We can easily
acknowledge that modifications on IP Don’t Fragment, TCP
Window, Window Scale, and to a lesser extent on TCP Offset
(and consequently on IP Total Length) are almost exclusively
ascribable to proxies. These findings help us to discriminate
what happens in the proxy scenario depicted in Fig. 3b, in
which SYN did not exhibit TTL rewriting while following
payload packets did. For a subset of these proxies, SYN packet
had neither TTL alteration nor other fingerprinting modifica-
tions leading us to infer that the original SYN flowed till the
destination host. For another subset of proxies, modifications
on IP Don’t Fragment and TCP Window were detected on SYN
(even in absence of a TTL alteration) other than on payload
packets, so it is more likely that the proxy actually forged its
own SYN although keeping the original TTL. The previous
considerations can also be of help to infer proxy presence
in server-based probes where TTL of 64 was used and more
generally when we cannot rely on TTL alterations (e.g., TTL
cannot be manipulated).

Measurement caveats. A few caveats emerged from the
this section and Sec. III: (i) detection methodologies based on
a non-responding test and more generally on a SYN only test
are not capable to detect all TCP-terminating proxies, due to
the presence of proxies not employing early SYN ACK and
also not altering SYN; (ii) detection methodologies based on
fingerprinting packets received on a specific port (e.g. HTTP)



Number of hops

Pr
ox

ie
s

(%
)

1 2 3 4 5 6

10

20

30

40

50

60 Cellular
Wi-Fi

Fig. 8: Proxy location in mobile networks.

IP
DSCP

IP
DF

IP
Source

Addr

IP
TotalL

ength
IP

TTL

TCP Offse
t

TCP Source
Port

TCP UrgPointer

TCP Window

MSS modified

SP stri
pped

TS stri
pped

WS stri
pped

WS modified
0

20

40

60

80

100

Fields

Pr
ob

es
(%

)

No Proxy
Proxy

Fig. 9: Fingerprinting proxies: comparison of packet modifi-
cations detected on paths with a proxy and without.

and on a non-standard port do not succeed in networks where
all TCP traffic is routed through a proxy; (iii) a measured
path length up to 6 hops does not rule out the presence of
a proxy; (iv) testing if a certain feature (e.g. TCP Options,
ECN) is supported by a proxy on client-to-proxy or proxy-to-
server connection does not imply that is supported or not on
the symmetric connection.

V. CONCLUSIONS AND FUTURE WORK

Detection and characterization of proxies in mobile net-
works can be complex due to two factors: their multifaceted
interference and the innate limitations of mobile devices as
network measurement tools. We addressed these issues with
Mobile Tracebox that embodies diverse methodologies to
detect proxies as well as other classes of middleboxes. Instead
of relying only on application layer modifications as several
previous works, we mainly, but not exclusively, grounded on
TTL alterations ascribable to proxies to reveal their presence.
Analyzing data collected by means of crowdsourcing we
showed their prevalence and how their range is not limited
to HTTP but can include other services and even all TCP
traffic. We described the transport layer behavior of the proxies
observed and detailed several aspects of their configuration
(from the initial Receive Window to the range of TCP exten-
sions supported) to understand their impact on performance.
We plan to implement a new probing scheme to test further
aspects and continue our crowdsourced study to understand
the trend of proxies in mobile Internet.

ACKNOWLEDGMENTS

The research described in this paper has been partially funded by the
European Union’s Horizon 2020 research and innovation program under grant
agreement No 688421. The opinions expressed and arguments employed
reflect only the authors’ views. The European Commission is not responsible
for any use that may be made of that information. The work of Antonio

Pescapé has been partially supported by the art. 11 DM 593/2000 for NM2
srl.

REFERENCES

[1] B. E. Carpenter, “Architectural principles of the Internet,” Internet
Engineering Task Force, RFC 1958, June 1996.

[2] J. Kempf and R. Austein, “The rise of the middle and the future of
end-to-end: Reflections on the evolution of the Internet architecture,”
Internet Engineering Task Force, RFC 3724, March 2004.

[3] A. Botta and A. Pescapé, “Monitoring and measuring wireless net-
work performance in the presence of middleboxes,” in 2011 Eighth
International Conference on Wireless On-Demand Network Systems and
Services, Jan 2011, pp. 146–149.

[4] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM, August 2012.

[5] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, “Perfor-
mance enhancing proxies intended to mitigate link-related degradation,”
Internet Engineering Task Force, RFC 3135, June 2001.

[6] S. McQuistin and C. Perkins, “Reinterpreting the transport protocol stack
to embrace ossification,” in Proc. IAB Workshop on Stack Evolution in
a Middlebox Internet (SEMI), January 2015.

[7] Y. Shavitt and E. Shir, “DIMES: Let the internet measure itself,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 5, pp. 71–74,
October 2005, see http://www.netdimes.org.

[8] F. Fuchs-Kittowski and D. Faust, “Architecture of mobile crowdsourc-
ing systems,” in Proc. International Conference on Collaboration and
Technology (CRIWG), September 2014.

[9] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story of
middleboxes in cellular networks,” in Proc. ACM SIGCOMM, August
2011.

[10] N. Weaver, C. Kreibich, M. Dam, and V. Paxson, “Here be web proxies,”
in Proc. Passive and Active Measurement Conference (PAM), March
2014.

[11] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, N. Weaver, and
V. Paxson, “Beyond the radio: Illuminating the higher layers of mo-
bile networks,” in Proc. International Conference on Mobile Systems,
Applications, and Services, May 2015.

[12] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govin-
dan, “Investigating transparent web proxies in cellular networks,” in
Proc. Passive and Active Measurement Conference (PAM), March 2015.

[13] J. Hui, K. Lau, A. Jain, A. Terzis, and J. Smith, “How youtube
performance is improved in t-mobile network,” in Proc. Velocity, June
2014.

[14] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP,” in Proc. ACM Internet
Measurement Conference (IMC), November 2011.

[15] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin, “Detecting
cellular middleboxes using passive measurement techniques,” in Proc.
Passive and Active Measurement Conference (PAM), March 2016.

[16] R. Zullo, “Mobile tracebox,” 2016. [Online]. Available: http://play.
google.com/store/apps/details?id=be.ac.ulg.mobiletracebox

[17] R. Zullo, A. Pescapé, K. Edeline, and B. Donnet, “Hic sunt NATs: Un-
covering address translation with a smart traceroute,” in Proc. IEEE/IFIP
Workshop on Mobile Network Measurement (MNM), June 2017.

[18] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proc. ACM Inter-
net Measurement Conference (IMC), October 2013.

[19] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Il-
luminating the edge network,” in Proc. ACM Internet Measurement
Conference (IMC), November 2010.

[20] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, and V. Paxson,
“Header enrichment or isp enrichment?: Emerging privacy threats in
mobile networks,” in Proceedings of the 2015 ACM SIGCOMM Work-
shop on Hot Topics in Middleboxes and Network Function Virtualization.
ACM, 2015, pp. 25–30.

[21] S. Huang, F. Cuadrado, and S. Uhlig, “Middleboxes in the Internet: a
HTTP perspective,” in Proc. Network Traffic Measurement and Analysis
Conference (TMA), June 2017.

[22] H. J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Rfc6928-increasing
tcp’s initial window,” 2013.

[23] J. Rüth, C. Bormann, and O. Hohlfeld, “Large-scale scanning of tcp’s
initial window,” in Proceedings of the 2017 Internet Measurement
Conference. ACM, 2017, pp. 304–310.


