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Abstract—Recent years have seen the rise of middleboxes, such
as NATs, firewalls, or TCP accelerators. Those middleboxes play
an important role in today’s Internet, and are now extensively
deployed in various networks including corporate networks, Tier-
1 ASes, cellular networks, and WiFi hot-spots.

Unfortunately, despite the added value that they bring to
networks, they radically change the transport paradigm from
the legacy end-to-end principle, and drive increasing complexity
in the path. The consequences of these changes are a wide variety
of simple to subtle impairments to protocols and features, that in
turn lead to the ossification of the network infrastructure. While
the latter is now a well-known problem, its causes are not that
much understood.

To fill this gap, we provide a more detailed explanation of the
factors of the transport-level ossification, and we give insights
on their prevalence in the wild. We extract path conditions by
processing a large collection of observations of middlebox in-path
packet manipulations, and we categorize the observed transport
impairments based on the complications that they engender. We
show that more than one third of network paths are crossing at
least one middlebox, and a substantial percentage are affected
by feature or protocol-breaking policies. Finally, we show that
the majority of the devices that implements them are located in
edge networks.

I. INTRODUCTION

It is now acknowledged that the initial end-to-end paradigm
of the TCP/IP architecture, where both participants in a
communication would assume that all exchanged information
addressed to the other participant would remain untouched
in-transit, has come to an end. This evolution was caused
by the progressive introduction of middleboxes, i.e., network
appliances manipulating traffic for purposes other than packet
forwarding [1], going from “simple” NATs to complex multi-
policy traffic engineering systems that alter packets up to the
application layer.

Today, middleboxes are deployed in all possible networks,
and their number continues to grow. Corporate networks
account for as many middleboxes as traditional network
equipment [2]. Tier-1 ASes are deploying more and more
middleboxes [3]. Cellular networks also rely on strategically
positioned middleboxes (e.g., Carrier-Grade NATs) [4]. Most
Customer-Premise Equipment (e.g., Home Gateways) also
implements middlebox policies [5], [6]. Moreover, the intro-
duction of Network Function Virtualization (NFV) and the
recent progresses of virtualization technologies (i.e., hardware
virtualization, containerization) have greatly facilitated and
popularized middlebox development and deployment [7].

Regrettably, middleboxes have also been shown to engender
multitude of connectivity, performance, and security issues.

Establishing TCP connections with Explicit Congestion Noti-
fication (ECN) enabled can lead to connectivity blackouts [8].
Mobile carriers using middleboxes to impose aggressive time-
out value for idle TCP connections increase mobile devices
battery consumption. Careless TCP middleboxes can facilitate
certain network attacks, and even bring new attack vectors [4].

Furthermore, middleboxes have a negative impact on the
TCP protocol, by hindering its evolution [9], [10]. They are
likely to modify, filter, and drop packets that do not conform
to their own policies, which can be over conservative, for
example by suspiciously limiting the authorized features to
a restricted subset. Generally speaking, we are witnessing
the network infrastructure ossification. Alternative transport
protocols that do not rely on TCP nor UDP, such as the
Datagram Congestion Control Protocol (DCCP) [11] or the
Stream Control Transmission Protocol (SCTP) [12], despite
being standardized, fail to be deployed at large scale. The
situation of the application layer is similar, with HTTP being
the de-facto standard. TCP features also experience a myriad
of tampering scenarios, which hampers TCP innovation initia-
tives [13].

The rationale behind such a blatant antagonism between
innovation and network value is the reflect of that between the
Internet stakeholders. Middleboxes are unilaterally deployed to
fulfill manufacturers or network provider short-term commer-
cial goals, while path transparency advocators have for only
purpose to improve the Internet in the long-term [14], [15].
Because of this ongoing contention, researchers have to find
devious way to produce innovation.

To overcome this, protocol designers have to ensure the
middlebox-proofness of their solution. For example, recent
discussions lead to the choice of UDP as a lightweight sub-
strate for new protocols. Google’s Quick Internet Connections
(QUIC), currently used by Chrome browser, is a famous
example of UDP-based protocol. It incorporates a multiplexed
stream transport over UDP and its own application-level trans-
port [16]. The design of the MultiPath TCP (MPTCP) feature,
also required dedicated efforts to consider all possible in-path
tampering and avoid unforeseen middlebox impairments [10].

In this paper, we study the transport-layer ossification and
propose a simple intermediate classification of its factors.
Based on a dataset collected from a large-scale campaign
of active probing towards the most popular HTTP servers,
we extract observations of in-path packet manipulations, we
process the obtained observations to highlight the responsible
middlebox policies and the path condition that they engender,



and we categorize middlebox-related impairments based on
the potential negative consequences that they create on TCP
traffic. Then, we use the resulting classes to give insights on
the deployment and prevalence of path-impairing middleboxes
in the wild. In particular, we show that a substantial percentage
of network path are affected by feature or protocol-breaking
middleboxes and that they are in majority located in the edge
networks. We advocate for protocol designers to include a
fallback mechanism carefully designed to ensure robustness
to the classes of middleboxes described in this paper.

The remainder of this paper is organized as follows: Sec. II
provides the required background on middlebox-related trans-
port impairments, on the classification of middlebox policies,
and on the algorithms we used to observe and analyze data;
Sec. III details the active measurement campaign, and the
analysis of gathered observations; finally, Sec. V concludes
this paper by summarizing its main achievements.

II. BACKGROUND

This section aims at providing the required background to
understand the technical causes of the transport ossification. It
shows examples of middlebox-related transport impairments,
discusses the categories of impairing middlebox behaviors
based on the potential path condition that they may cause, and
introduces tracebox [17], the active middlebox detection
algorithm that we used to build our dataset.

A. Impairments

Fig. 1 illustrates middlebox-induced transport impairments.
In particular, Fig. 1a displays a typical impairment in which
the TCP connection initiator wishes to negotiate the use
of MultiPath TCP (MPTCP) [18], allowing a single TCP
connection to simultaneously use multiple paths. To this end,
it sends a SYN packet that carries the MP_CAPABLE option. A
middlebox on the path to the destination is configured to drop
all packets containing this option, leading so in a connectivity
failure. Fortunately, MPTCP implements a fallback mechanism
designed to cope with such policies, and the initiator retries
to establish the connection with a regular TCP SYN. This
prevents a complete connectivity failure, but increases the
connection establishment latency.

In the example shown in Fig. 1b, the initiator attempts at
negotiating the use of the Selective ACKnowledgment (SACK)
option [19], by appending the dedicated SACK_Permitted
option to the SYN packet. However, along the path, a middle-
box strips the option and forwards the packet. The destination
is SACK-capable and wishes to advertise it to the initiator by
adding a SACK_Permitted option to the SYN+ACK packet,
but the same middlebox strips it. Both endpoints attempted to
negotiate the use of SACK, and failed.

In Fig. 1c, the connection initiator sends a TCP SYN packet
that carries a Window Scale (WS) option [20], which is used
to advertise windows larger than 216−1, with a value of 8 that
corresponds to a fixed factor of 28 to be applied to the target
receive window. A middlebox, along the path, changes this
value to 5, and the target stores this value. Reciprocally, the

target sends the SYN+ACK with a WS of 11, which is then
similarly modified. At the end of the TCP handshake, both
endpoints have incorrect received window scaling factors.

A second analogous example is shown in Fig. 1d in which
the initiator sends a SYN packet with a WS of 8 that reaches
the destination untouched. The target stores the value and
sends back a SYN+ACK packet with a WS of 11. Due to
asymmetric paths, the backward path crosses a middlebox that
is not on the forward path and that strips the WS option. The
initiator receives a SYN+ACK without WS, meaning that the
other endpoint does not agree in using window scaling, and
sets both factors value accordingly. The destination will then
use window scaling, but the not the initiator.

Fig. 1e illustrates a scenario in which a middlebox applies
modifications to packets that disrupt the TCP algorithm. The
initiator wishes to negotiate the use of SACK and sends a
SYN packet with SACK_Permitted. The destination agrees
and sends back a SYN+ACK with SACK_Permitted, which
results in enabling SACK for the connection. However, all
exchanged packets exchanged cross a middlebox that performs
a translation of TCP sequence numbers, in order to fix its lack
of randomness and counter prediction attacks. The recipient
sends three packet with 20 bytes of data, whose sequence
numbers are translated from sequence space A to B, and
the second packet experiences an unexpected drop. To notify
the loss, the initiator acknowledges the first packet by setting
ACK to B + 20, and the third with a SACK block. The
ACK packets crosses back the middlebox, which translates
the acknowledgment number, but unfortunately is not SACK-
aware, and forwards to the target an invalid SACK block.
Depending on its TCP implementation, the latter disregards
the invalid SACK and needlessly retransmits the third packet,
or discards the whole packet and stalls the connection.

B. Classification

We make an attempt at categorizing middlebox behaviors
based on the potential path condition that they may cause,
especially on transport protocols [21], [22], that aims at being
used as an intermediate level of analysis between specific
feature impairments and the global transport layer ossifica-
tion phenomenon. To this end, we generalize the examples
discussed in Sec. II-A.

The example of the MPTCP Option blocking shown in
Fig. 1a is readily generalized to any other path-dependent
connectivity issue. Indeed, we observe this behavior with, for
a given path, ECN-setup SYN dropped in-path and non-ECN-
setup SYN successfully reaching the destination. Similar events
also exists with TCP Options other than MPTCP. Generally
speaking, we notice a tendency of middleboxes to block
unknown TCP features or transport protocols [23], [24], either
explicitly (e.g., by sending TCP RST packets), or implicitly
by dropping packets, to prevent the use of features considered
unknown or unsafe. This category of impairment is symbolic
of the transport-layer ossification because it has the most
extreme consequences.



(a) MB blocks an MPTCP Option, resulting
in Blocked Traffic. * = Fallback Mechanism.

(b) MB strips the SACK-Permitted option,
disables the use of SACK (Disabled Feature).

(c) MB changes the WScale value
(Negotiation Disruption).

(d) MB changes the WScale value and
paths are asymmetric (Negotiation Disruption).

(e) A sequence number shuffling MB and
a loss event result in Disrupted Traffic.

Fig. 1: Middlebox (MB) Impairments

In Fig. 1b, a TCP Option is stripped from both TCP
SYN and SYN+ACK packets, resulting in the disabling of
the SACK feature. This behavior is naturally generalized to
any middlebox implementing feature disabling policies. For
example, we observe multiple middleboxes stripping TCP
options used for feature negotiation. In consequences, the
feature in question cannot be used on the affected paths. Other
variants, such as IP ECN bleaching middleboxes, that let the
endpoints negotiate the use of ECN, but make the receiver
unable to report congestion to the sender by systematically
setting the IP ECN bits to zero. All these conditions fall within
the same category of impairments, which is a softer version of
the blocked traffic middlebox policies, that aims at normalizing
traffic instead of blocking it.

Fig. 1c and Fig. 1d depict examples of middleboxes hinder-
ing the TCP window scaling factor announcement by rewriting
the WScale option. We gather all path conditions that can
potentially lead to negotiation disruption in the eponymous
category. It includes occurrences of in-path changes of one-
way state announcements. It also includes middleboxes with
feature-disabling policies, which combined with an unfortu-
nate load balancing or asymmetric paths, and in the absence
of a resilient fallback mechanism, lead to inconsistent protocol
states [10]. The latter is a subtle but direct consequence of the
paradigm shift to n-way peering relationships, with protocols
that still assume 2-way peering relationships [25].

Fig. 1e illustrates a scenario in which a connection is
established, and both endpoints agrees in using the SACK
option. A middlebox that re-shuffles TCP sequence number,
and a loss event, leads to a bandwidth reduction. We generalize

Fig. 2: tracebox

this scenario to all of in-path changes conditions that disrupts
transport control mechanisms and result in performance re-
ductions. For example, we observe cases of systematic changes
of the IP ECN bits to 11 (i.e., Congestion Encountered), which
results in substantial bandwidth reduction.

In summary, we categorize middleboxes based on the path
conditions and the brokenness that they may spark, which can
be a blocked traffic, disabled feature, negotiation disruption or
traffic disruption.

C. Detection

We used tracebox [17] to reveal the presence of middle-
boxes on a given path. Fig. 2 illustrates its operations.
tracebox probing mechanism is similar to

traceroute [26], and works by sending TCP packets
with incrementally increasing TTL values and by collecting
the triggered answers. Then, it reads the payloads of the
collected ICMP time-exceeded messages, which contains
a copy of the expired probe received by the originator of
the ICMP message, compares the value of each field of



the network and transport layer to the original probe, and
infer in-path changes. Moreover, the TTL value of the ICMP
message that first highlighted a modification gives a hint on
the middlebox location on the path. By forging probes while
varying the value of chosen fields and including different
combinations of TCP Options, analyzing the sequences of
triggered ICMP messages, tracebox is able to detect and
locate middleboxes.

However, RFC792 [27] and RFC1812 [28] recommends
ICMP messages to size the expired packet quotation differ-
ently, respectively, the entire IP header plus the first 64 bits
of the transport header, and the entire headers of the expired
packet. When a change is detected on a field located inside
RFC792 quoting range, tracebox locates it between the
router that first noticed the change, the informant router, and
the router preceding it. When the changed field is located
outside RFC792 quoting range, it introduces an uncertainty
zone, between the informant router, and the closest RFC1812-
compliant ingress router. We explain how we address this in
Sec. III-A.

We point out that our method cannot detect all middleboxes
along a path [17], and our results should, then, be considered
as a lower bound.

III. MEASUREMENTS

This section focuses on the quantification of middleboxes
path impairments. In particular, Sec. III-A details our data
collection process through large-scale tracebox probing,
and Sec. III-C confront the middlebox classification introduced
in Sec. II-B to the obtained dataset.

A. Data Collection & Processing

We collected our dataset by running tracebox on wired
IPv4 networks, from 89 PlanetLab nodes located in North
America (49), Europe (18), Asia (13), Oceania (6), and South
America (3), each probing towards 594,241 HTTP servers,
extracted from Alexa 1M list by selecting unique reachable ad-
dresses. The probes are TCP SYN packets designed to trigger
as many conditional middlebox policies as possible, by varying
the destination port (80, 8080, 8000, 8800, 443, 53, 12345,
1228, 34567)2, the set of widely used and impairment-prone
TCP Options (Maximum Segment Size, SACK-Permitted,
Window Scale and MultiPath TCP)3, over a three months
period. This aims at maximizing the detection of drop and
rewrite middlebox policies, which we analyze to highlight if
they are likely to cause network dysfunctions.

The resulting dataset consists in all received packets from
948,457 unique IP addresses located in 2,977 different ASes,

1This path condition is re-categorized as benign for certain analysis (See
Sec. III-C).

2Each port is used for an entire campaign, except 80 and 443 which are
used for three campaigns each.

3All campaigns are ECN-setup SYN probes with the same set of TCP
Options (MSS, SACK-P and WScale), except for destination ports 80 and
443, that both run an additional campaign with an extra MP_Capable option,
and another with a non-ECN-setup SYN probe without MP_Capable. The
DSCP and IP-ID fields are initialized to 0, and the MSS to 1460.

Conditions Observations MBs
Consequences

BT DF ND DT

Benign
dscp.changed 143,548,746 7,227 7 7 7 7

tcp.opt.mss.changed 30,691,842 5,034 7 7 7 7

ip.id.changed 376,347 261 7 7 7 7

ip.flags.changed.10 6,312 6 7 7 7 7

tcp.urg.changed 954 1 7 7 7 7

tcp.reserved.changed 861 1 7 7 7 7

Inconclusive
tcp.checksum.changed 34,101,880 11,276 7 ? ? ?
ip.length.changed 366,924 466 7 ? 7 7

tcp.offset.changed 29,069 32 7 ? 7 7

Impairments
tcp.seqnum.changed1 17,745,019 211 7 7 7 3

tcp.opt.mptcp.removed 2,967,720 195 7 3 7 7

tcp.opt.sackok.removed 2,271,380 188 7 3 3 7

tcp.opt.ws.changed 82,811 49 7 7 3 3

tcp.opt.ws.removed 40,959 39 7 3 7 7

tcp.opt.mss.removed 31,841 31 7 3 7 7

tcp.window.changed 23,719 33 7 7 7 3

ip.ecn.changed.00 10,120 11 7 3 7 7

tcp.ecn.changed.00 6,507 6 7 3 7 7

ip.ecn.changed.10 7,270 6 7 3 7 7

tcp.opt.mptcp.blocked 3,171 6 3 3 7 7

tcp.ecn.blocked 2,646 6 3 3 7 7

ip.ecn.changed.01 1,011 4 7 3 7 7

ip.ecn.changed.11 544 4 7 7 7 3

TABLE I: Middlebox Impairments Overview. BT = Blocked
Traffic. DF = Disabled Feature. ND = Negotiation Disruption.
DT = Disrupted Traffic.

registered under 189 different country codes, from which
we extracted 550 millions observations of middlebox-induced
changes. In order to map observations to actual middleboxes
and to reduce the location uncertainty, additional processing is
applied to the entire set of observation. First, a label is assigned
to each observations. When there is no location uncertainty, the
label is the IP address of the router preceding the informant
router. Otherwise, the label is assigned using heuristics and
cross-checking between observations [3]. Second, observations
are aggregated based on their label to build middlebox pro-
files. Third, we merge the obtained label-identified middlebox
profiles by correlating the set of next hops, the observed
changes, the quoting range, the sub-networks, and by per-
forming alias resolution, into sets of observations that now
consider as middleboxes. The resulting dataset consists in 232
millions observations attributed to 18,667 middleboxes in 372
ASes, which accounts for 2% of all visible network devices.
Observations are discussed in Sec. III-B.

Then, the observation dataset is processed to extract path
conditions. For a given path, defined by a source and a
destination address, if all probes carrying a given option or
feature (i.e., MPTCP, SACK-Permitted or ECN-setup) never
reach past a given node, and at least one probe without the



feature does, it is a blocked condition. The answering node
located right after the last answering node is considered to
be the middlebox. removed refers to an option stripped
from a TCP segment in the path, and changed refers to
an observation of packet modification. We report the value
assigned by middleboxes for a given field by appending it
to the condition (e.g., ip.ecn.changed.00). For the sake
of readability, initial and new value are not displayed in the
table for all fields, but they are treated differently. In case
of intermittent middlebox behavior, the most prevalent one is
considered.

B. Observations

The obtained path conditions are summarized in Table I,
divided between (i) benign observations of middlebox behav-
ior that do not break the control plane, either because it is
applied to fields designed for cooperation with middleboxes
(i.e., DSCP) or routers, or because no negative impact on
transport protocol was noticed (i.e., TCP MSS), (ii) inconclu-
sive observations that are necessarily linked to in-path traffic
manipulation but that can be linked to both benign and path-
breaking middlebox policies, and finally (iii), observations of
middlebox impairments.

Overall, we find that 75% (174.6 millions) of collected ob-
servations are linked to a benign behavior. The most frequent
(143.5 millions) being the in-path change of Differentiated
Services Code Point (DSCP), a 6-bit field in the IP header
specially designed for classifying and marking network traffic
in order to provide flow-level QoS. The second most frequent
(30.5 millions) benign observation is a modification of the
TCP Maximum Segment Size (MSS), a TCP Option field
used to specify that maximum amount of data that be sent
in a TCP packet. This behavior is not linked to any transport
protocol problem. Finally, we observe changes of the IP-ID
field, of the IP flags being set to dont-fragment, and of
the TCP reserved field. Although this should not be performed
by any in-path device, it has no significant impact on transport
protocols.

Next, we find that 15% (34.5 millions) of observations
cannot lead to a definite differentiation between benign and
path-impairing policy. The most frequent one (34.1 millions)
is the TCP checksum update, which can be a side effect
of a benign policy (e.g., MSS change) or any other TCP
modification, including feature-breaking’s. We also observe
changes of the IP total length field (0.3 millions), used to
define the size of the entire packet, and of the TCP data offset
field (29K), used to specify the size of the TCP header in 32-
bit words. In the case of a TCP SYN segment, both form a
strong indication of a TCP header size changed linked to a
TCP option removed or added. The most set values for the
IP total length field are 48 and 52, and for the TCP offset
field are 7 and 8, which corresponds to a TCP SYN packet
with 8 and 12 bytes of options. The discrepancy between the
amount of observations of the two fields is linked to the higher
visibility of the IP header to tracebox than latter TCP fields

(See Sec. II-C). When taken alone, these observations are
inconclusive.

Finally, we find that 10% (23.2 millions) of collected obser-
vations are linked to in-path middlebox packet manipulations
that have the potential to harm transport protocol. The most
frequent (17.7 millions) is the observation of the TCP sequence
number randomizing box, which is supposed to fix an old
vulnerability to a TCP sequence prediction attacks. However, it
enables a similar TCP sequence number inference attack [29].
Moreover, as explained in Sec. II-A, when the same box fails
to ensure consistency with semantically related fields (e.g.,
SACK blocks), it creates an inconsistency that can lead to
a blackhole. The two next most frequent observations are
those of the systematic removal of certain TCP Options (i.e.,
2.9 millions MPTCP and 2.2 millions SACK-P), which is
characteristic of the transport layer ossification. We also ob-
serve less frequent occurrences of MSS and WScale removals.
However, there is a large discrepancy between the observed
change of packet sizes via IP total length and TCP offset
fields and the observations of options removal, which are a lot
more frequent. This is explained by the widespread practice
of removing TCP Options by overwriting them with padding
bytes (NO-OPeration) without actually shrinking the packets,
which require a costly copy operation.

We also observe in-path manipulation of window scaling
factor, as well as the actual TCP window field, which has
direct consequences on the amount of bytes exchanged and
therefore on the QoS. Moreover, we observe rare occur-
rences of feature-dependent connectivity, where packets are
dropped because they are carrying an MPTCP option (3,171),
or because they try to negotiate ECN (2,646). Finally, we
observe rare events of IP ECN manipulation that can lead to
either the impossibility to use ECN to report any congestion
(i.e., ip.ecn.changed.00, ip.ecn.changed.01 and
ip.ecn.changed.10), or to a systematic report of con-
gestion (i.e., ip.ecn.changed.11).

Anecdotally, we found rare occurrences of TCP Options
(i.e., MSS) being removed and added back by different devices
on the same path.

Overall, we find that 18,230 middleboxes among the
18,667 that we detected are benign middleboxes, and that
the remaining 437 are linked to path brokenness behavior.
Among those 437 middleboxes, 211 are exclusively perform-
ing actions related to sequence number re-shuffling (i.e.,
tcp.seqnum.changed), while 226 are linked to other
impairments.

C. Results

Then, we analyze the prevalence at the path level of each
types of policies. It is different than observations and middle-
boxes count as it also takes into account their popularity, and
reflects the chances of being subject to path impairments, for a
user randomly chosen between the vantage points reaching any
of our probing destination address at random. If there is more
than one middlebox observation for the same path, we merge
them as follows. If a blocked traffic impairment is observed,



Fig. 3: Proportion of paths affected by potential middlebox
impairments.

all other observations for the same path are discarded. Benign
policies are discarded in favor of impairments, and if multiple
impairments exists on the same path, we mark them accord-
ingly. Finally, inconclusive policies are accounted as benign.
The proportion of paths affected by each path condition is
shown in Fig. 3.

Among the 52.8 millions paths probed by our algorithm, our
detection method did not find any evidence of middleboxes
presence in 32.3 millions (61.1%) of them, but it did discover
that 20.5 millions (38.9%) paths are crossing at least one mid-
dlebox. More precisely, 32.4% of the paths include a benign
middlebox, 6.5% a potential impairment. 0.1% of the paths
involve a middlebox that blocks traffic, which in the absence
of a fallback mechanism, results in a connectivity failure.
0.8% of paths are particularly broken, as they include multiple
impairments (i.e., two or more among disabled feature, traffic
disruption and negotiation disruption). Finally, 5.6% of paths
are affected by traffic disruption middleboxes. The majority
(5.5%) of the policies of this last category requires a rare
combination of factors to actually impair traffic, using SACK,
a broken SACK policy, and a loss event, (See Sec. II-A) and
for that reason and to avoid giving an unbalanced perception of
middlebox impairments, we choose to re-categorize those poli-
cies as benign. However, it should be noted that new features
that wishes to include TCP sequence numbers elsewhere than
in the dedicated fields should address them, as they still hold
traffic disruption potential. For example, MPTCP make use
of a data sequence mapping scheme that specifies a mapping
from each sub-flow sequence space to the global data sequence
space, in terms of starting sequence numbers and length of the
mapping validity [30].

In short, 38.9% of network paths involve at least one
middlebox, and 1% are affected by transport impairments other
than tcp.seqnum.changed. At first glance, the ratio of
paths affected by transport-breaking conditions might seem
relatively low, but it is in fact, without proper fallback mecha-
nisms built to address each classes of middlebox impairments
(e.g., MPTCP fallback mechanism [31]), largely sufficient to
hamper protocols or feature until disappearance. Moreover, we
observe a tendency of feature-breaking middlebox to affect the

Fig. 4: Position of Middleboxes on the path. BT = Blocked
Traffic. DF = Disabled Feature. ND = Negotiation Disruption.
DT = Disrupted Traffic. Multi = Multiple Impairments.

Fig. 5: AS types of Middleboxes on the path. Border = border
routers between ASes of different types.

same paths, either with broken middleboxes combining multi-
ple path impairments, or with multiple middleboxes affecting
the same path.

It should also be noted that 5,924 middleboxes among the
18,667 in total (32%) are exclusively linked to observations
of TCP checksum update, which we are forced to classify
as inconclusive. Still, these middleboxes are necessarily per-
forming other changes on the TCP header, either benign (e.g.,
tcp.opt.mss.changed), or impairing. The middlebox is
invisible either because it is required to, for example NATs
are invisible for endpoints to be able to map ICMP messages
to the right sockets [32], or because they chose to evade
tracebox detection. This consolidates the assertion that all
of our findings should be treated as lower bounds.

Then, we computed the position of middleboxes by joining
IP addresses into sub-networks, removing the access and des-
tination networks from the obtained network list, and splitting
the rest in three sections. The first set of networks is marked as
close to the access network, the second as middle, and the last
as close to the destination network. The results are displayed
in Fig. 4. We also show the AS types, resolved from BGP
Routing Information Base (RIB) data, in Fig. 5.

First, it shows that most benign middleboxes are located in
the middle of the path, or close to the destination network.



More importantly, it shows that blocked traffic is exclusively
the action of broken middleboxes located in access networks or
destination networks. Then, it reveals that multi-impairments
middleboxes are located at the destination network or at the
network right before, and that disabled feature and disrupted
traffic follow the same tendency. Most impairments are located
on the destination network or close to it, and fewer are located
on client-side access networks. Fig. 5 shows that almost
no impairments are found in transit ASes. Moreover, most
impairments are located in stub networks or at the border of
different types of ASes.

Overall, we observe a clear inclination of the most danger-
ous middleboxes to be located in the edge networks.

IV. RELATED WORK

Multiple active measurements algorithms designed to reveal
the presence of middleboxes and characterize their behavior
exists. tbit [33] was an early attempt at studying the inter-
actions between transport protocols and middleboxes. It works
by sending TCP packets to a server while varying the ECN
value, IP, and TCP Options of the probe, and analyses exclu-
sively the TCP answers. It is able to detect feature-dependent
connectivity and a few middlebox tampering. However, tbit
is not able to locate middleboxes.
TCPExposure [9] is a client/server application exchang-

ing specially crafted packets to detect middleboxes interfer-
ence on the path. The client opens a raw socket and uses it
to send TCP packets towards the server. The server answers
by encapsulating the received packets with a copy of its own
packets. Upon reception, the client is able to infer middlebox
changes in both directions. However, TCPExposure requires
to control both ends of the path, making it unusable for a
middlebox census.

TCP HICCUPS [34] is a TCP extension that is able to per-
form in-band detection of middleboxes tampering with packet
headers. It hashes sensitive fields and stores the results in
three supposedly unused TCP fields. However, it also requires
control on both endpoints, with capabilities of updating the
TCP/IP stack.
ECN Spider [35] is a TCP client that checks for ECN-

related problems on the path to a given destination. By
sequentially opening two TCP connections with ECN and
without, it is able to detect occurrences of path-dependent
connectivity and ECN signaling anomalies.

Tools focusing on connectivity issues also exist. For in-
stance, Netalyzr [8] can be used to perform A/B testing
reachability tests with selected transport protocols and destina-
tions ports. More recently, PATHSpider [36] was introduced
and works similarly.
copycat [24] is a transport protocol testing tool that

generates flows mimicking the TCP behavior with the wire
image of another transport protocol. It is able to highlight any
differential treatment between TCP and the protocol under test,
in term of connectivity and QoS.

Hesmans and al. used MBTest [10], a minimal Click-
based middlebox, to experimentally evaluate how it interacts

with the Linux TCP stack. The study focuses on TCP Options
impairments, and concludes that endpoints should not assume
that transport and network headers will not be modified on the
path, and explains how MultiPath TCP has been designed to
be middlebox-proof.

These tools provide great results, but they are limited to
specific paths as both ends of the path must be under control
or must implement particular techniques in the TCP/IP stack.

Finally, the RFC3234 [1] establishes a catalogue of middle-
boxes, and proposed to classify them according to eight func-
tional characteristics. It briefly addresses middlebox-related
impairments, and acknowledges the expiring of the the end-
to-end paradigm.

V. CONCLUSION

For many years, network actors have been struggling for
important architectural decisions. Different parties with diver-
gent concerns, increasing value of the middle network versus
enabling end-to-end innovation, have been colliding. On the
one hand, Internet researchers hold a long-term vision of the
Internet, driven by the sole universal goal of enhancing it. On
the other hand, middlebox vendors and network providers wish
to fulfill narrower short-term interests, such as commercial,
surveillance, or increased control on network traffic. This lack
of cooperation between the different parties not only preclude
from theoretically achievable architectural purity, but might
also force one party to workaround technical decisions of
the other (e.g., NAT traversal mechanisms), and even cripple
innovation, by introducing a phenomenon of transport layer
ossification.

In this paper, we presented a bottom-up study of this
phenomenon. We investigated diverse low-level middlebox-
related transport impairments, and proposed an intermediate
reading grid for better understanding of the Internet-level
dynamics.

First, we proposed a classification of middlebox impair-
ments, that categorizes middlebox-related impairments based
on the potential negative consequences that they create on
TCP traffic, to be used as an intermediate level of analysis
between specific feature impairments and the global transport
layer ossification phenomenon.

Then, we conducted a large-scale active probing campaign
towards the most popular HTTP servers, with the help of a
measurement tool (i.e., tracebox) that allows for detection
and location of middleboxes along a path, while only requiring
control on a single endpoint, and collected a dataset composed
of more than half a billion observations of in-path packet
manipulation. We extracted middleboxes from the obtained
observations, highlighted the responsible policies and the path
condition that they engender, for regular TCP traffic with or
without new features.

Finally, we used our classes of middlebox-induced path
brokenness to characterize path-impairing middleboxes in the
wild, by quantifying their deployment, prevalence, and posi-
tioning. Briefly, we showed that (i) at least 2% of deployed
network devices are TCP/IP middleboxes, that (ii) more than



one third of network paths are crossing at least one of
them, that (iii) a substantial part, at least 437 middleboxes
covering 6.5% of all paths, are harming TCP traffic, forbidding
innovation, and participating in the transport ossification, and
that (iv) the majority of the dangerous middleboxes are located
in edge networks.

Consequently, we advocated to protocol designers for in-
cluding carefully designed fallback mechanisms to ensure
robustness to each of the middlebox classes described in
this paper, which despite not being ideal (i.e., extra latency),
prevents from more serious failures.

Overall, we provided an intermediate-level analysis of the
transport-layer ossification of the network infrastructure. We
achieved this by establishing a classification of middlebox-
induced path conditions that can be used as a guideline
when developing new protocols or features, to fill the gap
between fine-grained transport impairments and the transport
ossification global phenomenon, and showed its extent by
confronting it the Internet.
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