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Abstract—Network operators and researchers frequently use
Internet measurement platforms (IMPs), such as RIPE Atlas,
RIPE RIS, or RouteViews for, e.g., monitoring network per-
formance, detecting routing events, topology discovery, or route
optimization. To interpret the results of their measurements and
avoid pitfalls or wrong generalizations, users must understand a
platform’s limitations. To this end, this paper studies an impor-
tant limitation of IMPs, the bias, which exists due to the non-
uniform deployment of the vantage points. Specifically, we intro-
duce a generic framework to systematically and comprehensively
quantify the multi-dimensional (e.g., across location, topology,
network types, etc.) biases of IMPs. Using the framework and
open datasets, we perform a detailed analysis of biases in IMPs
that confirms well-known (to the domain experts) biases and
sheds light on less-known or unexplored biases. To facilitate
IMP users to obtain awareness of and explore bias in their
measurements, as well as further research and analyses (e.g.,
methods for mitigating bias), we publicly share our code and
data, and provide online tools (API, Web app, etc.) that calculate
and visualize the bias in measurement setups.

I. INTRODUCTION

Public Internet Measurement Platforms (IMPs) like RIPE
Atlas [3], RIPE RIS [4], or RouteViews [5] are fundamental
building blocks of networking research and operations. Net-
work operators and researchers frequently use their measure-
ment capabilities and publicly archived data to, e.g., detect
routing events and malicious networks [25], [53], [57], an-
alyze the Internet’s structure [11], [32], [41], understand and
optimize (their own) routing policies [30], [51], [56], or detect
outages and performance bottlenecks [28], [54], [58].

IMPs operate a broad range of globally distributed vantage
points. While RIPE Atlas hosts around 11,000 measurement
probes in 3,300 autonomous systems (ASes), RIPE RIS and
RouteViews collect routing information from around 300 and
500 ASes, respectively. Despite their presence in thousands
of ASes, IMPs only provide a limited view into the routing
ecosystem. It is well-known that IMPs capture incomplete
views of the Internet [7], [11], [29], [41], [46] and sometimes
offer misleading or incomplete answers for seemingly simple
questions [23], [34], [49], [59]. This incompleteness problem
resulted in approaches for extending the observed AS topology
via other data sources [11], [14], [20], [24], [29] or by
adding new, favorably-positioned vantage points to IMPs [22],
[32], [37], [48]. While deploying IMP infrastructure aiming
to increase completeness (e.g., "hunting for the most AS
links" by deploying route collectors to IXPs) has a clear

value, it frequently leads to unequal (or, "biased") visibility of
different parts of the Internet. This bias can come along many
dimensions, such as network types, geographic placement, etc.

Despite extensive studies on incompleteness, it remains
unclear how representative our view of the entire Internet
routing ecosystem is: Do we have equal visibility to all types
of networks? And, if not, how biased are the views we obtain
from IMPs? In this paper, we study this unexplored aspect and
take first steps towards a comprehensive characterization of the
bias in IMPs. Contrary to previous works that focus on specific
aspects of bias, we argue that capturing representativeness is an
inherently multi-dimensional problem. To this end, we make
the following contributions:
• We formally define bias, and introduce a generic framework

for quantifying the bias in a multi-dimensional context
(§III-A). The framework receives as input information about
characteristics of networks (connectivity, location, etc.), and
quantifies how representative a set of vantage points is.

• We aggregate information from real-world datasets (§III-B),
and apply our framework to quantify the bias of widely-used
IMPs (§IV). Despite the numerous limitations that come
with real-world data sets (e.g., abstractions, inaccuracies, or
incompleteness), we observe that our framework is capable
of replicating the findings of previous studies (e.g., [12],
[13], [49]) conducted by domain experts. Besides these well-
known issues, our framework can produce novel, and more
nuanced, insights about the bias in IMPs.
For example, our analysis confirms that RIPE RIS is heavily
biased towards larger networks and IXPs [49], and it also
reveals that while networks that peer at many IXPs are over-
represented in RIPE RIS, their peering policies (PeeringDB)
are representative of the Internet’s peering ecosystem.

• We extend our analysis to explore the improvement potential
of IMPs (§IV-A), and study the biases involved in common
measurement practices, such as RIPE Atlas probes selection
or use of individual route collectors (§IV-B).

• We publicly share our code and data [1], and discuss how
it can be parametrized to extend or adapt our analyses.
Moreover, to further facilitate users to explore and quantify
bias in IMPs or in custom measurement setups, we provide
an API and a web portal with interactive visualizations (§V).

We believe that having a framework to systematically quantify
bias (and tools that automate it) can be valuable for Internet
measurements: e.g., from raising awareness to users (and
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lowering the bar for domain expertise) so that they avoid
pitfalls in interpretation of measurement data, to generating
a "bias assessment" for each measurement study.

We deem our work as a first step in this direction. In §VII,
we provide a critical discussion about how our analysis can
be extended or refined to overcome existing limitations, and
future research directions that can build upon our framework.

II. INTERNET MEASUREMENT PLATFORMS AND BIAS: A
PRIMER

In this section, we introduce the concept of bias on a general
example (summarized in Table I). Afterwards, we introduce
the three major IMPs that we analyze in this paper (§II-A),
discuss some of their known biases, and motivate the research
questions that our study aims to address (§II-B).

Let us assume a population consisting of 100 people, 50 of
which are men and 50 women. If we run a survey with 10
people, of which 8 men and 2 women, our sample is biased
towards men. We say that our sample is biased as there is a
difference in the distributions between the entire population
and our sample.

Table I: Bias example: population and sample statistics. The gender
bias is 0.22 (KL-divergence metric; §III-A) and is higher than the
country bias 0.03.

Men Women Country A Country B
Entire population 50% 50% 70% 30%
Survey sample 80% 20% 80% 20%

Measuring bias. To identify this bias, one could run statis-
tical tests (e.g., Kolmogorov-Smirnov test) to compare the
two distributions. To further quantify the bias, it is common
to measure the distribution distance among the population
and the sample distributions (e.g., with the Kullback-Leibler
divergence metric)
Multi-dimensional bias. Let us consider that our survey
focuses on the height of individuals. If we compare the
distributions of height within our total population to that
within our survey sample, we may find that they differ as
men (who naturally tend to be around ~7 % taller [43]) are
over-represented. Now, let us consider that our survey further
focuses on the native language of individuals. For this second
case, the gender-bias in our sample would not affect our
findings. In contrast, the country-bias (e.g., see the right side
of the Table I) of our sample, may play a major role. In other
words, different bias dimensions (e.g., gender or country) may
affect our measurements findings differently, depending on how
they relate to the insights we want to gain.

A. IMPs: RIPE Atlas, RIPE RIS, RouteViews

We briefly overview the 3 major IMPs on which we focus.
RIPE Atlas [3] is a platform that hosts more than 11,000 mea-
surement "probes" in more than 3,000 ASes. Probes support a
fixed set of measurement types (e.g., ping, traceroute, DNS).
Users can select sets of probes and execute measurements
(e.g., a traceroute towards a target IP), under some rate-limits.

(a) Location

(b) Network type

Figure 1: Distributions of (a) Location (continent) and (b) Network
type for the entire population of ASes (blue bars) and the set of ASes
that are part of the RIPE Atlas, RIPE RIS, and RouteViews platforms.

RIPE RIS [4] and RouteViews [5] are two global platforms
that host "route collectors", which are dedicated devices that
passively receive, dump, and publicly archive the routing
information from their peering networks. Most route collectors
are located at large IXPs such that they can quickly establish
many sessions over the IXP’s peering LAN. The "multi-hop"-
enabled route collectors may establish indirect sessions with
remote ASNs. In total, RIPE RIS and RouteViews host 27 (of
which 3 multi-hop) and 36 (20 multi-hop) route collectors with
more than 500 and 300 peer ASNs, respectively. A peering
ASN may provide feeds for the entire routing table ("full
feed") or only a part of it.

B. IMP biases: known and unknown aspects & user awareness

Location bias. A glance at the map with the locations of
RIPE’s infrastructure (see [40] for Atlas probes and [6] for RIS
route collectors) reveals a higher density of the infrastructure
in Europe, which is in imbalance with the spread of ASes
around the world, i.e., there is location bias in RIPE Atlas and
RIPE RIS. While this bias is well-known (or, easy to spot), a
clear quantification is missing: how far are we from an ideal
scenario? Or, what is the room for improvement?

On the contrary, Fig. 1(a) shows that RouteViews has route
collectors deployed in more representative locations around



the world. However, are users of RouteViews and RIS aware
of this significant difference (and do they take it into account
in their measurements)? And, can combining measurements
from both platforms significantly reduce the location bias?

Topological bias. Route collectors (RIPE RIS and Route-
Views) are biased towards larger core networks and at Internet
eXchange Points (IXPs) as reported in previous work [49].
How could we enable novice users (without "10 years" of
experience [49]) to easily identify such biases?

Bias awareness. Neither the location nor the topological bias
are new to expert users. However, not even expert-users might
be able to accurately judge the extent of different biases on
different IMPs. Similarly, other biases along (less prominent)
dimensions, such as the network type (see Fig. 1(b)), might
be even harder to judge. A questionnaire related to the topic
of this paper that we ran (see details in Appendix A) supports
the fact that not all users are aware of biases: out of the 50
questioned operators and researchers, only 26 (52%) consider
IMPs to be biased, while 28% consider that there is no bias
(or, probably not), and 20% "do not know". This lack of (or,
partial) awareness motivates our study to comprehensively
quantify the bias in IMPs.

III. QUANTIFYING BIAS: FRAMEWORK & METHODOLOGY

Similarly to the example of §II where people are character-
ized by two features (gender and origin country), the IMPs
can also be characterized by a multitude of features, such
as location, connectivity, traffic levels, etc.. Each character-
istic/feature can be considered as a dimension, and the bias
can be calculated over each dimension. Then, depending on
the measurement use case, all or some of the dimensions can
be taken into account, depending on their relevance (see §II).

In this section, we first introduce our framework, and
formally define the bias and the metrics to quantify it (§III-A).
The framework is generic: it takes as input a dataset of network
characteristics, and returns in a unified way the bias along all
characteristics (i.e., “bias dimensions”). Then, in §III-B, we
present the dataset we compile and use in this paper as input
to our framework for analyzing the bias of IMPs.

A. The bias quantification framework

Definitions. Let P be the distribution of a characteristic (e.g.,
network size) within a set of networks N . If the characteristic
takes K distinct values, its distribution is P = [p1, ..., pK ],
where pi is the probability of a network having the i value
(e.g., pEurope=0.32 for the entire population of ASes; see
Fig. 1(a)); formally, pi = 1

|N |
∑

j∈N Ij→i, where Ij→i an in-
dicator function that is 1 if the network j has the characteristic
i, and |N | the size of the set N .

Also, let a subset of networks V ⊂ N , and Q be the
corresponding distribution within the set of networks V . We
define the bias (of the set V wrt. to the set N ) as the distance
between the distributions P and Q.

Identifying bias. If the distance between P and Q is statisti-
cally significant, then there is bias. There are several statistical

tests that could be applied. We use the Kolmogorov-Smirnov
(or, KS-test), which is a nonparametric test that compares two
distributions (two-sample KS-test). The KS-test answers the
question “what is the probability that P and Q are drawn
from the same distribution?”. If this probability is small
enough (e.g., less than 5%), then we can confidently state that
the population (i.e., all ASes) and sample (i.e., VPs) follow
different distributions, i.e., there is bias.

Bias Metrics. There exist several metrics to quantify the
distance between two distributions. A metric that is commonly
used (in particular, for concepts related to bias, e.g., [55]) is
the Kullback–Leibler (KL) divergence:

BKL =
∑K

i=1 pi · log
(

pi

qi

)
(1)

The KL-divergence takes on values in [0,+∞], where the
higher the value the more the two distributions differ. In the
paper, we use a bounded version of the KL-divergence that
takes values in [0, 1] [50], [55]1, and we call it the bias score.
We calculate a bias score per characteristic/dimension.

For example, in terms of the location distributions depicted
in Fig. 1(a), the bias score for RIPE Atlas and RIPE RIS
is BKL = 0.06 and BKL = 0.07, respectively, while for
RouteViews, which follows a similar distribution to the entire
population, the bias score is BKL = 0.01. For the network
type (Fig. 1(b)) the bias scores for RIPE Atlas, RIPE RIS,
and RouteViews are 0.03, 0.12, and 0.11, respectively, clearly
highlighting the higher bias in the route collector projects.

Remark: We tested other common metrics (e.g,. Total Vari-
ation) for the bias score as well (see Appendix B). While
the actual values of each metric are different, the qualitative
findings of the paper remain the same.

The framework is generic with respect to N , V , bias
dimensions, bias metrics, and input data. In this paper, we
consider as
• N : the entire population of ASes (i.e., more than 100,000

ASNs for which we have data)
• V: the set of VPs of an IMP (e.g, the peers of RIPE RIS or

RouteViews, or the probes of RIPE Atlas)
and in the next section we compile a dataset of several network
characteristics/dimensions. Later, in §V, we discuss how other
choices can be done for these parameters.

B. Data and bias dimensions

Data sources. We take into account the characteristics of
the IMPs at an AS-level granularity (e.g., two RIPE Atlas
probes in the same AS have the same AS-level characteristics).
The reasons for this choice is twofold: data availability and
scope. Specifically, at the AS-level there are several public
datasets: at a finer granularity there is scarce information
(which would limit our analysis to only a few dimensions) and
compiling a rich dataset would need extensive measurements

1We substitute qi → (1 − w) · qi + w · pi, with w = 0.01 and
normalize with its upper bound log 1

w
, to get BKL = 1

log 1
w

·
∑

i∈K pi ·

log
(

pi
(1−w)·qi+w·pi

)
.



per dimensions (which could be done only per use case, and
thus would be beyond the scope –and space limitations– of this
paper). Nevertheless, our framework is extensible to a more
fine-grained level (e.g., per monitoring device, such as at a
vantage point level or router level); we discuss these extensions
and limitations of our analysis in §VII.

We compile a list of characteristics for each AS from the
widely used CAIDA AS-rank [17] and AS-relationships [18]
and PeeringDB [19], [44] datasets, as well as from
public datasets that contain information for the network
size/importance (Internet Health Report’s AS-hegemony met-
ric [26], [35], and the Country-level Transit Influence index, or
CTI, [27]) and network types (bgp.tools [15] and ASDB [61]).

"Vantage Points (VPs)". Since we study bias at an AS-level,
in the remainder, we will not differentiate between different
probes in RIPE Atlas that are hosted in the same AS, or
between different peers of RIPE RIS and RouteViews with
the same ASN. And, for brevity, we will refer to the ASes
that host RIPE Atlas probes or provide feeds to RIPE RIS /
RouteViews as "vantage points" or VPs.

Dimension categories. From the datasets we select all the
characteristics that relate to the concept of bias, in order to
make our analysis as general as possible. We end up to a
set of 22 characteristics that relate to the concept of bias and
group them in the following categories:
• Location: RIR region; Country; Continent
• Network size: Customer cone (#ASNs,#prefixes,#addresses);

AS hegemony; CTI "origin" and "top" indices
• Topology: #neighbors (total, peers, customers, providers)
• IXP-related: #IXPs; #facilities; Peering policy
• Network type: Net. type; Traffic ratio; Traffic volume;

Scope; Personal ASN; ASDB classification (level 1 and 2)
Remark: It is important to note that our methodology is generic
and more characteristics can be included or grouped differ-
ently. We only use these groups to facilitate the discussion in
the paper (i.e., to refer to multiple dimensions under a single
term), but we present detailed results for all dimensions.

Figure 2 depicts an example of the compiled dataset (which
is also available in [1]).

IV. ANALYZING IMP BIAS

In this section, we study the biases in RIPE Atlas, RIPE RIS,
and RouteViews. Figure 3 shows a radar plot with bias scores
for all dimensions. The colored lines—and their included
area—correspond to the bias metric of a given IMP along
a given dimension, e.g., the bias score for RIPE RIS (orange
line) in the dimension “Location (country)” is 0.2. Larger bias
scores (i.e., farther from the center) correspond to more bias,
e.g., in the dimension “Location (country)” RIPE RIS is more
biased than RIPE Atlas (blue line).

Remark: As knowing the entire distribution of a character-
istic may help to better understand the bias along a certain
dimension, we provide detailed distribution plots (i.e., similar
to those in Fig. 1) for all characteristics in the extensive
documentation of our code and data [1].

Figure 2: An example depicting the compiled dataset with character-
istics (columns) of ASes (rows).

Key findings. Based on Fig. 3, we can observe that:
• While the bias of IMPs differs significantly by dimension,

RIPE Atlas is substantially less biased than RIPE RIS and
RouteViews along most dimensions.

• RIPE RIS and RouteViews have significant topological bias
(e.g., number of neighbors/peers) as most of their collectors
are deployed at IXPs, where ASes establish many (peering)
connections [46].

• RouteViews and RIPE RIS are also quite biased in terms of
network size (“Customer cone” dimensions) because they
peer with many large ISPs. Having feeds from large ISPs
may be desired for visibility, however, users still should be
aware of it since it may lead to biased measurements.

• In most IXP-related and network type dimensions (that
correspond to data mainly from PeeringDB), all platforms
have relatively low bias; with an exception of RIPE RIS
and RouteViews that are biased in terms of number of
IXPs/facilities the VPs are connected to.

• There are small differences between RIPE RIS and Route-
Views. RIPE RIS is more biased in terms of topology
(number of neighbors, total and peers), whereas RouteViews
is more biased in terms of network sizes (“Customer cone”
and “AS hegemony” dimensions).

• We applied the KS-test for all platforms and dimensions.
In almost all cases, the KS-test rejected the null hypothesis
that the IMPs vantage points follow the same distribution
as the entire population of ASes. The only exceptions were
the "Personal ASN" dimension for all IMPs, and the "RIR
region" and "Location (continent)" for RouteViews (where
bias scores are less than 0.01).

Table II shows the correlation between the network character-
istics for the entire population of ASes. The characteristics are
grouped in the categories of §III-B, and values correspond to
averages among groups (i.e., values in the diagonal are not 1)2.
As expected, dimensions in the same category are correlated.
Also, topology dimensions are significantly correlated with
IXP-related dimensions. Nevertheless, comparing with Fig. 3,
we see that correlated dimensions do not necessarily share
similar bias scores. This highlights that a multi-dimensional
bias exploration (Fig. 3) can give more insights.

2Since our dataset consists of both numerical and categorical data, we use
(i) the Pearson correlation coefficient for pairs of numerical features, (ii) the
correlation ratio for pairs of a numerical and a categorical feature, and (iii)
Cramer’s V test for correlations between categorical features.



Figure 3: Radar plot depicting the bias score for RIPE Atlas (blue
line/area), RIPE RIS (orange line), and RouteViews (green line) over
the different dimensions (radius of the circle). Larger values of bias
scores (i.e., far from the center) correspond to more bias.

Beyond this basic analysis, we conduct three similar anal-
yses deepening our understanding of different IMP aspects.

Combining RIS and RouteViews. Using data from both
RIPE RIS and RouteViews is common (e.g., via CAIDA
BGPStream [42]); hence, we analyze the combined bias in
Fig. 4(a). When considering vantage points from both projects,
the bias slightly decreases in most dimensions. Interestingly,
there are some exceptions, e.g., number of neighbors (total and
peers), where it would be preferable—in terms of bias—to use
only feeds from RouteViews.

Full vs. all feeds. Only 240 and 70 peers of the RIPE RIS
and RouteViews peers provide feeds for the entire routing table
("full feeds"), respectively. Figure 4(b) compares the bias of
only full feed peers against the entire IMPs. For RIPE RIS
the increase in bias is small, whereas for RouteViews the set
of full feeds is significantly more biased. In fact, while RIPE
RIS is on average more biased than RouteViews, the opposite
becomes true when considering only full feeds.

IPv4 vs IPv6 vantage points. Figure 4(c) compares the set
of ASes hosting IPv4, IPv6, and all RIPE Atlas probes (i.e.,
both IPv4 and IPv6). The set of networks hosting IPv6 probes

Table II: Correlations between dimensions categories for the entire
population of ASes.

Location Net. type IXP-rel. Topology Net. size
Location 0.99 0.15 0.15 0.24 0.21
Net. type 0.31 0.33 0.26 0.17

IXP-rel. 0.75 0.48 0.26
Topology 0.69 0.38
Net. size 0.40

is slightly more biased than networks hosting IPv4 probes
in most dimensions. The only exception is the #addresses in
customer cone, which is mainly due to the differences in the
IP space between the two versions. In RIPE RIS (not depicted
in the plot), the differences between IPv4 and IPv6 peers is
negligible. Due to the similarity in our analyses between IPv4
and IPv6 VPs, in the remainder we do not present separate
results for each of these subgroups.

A. Analyzing improvement potential

Now that we have a basic understanding of the current
biases in IMPs, we want to compare the current state to a (hy-
pothetical) case, where vantage points are randomly deployed
among all types of networks, locations, etc. This comparison
(i) provides a better understanding of the potentially avoidable
IMP bias, and consequently (ii) reveals room for improvement
(under practical limitations).
Random sampling from the entire population is an unbiased
process. A sufficiently large random sample would lead to
zero bias. Yet, small samples tend to be biased especially for
characteristics with large variance. We treat the bias score that
can be achieved via random sampling as a non-biased baseline.

Table III compares the average bias over all dimensions3

of the IMPs against that of a random sample with the same
number of vantage points (e.g., in the case of RIPE RIS we
consider random samples of size |V|=539). We repeat our
random sampling 100 times and report the average bias. We
observe that with the same number of VPs as in the current
IMPs, a random sample of ASes would have on average
(almost) no bias. This indicates that the “limited” number of
vantage points is not the root cause of bias (which is mostly
due to the deployment strategies; see §II-B) . In other words,
we do not need more VPs, but more representative VPs. This
finding can be valuable for future extensions of IMPs (e.g,
selection of deployments in under-represented parts of the
Internet) and improvement of measurement techniques (e.g.,
carefully selecting representative subsets of existing VPs); we
identify these two aspects as key future research directions
that can stem from our framework.
Bias vs. number of vantage points. While the current set of
VPs is clearly not optimal in terms of bias, we wonder how
bias changes when we only use a smaller random set of VPs
(e.g., measurements with few Atlas probes due to rate/credit
limits, or collecting feeds from a subset of route collectors
peers due to the large volumes of data [8]). Figure 5(a) shows

3There are infinite options of combining bias scores of different dimensions.
Here, we consider averaging as an intuitive choice, however, our framework
supports other options as well (e.g., weighted average, or bias for subsets of
dimensions).

Table III: Bias of IMPs vs. random sample of vantage points.

Platform Atlas RIS RV RIS & RV
(#vantage points) (3391) (539) (340) (762)
Platform bias 0.06 0.16 0.15 0.14
Random sample bias 0.00 0.01 0.01 0.01



(a) RIS & RV (b) Full feeds (c) Atlas: IPv4 vs IPv6

Figure 4: Radar plot of bias score for the cases of (a) the combined RIPE RIS and RouteViews vantage points, (b) full feeds (vs all feeds)
for RIPE RIS and RouteViews, and (c) IPv4 vs IPv6 RIPE Atlas probes. Note the different bias ranges in each plot.

the average bias for different sample sizes drawn randomly
from either the entire population of ASes (‘all’) or one of the
three IMPs. Lines correspond to averages over 100 sampling
iterations, and errorbars indicate 95% confidence intervals. For
ease of comparison, dashed lines correspond to the bias values
of using the entire infrastructure (i.e., the values in Table III).
We observe that: (i) the bias decreases with the sample size
(as expected), (ii) random sampling ("all") always has lower
bias for the same number of VPs, (iii) even for very small
samples, ≥20 VPs, random sampling ("all") has lower bias
than the entire sets of RIPE RIS and RouteViews VPs (dashed
lines), while the same holds for RIPE Atlas for ≥40 VPs.

For a deeper inspection of the bias in smaller sets of VPs,
Fig. 5(b) presents the bias of random samples of RouteViews
VPs of sizes 10, 20, and 100 (similar results hold also for
RIPE RIS and Atlas). We can see how the bias decreases
in all dimensions for larger subset sizes. Yet, the change in
bias is not the same in all dimensions, e.g., in network type
dimensions the relative increase in bias for small subsets is
much larger than in topology. This type of analyses can help
to design measurements, for example, to select the number of
VPs (e.g., see [47] or [52]) based on the required level of bias
per dimension.

B. Bias in common measurement practices

In this section, we briefly analyze the bias involved in
common VP selection methods that users follow in practice.

RIPE Atlas probe selection algorithm. RIPE Atlas users can
either select specific probes to use in their measurements or
not specify them (which is the default choice; with parameters
10 probes from “worldwide locations”4). In the latter case,
RIPE Atlas has an automated algorithm to assign probes
to a measurement, which prioritises probes with less load
over more loaded probes, which makes the probe selection
procedure not equivalent to true random sampling.

4https://atlas.ripe.net/docs/udm#probe-selection

In Fig. 6(a) we study how the RIPE Atlas selection al-
gorithm, "Atlas (platform)", performs compared to random
sampling from either all RIPE Atlas probes, "Atlas (random)",
or from all ASes ("all"); the values for these latter cases are the
same as in Fig. 5(a)). We considered the sets of probes that the
RIPE Atlas platform returned when we initiated measurements
with parameters type="area" and value="WW". Lines
correspond to averages over 100 sampling iterations, and error-
bars indicate 95% confidence intervals. We observe that when
using the RIPE Atlas algorithm for selecting probes, "Atlas
(platform)", then the bias is significantly higher compared
to randomly selecting probes, "Atlas (random)". In fact, the
bias is almost two times higher. This indicates that even with
the existing infrastructure, users could decrease bias by 50%
by not depending on the built-in probe selection process, but
select random probes themselves.

Feeds from a single route collector (RC) may be used in
cases that there are processing limitations (e.g., in terms of
real-timeness or storage) due to the large volume of data,
see [8], [10], [31]. Figure 6(b) presents the average bias
score per RC (i.e., the bias of the set of VPs that peer to
a RC) in relation to its number of VPs. Overall, there is a
clear (negative) correlation between the number of VPs and
the bias score of a RC. Nevertheless, the size of a route
collector does not predict its bias as (i) the three RCs of RIPE
RIS (rrc01, rrc03, rrc12) that are significantly larger (>80
members) than the rest of RCs, are not less biased (in fact,
there are several smaller RCs with lower bias) and (ii) there
are several medium-size RCs (and even some with only 10-20
VPs) that have relatively low bias. For RIPE RIS, the three
multihop RCs (rrc00, rrc24, rrc25) are less biased than most
of the non-multihop RCs (which are deployed at IXPs). For
further analyses, we provide through our API and online tools
(§V; [2]) the detailed bias scores and radar-plots for each RC.

Summary of main takeaways: (i) RIPE RIS and RouteViews

are substantially more biased than RIPE Atlas; and their VPs
are significantly more biased towards networks at IXPs (with



(a) Average bias vs. #VPs

(b) Bias of RouteViews subsets

Figure 5: Bias vs. #VPs: (a) Average bias (y-axis) of random samples
from the entire population of ASes ("all") and from the IMP VPs vs.
sample size (x-axis); (b) Bias of different sample sizes of RouteViews
VPs in all dimensions.

(a) Atlas probe selection (b) Bias vs. nb of VPs per RC

Figure 6: (a) Average bias score vs. sample size for the RIPE Atlas
probe selection algorithm vs. random sampling. (b) Scatter plot of
average bias (y-axis) vs. number of VPs (x-axis) per route collector
of RIPE RIS and RouteViews.

many peering links) and larger networks. (ii) Considering
only full-feeds further intensifies the bias of control-plane
IMPs, while differences between IPv4 and IPv6 VPs are less
important in all IMPs. (iii) If IMPs would choose VPs entirely
random, their current set of VPs would be very close to an
ideal sample; this indicates that bias is not due to the size
of IMPs, but mainly due to VP deployment strategies. (iv)
Common practices to limit the number of VPs yield higher
bias than simple random samples from IMPs.

V. OPEN DATA, CODE, API, AND TOOLS

To facilitate users and further research and analyses, we
provide data, code, and tools to calculate and visualize the
bias in a set of networks [1], [2].

Data. The data we aggregated from different sources are
provided as a table with rows corresponding to ASNs and
columns to network characteristics (see §III-B) [1].

Code. We open-source the code for calculating the bias [1].
The methods receive as input (i) the data table, (ii) a set of
ASNs that are considered the “population” N , (iii) a subset V
of the population, whose bias we are interested in, (iv) the set
of characteristics that will be taken into account. This enables
users to apply the framework in a generic way; for example:
• use other datasets than the ones we compiled in §III-B
• perform a bias analysis with respect to a given region (e.g.,

setting as the “population” N only the ASNs in the RIPE
region, instead of all the ASes we considered in this paper)

• explore the bias of a custom set of VPs V (e.g., a set of
Atlas probes, or a set of route collector peers)

• consider only a subset of bias dimensions

Open API. To further facilitate access to data and methods, we
provide an API [2] that provides (up-to-date) bias scores of
the IMPs we analyzed, other IMPs (e.g., bpg.tools, CAIDA
Periscope), individual route collectors (see §IV-B), or any
custom set of VPs (or, ASNs in general) requested by a user.

Web portal. We provide a set of online tools for interactive
visualizations of the bias data, namely, radar plots (as in Fig. 3)
and the detailed distributions per characteristic (CDF plots or
histograms) for all platforms [2].

VI. RELATED WORK

Topological bias of route collectors. When analyzing the
Internet’s topology, route collectors often miss many inter-
connections of CDNs [11], at IXPs [7], [29], [46], or due
to complex routing setups [41]. While it is hard to remove
these biases, many works tried to understand the importance
of certain biases for their work by analyzing how their
results would change when using only subsets of the available
infrastructure, e.g., [36], [38], [39], [52], [47]. While we do not
focus on the effect of biases in measurements, our framework
enables to easily quantify biases, e.g., in these subsets of
the infrastructure, and thus provide further insights on how
it affects or correlates with the resulting measurement biases.

Biases and use cases. While Roughan et al. argued that
route collectors are biased towards larger core networks and
IXPs [49], Chung et al. [21] saw no substantial differences
when comparing their view on the longitudinal deployment of
route origin validation with that of Akamai gathered from an
order of magnitude more monitors5. On the other hand, [45]
shows that IMP data can lead to significant geographical and

5The study only analyzed prefix-origin pairs that were visible by the route
collectors. It remains unclear whether this result would change when also
considering Akamai’s privately received BGP announcements.



topological biases in AS relationships inference. This high-
lights that biases might be use-case dependant—a fact further
supported by the work of Cittadini et al. from 2014 which
showed that route collectors have different biases for topology
analysis and iBGP policy inference [22]. In 2009, [33] argued
that Internet measurements, in general, are biased by various
(sometimes unknown) factors such as traffic volume, user
populations, or topology, which is further supported by a series
of exemplary experiments conducted by Bush et al. [16].

Bias in RIPE Atlas. In 2015, Bajpai et al. showed that the
distribution of Atlas probes to ASes is heavy-tailed and also
analyzed the network type distribution of probe hosting ASes
(without comparing it to the overall type distribution) [12]. A
later study by Bajpai et al. in 2017 further found that 91 % of
RIPE Atlas probes are located in the RIPE and ARIN region
and that the number of probes is not representative for the
number of Internet users in countries such as Japan [13]. These
types of bias explorations are facilitated (and extended to more
bias dimensions) by the proposed framework.

Similarity of VPs. Two recent studies [8], [9] considered
similarity of RIPE Atlas and RIPE RIS VPs, respectively,
for subsampling VPs and thus avoiding redundant (i.e., over-
represented) information. [9] calculates a similarity matrix
between Atlas probes based on measurements, and proposes
a method to select subsets of probes that are dissimilar. Simi-
larly, [8] calculates VPs similarities based on topological char-
acteristics, and applies a clustering algorithm to select a set of
dissimilar of VPs aiming to achieve a good tradeoff between
volume of information (i.e., less VPs) and observability of the
AS topology. We consider these works complementary to ours;
a difference is that [8], [9] are measurement-dependent, how-
ever, investigating relation between bias and VP similarities
can lead to more efficient subsampling methods.

VII. CONCLUSION

This work aims to be the first effort for a systematic and
comprehensive characterization of bias in IMPs, by providing
a framework to quantify bias (metrics, data, code, etc.) and an
analysis of popular IMPs. Being aware about the existence of
bias and its "flavors" (e.g., how much and at what dimensions)
can help the users of IMPs to carefully interpret the results of
their measurements, and avoid pitfalls or wrong generaliza-
tions that may appear due to the bias.

Before our work, significant biases in IMP vantage point
placements have been documented by experience papers from
well-established scientists (e.g., [16], [49]) or via a few
dedicated analyses [12], [13], [34]. Besides reproducing their
original findings, the framework we introduced drastically
facilitates finding new biases among diverse dimensions and
tracking of the evolution of these biases over time.

Moreover, our findings and tools (data, code, API) can
further help users to fine-tune their measurements (e.g., se-
lect a set of vantage points), and provide useful insights to
IMP operators for extending their platforms. We see several
promising messages in our results towards these directions.

We deem our work as an initial (but, necessary) step towards
a complete understanding of bias in IMPs and its impact on
user measurements. There are many research directions and
improvements that would need a more extensive investigation
and can be addressed in future work.

In the following we provide a critical discussion for some
of these directions, in relation to our work:

AS-level granularity. We conducted our analysis at an AS-
level, because the majority of data sources provide data at this
granularity. It is straightforward to generalize our framework
to a more fine-grained level (all methods, metrics, etc., directly
apply). For example, if we have available data per prefix6, then
we can consider as our "population" all the routed prefixes,
and as "sample population" the prefixes that contain the IP
addresses of the RIPE RIS / RouteViews peers or the RIPE
Atlas probes. Our methods would then simply take as input
a table as in Fig. 2 with rows the prefixes (instead of
ASes) and columns the prefix characteristics (instead of AS
characteristics).

Several use cases could benefit from such a more fine-
grained granularity. However, the challenging part is the data
availability. To extract even a single characteristic at this gran-
ularity, we may need extensive measurements and analyses.
For example, a custom method is needed to infer per-prefix
locations [60], while to infer customer cones per-prefix could
lead to incomplete data since aggregating measurements from
VPs in different prefixes would not be possible.

Dimensions of bias (per use case). Not all dimensions of
bias may be relevant to a measurement study. For example,
any bias in the "peering policy" dimension may not affect
latency measurements (this is just a conjecture), whereas it is
probable to affect BGP hijacking detection measurements. In
another example, [52] has shown that estimating the impact of
a hijack with RIPE RIS and RouteViews leads to a 10% higher
error than custom measurements from random (i.e., unbiased)
ASes; this error due to bias may be lower/higher in a different
use case though. Identifying which dimensions are important
per use case, could improve our understanding of bias and its
role. However, this requires a per case analysis, since there
are many different measurement use cases with a wide range
of scopes and objectives. Our tools (§V) enable to exclude
dimensions, thus, covering as many use cases as possible.

Accuracy, completeness, and bias in ground truth data.
The input to our framework (i.e, the AS characteristics) is from
public datasets. And, some of them are known to suffer from
inaccuracies (e.g., country information per ASNs), incomplete-
ness (e.g., only 25% of ASNs have records in PeeringDB),
or even biases (e.g., data inferred based on measurements
from the existing –biased– platforms, such as customer cones,
topology, etc.). Improving the datasets would be beneficial,
in general, and for the quantification of bias, in particular,

6Some ASes consist of many—sometimes globally distributed—routers that
make independent decisions, which can be captured at a prefix level.



since they could reveal further insights7; nevertheless, this is
an orthogonal task. As already discussed, changing the datasets
does not change our framework, but only its input.
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APPENDIX A
SURVEY ON INTERNET MEASUREMENTS AND BIAS

We conducted an anonymous survey on Internet measure-
ments and bias in IMPs. In this paper, we only provide a
pointer to a single high-level finding of the survey in §II-B,
and we do not rely any of the content of the paper on it. For
completeness, we provide a short description of the survey:

Questions. We have asked participants to indicate measure-
ment use cases, and the insights they aim to get from mea-
surement data. We ask them what measurement types they
use (control and/or data plane), what information they collect
from them (e.g., latencies, BGP paths), what IMPs they use,
and what is their scope (e.g., if they target small or large
geographic areas, or network types such as ISPs, CDNs, etc.).

We ask them the question (to whose answers we refer in
this paper) "Is there any kind of bias in the measurement
data collected for this use case?", giving them three possible
answers to select from "Yes / Probably yes", "No / Probably
not", "I don’t know".

We also ask them if they believe that there are location /
network-type biases, and how useful they would find if we

could provide them with analyzes/tools that would show and
mitigate bias.
Responses (relevant to this paper). We have re-
ceived responses from 50 participants, both network engi-
neers/operators (∼75%) and researchers (∼25%). More than
∼80% of the participants said that they are experienced users
of IMPs. 70% uses RIPE Atlas in their measurements, and
around 50% use RIPE RIS and/or RouteViews.

26 participants (52%) replied "Yes / Probably yes" in the
question about existence of bias, 14 (28%) replied "No /
Probably not", and 10 (20%) replied "I don’t know".

APPENDIX B
COMPARISON OF DIFFERENCE BIAS METRICS

Bias metrics. There are several metrics to quantify the differ-
ence between two distributions (i.e., the "bias" in our context).

• Kullback–Leibler (KL) divergence; see §III-A
• Total Variation (TV) distance: BTV =

∑K
i=1 |pi − qi|

• Max distance: Bmax = maxKi=1 |pi − qi|
The main difference between KL-divergence and TV dis-

tance metrics, is that the former is more sensitive to changes in
characteristics of lower probabilities pi [55]. For example, let
P = [0.6, 0.2, 0.2] and two distributions QA = [0.7, 0.1, 0.2]
and QB = [0.6, 0.1, 0.3] that differ by ±0.1 compared to
P . While for the total variation it holds that BTV (P,Q

A) =
BTV (P,Q

B), for the KL-divergence it holds BKL(P,Q
A) <

BKL(P,Q
B), because the +0.1 was at a characteristic with a

lower probability in QB .
The main difference between the Max distance and the other

metrics, is that the former accounts for the "worst case" (i.e.,
max deviation between two distributions), whereas the latter
calculate distances over the entire distribution.
Bias in IMPs for each metric. In Fig. 7 we present the
radar plot depicting the bias for the three bias metrics. While
the actual values differ for different metrics, the qualitative
findings (e.g., which infrastructure set is more biased) remain
the same for the majority of dimensions.


