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Abstract—A popular branch of stochastic network calculus
(SNC) utilizes moment-generating functions (MGFs) to char-
acterize arrivals and services, which enables end-to-end per-
formance analysis. However, existing traffic models for SNC
cannot effectively represent the complicated nature of real-world
network traffic such as dramatic burstiness. To conquer this
challenge, we propose an adaptive spatial-temporal traffic model:
dMAPAR-HMM. Specifically, we model the temporal on-off
switching process as a dual Markovian arrival process (dMAP)
and the arrivals during the on phases as an autoregressive
hidden Markov model (AR-HMM). The dMAPAR-HMM model
fits in with the MGF-SNC analysis framework, unifies various
state-of-the-art arrival models, and matches real-world data
more closely. We perform extensive experiments with real-world
traces under different network topologies and utilization levels.
Experimental results show that dMAPAR-HMM significantly
outperforms prevailing models in MGF-SNC.

Index Terms—Network Traffic Modeling, Stochastic Network
Calculus, Performance Evaluation, Performance Bound

I. INTRODUCTION

Performance analysis, especially the evaluation of perfor-
mance bound, is essential for supporting sufficient quality
of service (QoS) for delay-sensitive network applications.
Network calculus (NC) provides an ascendant methodology
focusing on computing the performance bounds, i.e., the delay
and backlog bounds. There exist two branches in NC: deter-
ministic network calculus (DNC) [1], [2], [3] and stochastic
network calculus (SNC) [4], [5], [6], [7], [8], [9], [10], [11],
[12]. DNC relies on deterministic models to analyze the strict
worst-case performance, which usually results in quite low
network utilization. However, most commercial network ser-
vices allow statistical multiplexing of traffic flows to enhance
network utilization, and prefer probabilistic QoS metrics. Then
SNC has been proposed by considering statistical behaviors
to calculate the probabilistic performance bounds at a known
small violation probability. Figure 1 shows the framework
of MGF-based SNC. Network traffic characteristics are ex-
tracted by the feature extraction module, and then are used
by the performance evaluation module based on the MGF-
SNC framework. The results of performance evaluation will
be fed back to the center controller for further planning and
optimization.

Figure 1: The workflow of end-to-end performance evaluation
in MGF-SNC.

To investigate traffic flows, the analysis of inter-arrival times
(IATs) and packet sizes is the basic step. If they are found
to follow certain probability distributions, the corresponding
stochastic model of these flows can be determined. In MGF-
SNC, packet sizes (or arrivals) and IATs are commonly
assumed to conform to conventional distributions, including
the Normal, Exponential, et.al. However, our analysis and
extensive past attempts [13], [14], [15], [16], [17], [18] reveal
that none of the conventional distributions are accurate enough
for real network flows.

As early as the 1970’s, [19] reported a noticeable behavior
of traffic, which is called “burstiness” defined by peak to
average transmission rate. It implies that an on-off switching
pattern widely exists in real traffic flows. The early literature
quantitatively describes real flows from a fractal perspec-
tive [13], [20], [21], [22] and has been subsequently applied
by [16], [23], [24], [15]. The fractal models convincingly
reveal traffic characteristics, such as self-similarity (SS) and
long-range dependence (LRD). An important issue with them
is that their MGFs grow super-linearly with time and hence
the underlying SNC results for MGFs are not directly appli-
cable [25].

To tackle the challenge in traffic modeling, we introduce
a novel spatial-temporal model: dMAPAR-HMM, as illus-
trated in Figure 2. Inspired by the definition of modulation
in telecommunications, we regard the arrival process as a
transmission signal that can be demodulated into a carrier
signal and an input signal of positive impulses. Specifically, the
carrier signal is modeled by a dual Markovian arrival process
(dMAP) to depict the (temporal) on-off switching process
observed in real traffic traces, and the input signal is modeled
by an autoregressive hidden Markov model (AR-HMM) for the978-3-903176-58-4 ©2023 IFIP
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representation of the (spatial) data amount during on phases.
We show that various state-of-the-art (SOTA) arrival models
used in SNC can be readily represented by the proposed
dMAPAR-HMM model. With traffic traces from real networks,
we demonstrate that dMAPAR-HMM can accurately depict
multi-dimensional multi-order traffic characteristics.

For providing performance analysis, we develop the
(σ(θ), ρ(θ))-envelope of the MGF of dMAPAR-HMM, which
can fit in with the framework of MGF-SNC. Though here
we focus on deriving the delay bound with dMAPAR-HMM,
the results can be extended without much effort to the back-
log bound. Besides the (σ(θ), ρ(θ))-envelope of MGF, more
general envelopes, such as stochastically bounded burstiness
envelope, could also be considered similarly [26]. By extensive
experiments under different network topologies and utilization
levels, we show that dMAPAR-HMM can significantly boost
the effectiveness of MGF-SNC, which means that both the
tightness and the reliability of the delay bound are enhanced.

The rest of the paper is organized as follows. In Section II,
the spatial-temporal model dMAPAR-HMM is introduced. In
Section III, we present the interface of the proposed traffic
model to MGF-SNC for network traffic. In Section IV, the
feasibility of dMAPAR-HMM is examined with real-world
traces. Section V concludes the article.

II. NETWORK TRAFFIC

In this section, we introduce the proposed traffic model
dMAPAR-HMM in details by showing how it captures the
temporal and spatial dynamics of real-world traffic. We
also reveal that many famous models are correlated to
dMAPAR-HMM, and show that our model favors the retention
of critical traffic features.

A. Traffic Modeling

We divide the time into discrete intervals to conform to the
SNC approach. We use A(s, t) for the amount of data traffic
arriving in the interval (s, t], i.e.,

A(s, t) =

t∑
k=s+1

ak,

where we adopt the convention A(t, t) = 0. For ease of
expression, we use A(t) to represent A(0, t). In addition,
we use ak to represent data traffic arriving during the k-th
timeslot, that is, ak = A(k − 1, k) = A(k)−A(k − 1).

In the real world, traffic flows exhibit on-off switching
patterns. Moreover, arrivals of all timeslots are difficult to be
entirely modeled as a single stochastic process. Therefore, we
are motivated to parse the traffic flow and build an appropriate
model for each component. In this paper, we present a discrete-
time spatial-temporal model dMAPAR-HMM for traffic flows
delivered in real networks. As shown in Figure 2, a traffic
flow is discretized into a time series {at}, t = 1, 2, · · · ,
based on a constant timeslot interval ∆t. The time series
{at} can be considered to be formed by modulating an input
signal of positive pulses by a carrier signal with an on-off
switching scheme and unit amplitude. The input signal, i.e., the

Symbol Meaning
Son state space of MAPon

Soff state space of MAPoff

N state space of X
S state space of Z
Q transition probability matrix of the carrier signal in

the embedded state space
P transition probability matrix of X
T transition probability matrix of Z
X hidden state of the input signal
Z hidden state of the dMAPAR-HMM signal
∆t timeslot interval for discretization
◦ Hadamard product
⊗ Kronecker product
In Identity matrix of size n

Table I: Frequently used symbols in this paper.

Figure 2: dMAPAR-HMM. Mapping the discrete-time obser-
vations into a spatial-temporal model, regarding the temporal
on-off switching process as the carrier signal, and the data
transmitted in on phases as the input signal.

spatial model, {y1, y2, · · · }, contains the amount of non-zero
arrivals along {at}. The carrier signal, i.e., the temporal model,
represents the temporal feature by recording the IATs of both
on and off phases, i.e., {τoff1 , τoff2 , · · · } and {τon1 , τon2 , · · · },
which are supplementary to each other. We will subsequently
discuss the temporal and spatial models in details. Table I lists
the frequently used symbols in this paper.

1) Temporal Model: dMAP: In general, the temporal fea-
ture of a flow is quite challenging to characterize, and we
propose a novel dMAP to enable an effective modeling
methodology. The dMAP model consists of two independent
continuous-time (or discrete-time) MAPs that randomly switch
between each other. The two MAPs stand for the inter-arrival
processes of the off and on phases, respectively. We choose
MAPs for temporal modeling for two reasons. First, MAP
is regarded as one of the most expressive models for inter-
arrival processes. Second, it is analytically tractable by using
matrix-analytic methods. The dMAP model further enhances
the representation capacity of the conventional MAP, and
allows parallel computing for parameter estimation of two
MAPs. In our case, the carrier signal is controlled by dMAP,
where {τoff1 , τoff2 , · · · } and {τon1 , τon2 , · · · } are modeled by two
independent MAPs – MAPoff(m1) and MAPon(m2) – with



Case 1-step transition probability

(1, i, j) ↷ (1, k, j): MAPoff is frozen in state j, and MAPon makes a hidden transition from state i to k.

(1, i, j) ↷ (0, i, k): MAPon is frozen in state i, and MAPoff makes an observable transition from state j to k.

(0, i, j) ↷ (0, i, k): MAPon is frozen in state i, and MAPoff makes a hidden transition from state j to k.

(0, i, j) ↷ (1, k, j): MAPoff is frozen in state j, and MAPon makes an observable transition from state i to k.

Table II: State transition of the carrier signal.

Q =

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)



(0, 0, 0) 1 − ν0∆t ν01∆t
ν′
02(ν02+ν03)∆t

ν′
02+ν′

03

ν′
03(ν02+ν03)∆t

ν′
02+ν′

03

(0, 0, 1) ν10∆t 1 − ν1∆t
ν′
02(ν12+ν13)∆t

ν′
02+ν′

03

ν′
03(ν12+ν13)∆t

ν′
02+ν′

03

(0, 1, 0) 1 − ν0∆t ν01∆t
ν′
12(ν02+ν03)∆t

ν′
12+ν′

13

ν′
13(ν02+ν03)∆t

ν′
12+ν′

13

(0, 1, 1) ν10∆t 1 − ν1∆t
ν′
12(ν12+ν13)∆t

ν′
12+ν′

13

ν′
13(ν12+ν13)∆t

ν′
12+ν′

13

(1, 0, 0)
ν02(ν′

02+ν′
03)∆t

ν02+ν03

ν03(ν′
02+ν′

03)∆t

ν02+ν03
1 − ν′

0∆t ν′
01∆t

(1, 0, 1)
ν12(ν′

02+ν′
03)∆t

ν12+ν13

ν13(ν′
02+ν′

03)∆t

ν12+ν13
1 − ν′

0∆t ν′
01∆t

(1, 1, 0)
ν02(ν′

12+ν′
13)∆t

ν02+ν03

ν03(ν′
12+ν′

13)∆t

ν02+ν03
ν′
10∆t 1 − ν′

1∆t

(1, 1, 1)
ν12(ν′

12+ν′
13)∆t

ν12+ν13

ν13(ν′
12+ν′

13)∆t

ν12+ν13
ν′
10∆t 1 − ν′

1∆t

(1)

a switching scheme.
Let us denote MAP(m) for an m-dimensional MAP which

is governed by an underlying continuous-time Markov chain
(CTMC) with state space S = {0, · · · ,m − 1},m ≥ 1. Let
C0 and C1 denote the matrices of state transition rates with
zero and one arrival, respectively. The following restrictions
apply to the Ci:

0 ≤ [C1]ij <∞
0 ≤ [C0]ij <∞ i ̸= j

[C0]ii < 0
(C0 +C1)1 = 0,

where 1 denotes an all-one column vector with an appropriate
dimension. In total, there are 2m2 − m free parameters.
The model parameters can be estimated using the algorithms
listed in [17], [27]. To accommodate to the SNC framework,
we shall discretize MAPoff(m1) and MAPon(m2) with ∆t.
The timeslot interval ∆t should be small enough so that the
probability of having two or more events occurring within ∆t
can be neglected. Consider a continuous-time MAP(2) with
the matrix representation

C0 =

[
−ν0 ν01
ν10 −ν1

]
and C1 =

[
ν02 ν03
ν12 ν13

]
,

where νi is the sum rate at which the process makes a
transition from state i, and νij is the rate at which the process
makes a transition from state i into state j. The transition
probability matrices of the corresponding discrete-time MAP
are

D0 =

[
1− ν0∆t ν01∆t
ν10∆t 1− ν1∆t

]
and D1 =

[
ν02∆t ν03∆t
ν12∆t ν13∆t

]
,

and the row sum of D0 + D1 is always one. For space
considerations, we will use a set of model parameters D =
{(νi, νi,0, · · · , νi,i−1, νi,i+1, · · · , νi,2m−1)i=0,··· ,m−1; ∆t} to
represent the discrete-time MAP.

As aforementioned, the inter-arrival processes of the on and
off phases are governed by MAPoff(m1) and MAPon(m2)
with state spaces Soff = {0, · · · ,m1 − 1} and Son =
{0, · · · ,m2− 1}, respectively. Let us use a tuple (o, son, soff)
to represent the state of the carrier signal at timeslot t, with
o ∈ {0, 1} indicating the physical state of the carrier signal
(0: off and 1: on) and (son, soff) ∈ Son×Soff the hidden state
of the carrier signal, and introduce a mapping ι1 to embed the
higher-order state space into a 1-order one:

ι1(o, s
on, soff) = o ∗m1 ∗m2 + son ∗m1 + soff .

Given the matrix representation of MAPon and MAPoff , the
1-step transition probability matrix Q of the carrier signal can
be put into a compact form,

Q =

(
Qoff↷off Qoff↷on

Qon↷off Qon↷on

)
,

where Qoff↷off , Qoff↷on, Qon↷off , and Qon↷on are four
(m1 ∗ m2) × (m1 ∗ m2) block matrices, governing the on-
off switching process of the carrier signal. All possible state
transitions of Q are summarized in Table II.

As an illustration, we show how to compute Q in the
following example. Suppose we have MAPoff(2) with Doff =
{ν0, ν01, ν02, ν03; ν1, ν10, ν12, ν13; ∆t} and MAPon(2) with
Don = {ν′0, ν′01, ν′02, ν′03; ν′1, ν′10, ν′12, ν′13; ∆t}. The 1-step
transition probability matrix Q is shown in Eqn. (1).

2) Spatial Model: AR-HMM: We investigate the models for
characterizing the spatial feature and find that the autoregres-
sive hidden Markov model (AR-HMM) [30] is suitable for this
job. Suppose X is a finite state homogeneous Markov chain.
Let N = {0, 1, · · · , N − 1} be the state space of X . The
observable process y has the form

yt+1 = µ(Xt) +

p∑
i=1

ϕi(Xt)yt+1−i + σ(Xt)ϵt+1.



Model Architecture
MAP [17], [27], [28] disable MAPon + AR-HMM(p = 0, N = 1, µ = 1, σ = 0)
BMAP [29] disable MAPon + AR-HMM(p = 0, N = m1 × {maximal batch size}, σ = 0)
Poisson [11], [10] disable MAPon + MAPoff (m1 = 1) + AR-HMM(p = 0, N = 1, µ = 1, σ = 0)
cPoisson disable MAPon + MAPoff (m1 = 1) + AR-HMM(p = 0, N = 1)
MMOO [11], [10] MAPoff (m1 = 1) + MAPon(m2 = 1) + AR-HMM(p = 0, N = 1, σ = 0)
MMP [9] disable MAPon & MAPoff + AR-HMM(p = 0)
AR(p) [9] disable MAPon & MAPoff + AR-HMM(N = 1, residual=“normal”)
Normal [9] disable MAPon & MAPoff + AR-HMM(p = 0, N = 1, residual=“normal”)
Exponential [11], [10], [9] disable MAPon & MAPoff + AR-HMM(p = 0, N = 1, residual=“exponential”)

Table III: Popular arrival models widely used in MGF-SNC. The SOTA arrival models used in SNC can be readily represented
by the proposed dMAPAR-HMM model.

Algorithm 1: Online EM algorithm for AR-HMMs.
Input :

• Chain state space N = {0, 1, · · · , N − 1};
• Array of initial probabilities Π0 = (π0, · · · , πN−1) such

that πi stores the probability that X0 = i;
• Number of time lags p of the observable process;
• Sequence of observations (y0, y1, · · · ).

Output: The state transition matrix P , and the model
parameters Θ.

1 foreach time t do
/* E-step. */

2 foreach state i, j ∈ N do
3 Ξt ← Information matrix at time t;
4 bt ← ΞtΠt−1;
5 Q← PT ;
6 O[:, i]← QΞtO[:, i] + bt[i]Q[:, i];
7 J [:, i, j]← QΞtJ [:, i, j] + bt[i]Q[j, i]ej ;
8 foreach lag l, r ∈ {0, 1, · · · , p} do
9 F [:, i, l]← QΞtF [:, i, l] + bt[i]Q[:, i]yt−l;

10 H[:, i, l, r]← QΞtH[:, i, l, r] + bt[i]Q[:, i]yt−lyt−r;
11 end
12 end
13 Πt ← Qbt.

/* M-step. */
14 foreach state i, j ∈ N , lag l ∈ {1, · · · , p} do
15 P [i, j]← J[i,j]

O[i]
;

16 µ[i]← F [i,0]−
∑p

l=1
ϕ[l,i]F [i,l]

O[i]
;

17 σ[i]← µ[i]2O[i]+H[i,0,0]+
∑p

l=1

∑p
r=1 ϕ[l,i]ϕ[r,i]H[i,l,r]

O[i]

− 2µ[i]F [i,0]−2
∑p

l=1
ϕ[l,i]H[i,0,l]

O[i]
;

18 ϕ[l, i]←
H[i,0,l]−

∑
r ̸=l ϕ[r,i]H[i,l,r]

H[i,l,l]
.

19 end
20 end

Namely, the (t+1)th observation is influenced by the previous
p observations and by the state of X at the previous time t
(i.e., the reaction to Xt is not instantaneous).

The key components of an AR-HMM are: (1) N : the
number of states of the hidden Markov chain; (2) P : the

state transition matrix of the hidden Markov chain; (3) p:
the number of time lags of the observable process; and (4) Θ =
{(µ0, · · · , µN−1), (ϕi,0, · · · , ϕi,N−1)i=1,··· ,p, (σ0, · · · , σN−1)}:
the model parameters of the AR(p)-HMM(N ). Suppose that
the noise {ϵt} is a sequence of i.i.d. random variables (which
are, in particular, independent of the Xt). Given {y1, · · · , yt},
N and p can be chosen according to the AIC/BIC information
criteria [31], [32] as well as cross-validation, and P and
Θ can be estimated by using the EM-algorithm [33], [34].
Define

A(Xt) =


ϕ1(Xt) 1
ϕ2(Xt) 0 1

...
. . .

ϕp(Xt) · · · 0

 , C(t,t) =

ϕ1(Xt)
...

ϕp(Xt)


and C(s,t) = A(Xs)C(s+1,t), ∀s < t. For stationary purpose,
limn→∞ C(t−n,t) = 0. When p = 1 and N = 1, it is
equivalent to |ϕ| < 1.

3) Observation Process: dMAPAR-HMM: Let us denote

Ot = 1{timeslot t is in the on phase} and N(t) =
∑
i≤t

Oi.

The observation process a can then be written as at =
Ot · yN(t), t = 1, 2, · · · . The random variable Ot indicates
the physical state of the carrier signal at time t, and yN(t) is
the amplitude of the input signal at time t.

Let Z be a discrete-time Markov chain whose state space is
S = {ι(o, son, soff , i)|(o, son, soff , i) ∈ {0, 1} × Son × Soff ×
N}, where ι(o, son, soff , i) = N ∗ ι1(o, son, soff) + i. The
transition probability matrix of Z is given by

T =

(
Qoff↷off ⊗ IN Qoff↷on ⊗ P
Qon↷off ⊗ IN Qon↷on ⊗ P

)
. (2)

Thereby at can be rewritten as

at = µ̆(Zt−1, Zt) +

p∑
i=1

ϕ̆i(Zt−1, Zt)yN(t−1)+1−i

+σ̆(Zt−1, Zt)ϵt,

where ğ(Zt−1, Zt) = 1{Zt≥m1∗m2∗N}gZt−1%N , g ∈
{µ, ϕ1, · · · , ϕp, σ}, and % is the modulo division.

It is worth noticing that many well-known arrival models,
such as MAP, batch MAP (BMAP) et.al., are special cases
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(a) Spatial feature of the discretized WIDE trace with (src
IP, dst IP, protocol)=(203.76.247.112, 204.57.206.30, IPv4)
captured at 2022-04-13 08:00. The x-coordinate t is the
index of the time series {yt}.
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Figure 3: Spatial feature extraction. AR-HMM can capture
the dynamics of the input signal.

of the proposed dMAPAR-HMM model (see Table III for
more details). Another benefit of dMAPAR-HMM is that
it is additive when the residuals conform to additive white
Gaussian noise. Namely, if each individual flow is fitted by
dMAPAR-HMM, the aggregate flow can also be modeled
by dMAPAR-HMM. In view of its strong generalization,
dMAPAR-HMM can be used to model various real-world
traffic flows, which is, however, a great challenge to many
existing models.

B. The Applications in Traffic Feature Extraction

To verify the effectiveness of dMAPAR-HMM in real-world
traffic feature extraction, we have conducted experiments on
different kinds of traces, such as the multimedia streaming
and video conference collected from Huawei commercial
and campus networks, as well as open-source WIDE traces
from MAWI1, which is a mixture of commodity applications
and research experiments. Due to space limitations and data
openness, herein we show the results with typical traffic flows
from the WIDE traces.

To accommodate the SNC framework, we adopt a constant
timeslot interval of mean(IATs)

40 to discretize the time. We fit
the discrete-time processes with dMAPAR-HMM and generate
synthetic traces using the well-fitted model. Specifically, we
use Algorithm 1 to fit the spatial model, and the algorithms
listed in [17], [27] to fit the temporal model. As we can see
from Figures 3 and 4, the proposed model can well capture the
dynamics of the input and the carrier signals. We compare the
real and synthetic traces by showing the sample path as well as
the accumulated arrivals in Figure 5, which indicates that our
model can efficiently learn the arrival patterns from the input
traffic. We further compare these traces in terms of the Hurst

1The dataset is available at http://mawi.wide.ad.jp/.
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(a) Temporal feature of the discretized WIDE trace as
shown in Figure 3. The x-coordinate t is the index of the
time series {τofft }.
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Figure 4: Temporal feature extraction. MAP can capture the
dynamics of the carrier signal.

exponent H and the coefficient of variation CV (see Table IV
for more details). It can be concluded from the experimental
results that the proposed model can exactly capture the various
characteristics of traffic from the decomposed spatio-temporal
signals.

III. INTERFACE TO MGF-SNC

In this section, we deduce an interface for the spatio-
temporal model to MGF-SNC.

An arrival process A(s, t) is defined as being (σA, ρA)-
constrained if for all θ > 0, there exist σA(θ) and ρA(θ) ∈
R+ ∪ {+∞} such that the MGF of A(s, t) satisfies

E[eθA(s,t)] ≤ eθ(σA(θ)+ρA(θ)(t−s)).

This is related to the theory of effective bandwidth that is
defined as

1

θ(t− s)
lnE[eθA(s,t)]. (3)

The effective bandwidth characterizes the statistical behavior
of traffic arrivals and has be applied to the derivation of closed-
form solutions for end-to-end performance bounds [6].

A. MGF of dMAPAR-HMM

Consider an arrival process with dMAPAR-HMM arrivals.
Let V (s, t) be the vector that stands for [E[eθA(s,t)|Zs =
k]]k∈S , which is the MGF of A(s, t) conditional on the state
of Zs at time s. By definition, we have Vk(t, t) = 1,∀k ∈ S.
For all s ≤ t, we have the following result for the MGF.

Theorem 1: For all s ≤ t, we have

Vk(s, t) = E
[
e
∑p

i=1[θi(s,t)−θ]yN(s)+1−i

×
t∏

l=s+1

M(θ1(l, t);Zl−1, Zl)|Zs = k
]
,

http://mawi.wide.ad.jp/
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Figure 5: Sample paths and cumulative arrivals of raw and synthetic traces. The figures are, from left to right: (a)
discretized WIDE trace; (b) synthetic trace with well estimated dMAPAR-HMM; and (c) accumulative arrival (bytes) over a
0.25-second window.

WIDE Trace captured at 2022-04-13 08:00 FlowID H (empirical) H (estimated) CV (empirical) CV (estimated)
(src IP, dst IP, protocol)=(203.76.247.112, 204.57.206.30, IPv4) flow1 0.2977 0.2978 11.43 11.18
(src IP, dst IP, protocol)=(13.212.219.174, 163.194.192.18, UDP) flow2 0.2739 0.2790 21.59 22.27
(src IP, dst IP, protocol)=(131.142.41.211, 144.195.33.147, TCP) flow3 0.3085 0.3055 27.04 26.20

Table IV: Comparison between raw and synthetic traces.

where θi(s, t) = θφi(s, t), with
• φp+1(s, t) = 1

• φi(t, t) = 1

• φi(s−1, t) = (1−Os)φi(s, t)+Os[φ1(s, t)ϕ̆i(Zs−1, Zs)+
φi+1(s, t)]

∀i = 1, · · · , p and M(·;Zl−1, Zl) is the MGF of µ̆(Zl−1, Zl)+
σ̆(Zl−1, Zl)ϵl given Zl−1, Zl.

Proof 1: The theorem can be easily proved by induction.
Interest readers can refer to the appendix for the details.

B. Asymptotic Effective Bandwidth
As to Theorem 1, we first note that Os = 1{Zs≥m1∗m2∗N}.

If we let φ(s, t) = [φ1(s, t), · · · , φp(s, t)]
T , b(Zs) =

[0, 0, · · · , Os]
T and

A(Zs−1, Zs) =


1 − Os + ϕ̆1(Zs−1, Zs) Os

ϕ̆2(Zs−1, Zs) 1 − Os Os

...
. . .

ϕ̆p(Zs−1, Zs) · · · · · · 1 − Os

 ,

we would have
φ(s− 1, t)

= b(Zs) +A(Zs−1, Zs)φ(s, t)
= b(Zs) +A(Zs−1, Zs)[b(Zs+1) +A(Zs, Zs+1)φ(s+ 1, t)]
= · · ·
= φ(s− 1, t− 1) +A(Zs−1, Zs) · · ·A(Zt−2, Zt−1)

×[b(Zt) +A(Zt−1, Zt)1− 1]
→ φ(s− 1, t− 1), as t− s→ ∞.

(4)
The last step of Eqn. (4) used the stationary condition of

AR-HMM, which implies that {φ(s, t)}t converges as t tends
to infinity. Let limt−s→∞ φ(s, t) = Ws, the following results
hold for the effective bandwidth.

Theorem 2: Let v = [E[Ws|Zs = k]]k∈S , A be the
matrix [A(Zs−1 = i, Zs = j)]i,j∈S with its element be-
longing to Rp×p, and B = [[0, · · · , 0]p×1, · · · , [0, · · · , 0]p×1,

[0, · · · , 1]p×1, · · · , [0, · · · , 1]p×1]
T . We then have

1) v = (I|S|×p − T ◦A)−1TB;
2) Denote ϕmax = max |ϕi,j | and let π = [πi]i∈S be the

stationary probability vector of Z, where πi stands for
the stationary probability of state i. We then have

lim
ϕmax→0

1/θ(t− s)(lnE[eθA(s,t)]− lnπRΓt−s(θ)1) = 0,

where
R = diag([E[e

∑p
k=1

θ(vi,k−1)yN(s)+1−k |Zs = i]]i∈S)
Γ(θ) = [ψi,j(θ)]i,j∈S ◦ T

ψi,j(θ) =

 eθµ̆i,jvj,1+
1
2
θ2σ̆2

i,jv
2
j,1 , ϵt ∼ N (0, 1),

eθµ̆i,jvj,1

1− θσ̆i,jvj,1
, ϵt ∼ Exp(1).

Proof 2: The proof can be found in the appendix.

Based on Theorem 2 and Eqn. 3, we can obtain the
asymptotic effective bandwidth. Since Γ(θ) is diagonalizable
in C, there exists a diagonal matrix D and a matrix U such
that Γ(θ) = UDU−1. Hence,

πRΓt−s(θ)1 = πRUDt−sU−11
=

∑
uiD

t−s
ii

= max |Dii|t−s
∑

ui(
Dii

max |Dii| )
t−s

≤ max |Dii|t−s
∑

ui

= eln
∑

ui+lnmax |Dii|(t−s),

with the notation ui = (πRU)i(U
−11)i.

The asymptotic effective bandwidth can then be program-
matically calculated with

1
θ(t−s) lnE[e

θA(s,t)] ∼ 1
θ(t−s) lnπRΓ

t−s(θ)1

≤ σA(θ)/t− s+ ρA(θ),
(5)

where σA(θ) = ln
∑

ui/θ and ρA(θ) =
lnmax |Dii|

θ .



Algorithm 2: Feature Extraction
Input : flow, ∆t, θ
Output: (σ, ρ)-bound

1 def FeatureExtractor(flow, ∆t, θ):
/* from continuous-time to

discrete-time system. */
2 {at} ← discretize the traffic flow with ∆t ;
3 (Q,P,Θ)← fit dMAPAR-HMM with {at};

/* calculate the input flow’s
(σ(θ), ρ(θ))-bound with the
extracted features. */

4 T ← Eqn.(2);
5 π ← πT = π,

∑
πi = 1;

6 R(θ)← Theorem 2 ;
7 Γ(θ)← Theorem 2 ;
8 (σA(θ), ρA(θ))← Eqn. (5).
9 return (σA(θ), ρA(θ))

IV. END-TO-END PERFORMANCE EVALUATION

We have established a spatial-temporal model for network
traffic, and introduced a ready-to-use interface for it to the
MGF-SNC in previous sections. In this section, we shall use it
directly to conduct end-to-end network analysis. Alike arrival
process, a service process S(s, t) is said to be (σS , ρS)-
constrained if for all θ > 0, there exist σS(−θ) and ρS(−θ) ∈
R+ ∪ {+∞} such that

E[e−θS(s,t)] ≤ eθ(σS(−θ)−ρS(−θ)(t−s)).

There are three atomic operations underlying the MGF-
SNC analysis framework [35]: Aggregation, Left-over and
Concatenation. With these tools, we can reduce any feed-
forward to a single flow - single server topology. From
SNC theory, we know that, if arrivals and service are (σ, ρ)-
constrained, the stochastic delay bound which is violated at
most with probability ε is given by [26]

Tε = inf
θ∈{θ|ρA(θ)<ρS(−θ)}

{σA(θ) + σS(−θ)
ρS(−θ)

− log(ε(1− eθ(ρA(θ)−ρS(−θ))))

θρS(−θ)

}
.

(6)

A. Experimental Setup

Let us consider the topology shown in Figure 6. The
switches support two queues. Flow 1 enters the highest priority
queue. Flow 2 and 3 enter the lowest priority queue. The
queuing mode is by Strict Priority where the priority sets the
order in which queues are served, starting with the highest
priority queue and going to the next lower queue only after
the highest queue has been transmitted. Suppose that switches
in this network are work-conserving servers with constant
service rate c, i.e., σS(−θ) = 0 and ρS(−θ) = c. For any
flow of interest, we can use Eqn. (6) to compute the end-to-
end performance bounds with S being substituted by the end-
to-end service Se2e. To illustrate the importance of feature

Figure 6: Network topology of a small-scale commercial
campus. The flows are of typical backbone network traffic as
shown in Table IV.
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Figure 7: Performance evaluation results on the single flow -
single server topology with c = 100Mbps.

extraction in performance analysis, we take 6 well-known
arrival models to benchmark the delay bound, which are: (1)
independent normally distributed increments (Normal); (2) in-
dependent exponentially distributed increments (Exponential);
(3) compounded Poisson (cPoisson); (4) 1-order autoregressive
process (AR1); (5) Markov-modulated on-off (mmoo); and
(6) Markov-modulated process (mmp). Comparisons are made
against the ground truth which is obtained from the discrete-
event simulation (DES) [36].

B. Single Server Analysis

We begin our analysis with the single flow - single server
topology. This is the most important topology, since we can
reduce any feed-forward to this network by using the end-to-
end service. Another benefit of it is that we can eliminate
interference from other sources and focus on the affect of
arrivals on performance evaluation. In Figure 7, we test the
impact of arrival models in feature extraction. As we can see
from this figure, if we use the Exponential model to extract
traffic features in MGF-SNC, we will get a good estimate of
the delay bound with flow 3. But when we move over to flow
1, we cannot even get a reliable estimate. The same argument
applies to the mmp model and the cPoisson model.



C. Network Analysis

We continue with the network topology and adopt the “pay
multiplexing only once” (PMOO) [12] algorithm to perform
the end-to-end network analysis. Let us consider flow 1. The
overall service offered to flow 1 can be described by the end-
to-end service

Se2e(s, t) = S1 ⊗ S2 ⊗ S5 ⊗ S6 ⊗ S7(s, t),

where ⊗ is the min-plus convolution operator. The end-to-
end service is not influenced by the cross-flows, and the
only uncertainty to Tε is from the arrivals. We test the
impact of traffic models in Figure 8a. The first line of
Figure 8a displays the result with c = 100Mbps, and the
second line, c = 35Mbps. We see the same phenomenon
here: the reliability is not guaranteed when we choose an
inappropriate model to do feature extraction. Take the cPoisson
model as an instance. It can provide accurate results in high-
bandwidth scenarios, whereas it behaves dramatically poor as
bandwidth decreases. MGF-SNC with the other arrival models
might severely underestimate the delay bound. By contrast,
dMAPAR-HMM can accurately capture the various character-
istics of traffic from the decomposed spatio-temporal signals
and hence significantly boost the effectiveness of MGF-SNC,
which means that both the tightness and the reliability of
the delay bound are enhanced (see also Figure 8b for the
stochastic delay bound with violation probability ε = 10−4

and ε = 10−5, respectively).
Different from flow 1, flow 2 and 3’s end-to-end services

are influenced by the cross-flows. When the flow of interest
merges with a cross-flow, its service might be strongly re-
duced. Compared to its deterministic counterpart, the impact of
cross-traffic in SNC can be stronger, as computation operations
like leftover service or deconvolution require several stochastic
inequalities, which in many cases leads to loose bounds.
Since our contribution is not on the service modeling, we
will not pay a lot of discussion on how to reduce pessimism
brought by SNC in complex topologies and leave this to
future work. What we want to address here is that even if
more advanced modeling of cross-flow is employed, MGF-
SNC with existing arrival models might still underestimate
the delay bound (see the last two columns of Figure 8a). The
proposed dMAPAR-HMM model outperforms popular arrival
models and shows robustness under different scenarios. The
main credit for that goes to the versatility of dMAPAR-HMM
which contributes to better extracting critical traffic features
from network flows. However, the other arrival models may
not work well. As network utilization level grows, complicated
characteristics of network traffic gradually play a more influ-
ential role. Existing models are too short-sighted to capture
such characteristics of real traffic and hence cannot provide an
appropriate estimation for performance bound. The proposed
dMAPAR-HMM accurately captures such characteristics, and
hence improves performance analysis.

V. CONCLUSION

In this paper, we revisit the traffic modeling problem in SNC
and propose a spatial-temporal model dMAPAR-HMM for
real-world network traffic. We dissect various existing arrival
models and reveal that dMAPAR-HMM unifies these models.
Then we derive the MGF-bound of dMAPAR-HMM which
can be directly integrated into the framework of MGF-SNC.
Extensive experiments with real traffic traces demonstrate that
dMAPAR-HMM can accurately represent multi-dimensional
multi-order characteristics of current network traffic. Ex-
periments also show that MGF-SNC with dMAPAR-HMM
achieves a tighter and more robust performance bound, while
the existing arrival models are either overly optimistic for
accurate performance evaluation or sensitive to specific traffic
types and scenarios. In a nutshell, dMAPAR-HMM provides
a fine-grained QoS guarantee and facilitates effective network
planning. We envision that dMAPAR-HMM will motivate
further exploration of traffic modeling for improving SNC.
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APPENDIX

Proof of Theorem 1

The proof uses a backwards mathematical induction that
starts with s = t− 1. Let Es[·] = E[·|Zs]. When s = t− 1,

Et−1[e
θA(t−1,t)] = Et−1[e

θat ]

= Et−1[e
θ[µ̆(Zt−1,Zt)+

∑p
i=1 ϕ̆i(Zt−1,Zt)yN(t−1)+1−i+σ̆(Zt−1,Zt)ϵt]]

= Et−1[e
θ
∑p

i=1 ϕ̆i(Zt−1,Zt)yN(t−1)+1−iM(θ;Zt−1, Zt)].

https://github.com/TL-System/ns.py


Since θ1(t, t) = θ and θi(t− 1, t)− θ = θ[φi(t− 1, t)− 1] =
θϕ̆i(Zt−1, Zt), Theorem 1 holds for the case of s = t− 1.

Assume that Theorem 1 holds for A(s, t). Then we have

Es−1[e
θA(s−1,t)]

= Es−1[e
θas+θA(s,t)]

= Es−1[e
θasEs[e

θA(s,t)]]

= Es−1[e
θas+

∑p
i=1[θi(s,t)−θ]yN(s)+1−i

×
∏t

l=s+1 M(θ1(l, t);Zl−1, Zl)]

= Es−1[e
[θ1(s,t)−θ(1−Os)]yN(s)+

∑p
i=2[θi(s,t)−θ]yN(s)+1−i

×
∏t

l=s+1 M(θ1(l, t);Zl−1, Zl)].

Noticing that: (1) yN(s) = (1−Os)yN(s−1)+µ̆(Zs−1, Zs)+∑p
i=1 ϕ̆i(Zs−1, Zs)yN(s−1)+1−i + σ̆(Zs−1, Zs)ϵs; and (2)

yN(s)+1−i = OsyN(s−1)+2−i + (1− Os)yN(s−1)+1−i. Direct
substitution yields

Es−1[e
θA(s−1,t)]

= Es−1

[
e
∑p

i=1[θi(s−1,t)−θ]yN(s−1)+1−i
∏t

l=sM(θ1(l, t);Zl−1, Zl)
]

which completes the proof.

Proof of Theorem 2

Let {Ft}t be the complete filtration generated by Z. We
first have Ws = b(Zs+1) + A(Zs, Zs+1)Ws+1, where Ws is
a random variable adapted to Fs−1. Taking the expectation
with Fs on both sides yields the following equation for v:
v = TB + T ◦Av.

As to the second claim, we first have
Claim 1: Let || · ||∞ be the infinity norm, and

ϕ̆(i, j) =

ϕ̆1(i, j)
...

ϕ̆p(i, j)

 .

We then have |φ(s, t)− vZs | ≤ cs,tε, where
• ct−1,t = 1;
• cs,t = 1+ abs(A(Zs, Zs+1))cs+1,t, ∀s < t− 1; and

• ε = max
(

maxi,j ||1+ ϕ̆(i, j)− vi||∞,
maxi,j ||b(j) +A(i, j)vj − vi||∞

)
.

Proof of Claim 1. The proof uses a backwards mathematical
induction that starts with s = t− 1. When s = t− 1,

φ(t− 1, t) = 1+ ϕ̆(Zt−1, Zt)

By definition, we have |φ(t− 1, t)− vZt−1 | ≤ ε1.
Assume that claim 1 holds for φ(s+ 1, t). We then have

|φ(s, t)− vZs
|

= |b(Zs+1) +A(Zs, Zs+1)φ(s+ 1, t)− vZs
|

≤ |b(Zs+1) +A(Zs, Zs+1)vZs+1 − vZs |
+abs(A(Zs, Zs+1))cs+1,tε

≤ [1+ abs(A(Zs, Zs+1))cs+1,t]ε
≤ cs,tε,

which completes the proof.

Let ϵt ∼ N (0, 1)2, according to the result of Claim 1, we
have

1)
e
∑p

i=1[θi(s,t)−θ]yN(s)+1−i

≤ e
∑p

i=1 θ[vZs,i−1+cmax
s,t ε]yN(s)+1−i ,

where cmax
s,t = sup ||cs,t||∞;

2)

E[
∏t

l=s+1 M(θ1(l, t);Zl−1, Zl)|Zs = k]

= E[
∏t

l=s+1 e
alφ1(l,t)+blφ1(l,t)

2 |Zs = k]

≤ E[
∏t

l=s+1 e
al(vZl,1

+cl,t,1ε)+bl(vZl,1
+cl,t,1ε)

2

|Zs = k]

≤ e(h1ε+h2ε
2)(t−s−1)×

E[
t∏

l=s+1

ealvZl,1
+blv

2
Zl,1 |Zs = k]︸ ︷︷ ︸

Λs,t

,

where 
ai = µ̆(Zi−1, Zi)θ
bi =

1
2 σ̆(Zi−1, Zi)

2θ2

h1 = maxi(ai + 2bivZi,1)ci,t,1
h2 = maxi bic

2
i,t,1

Consider the building block Λs,t. Let J(s, t) be the vector
[E[Λs,t|Zs = k]]k∈S , we then have

Jk(s, t) = E[Λs,t|Zs = k]

= E[eas+1vZs+1,1+bs+1v
2
Zs+1,1Λs+1,t|Zs = k]

= (Γ(θ)J(s+ 1, t))k.

And then,

J(s, t) = Γ(θ)J(s+ 1, t) = · · · = Γt−s(θ)e.

Therefore,

E[eθA(s,t)]
≤ π[E[eθA(s,t)|Zs = k]]k∈S

≤ e[h1ε+h2ε
2](t−s−1)+

∑p
i=1 θcmax

s,t yN(s)+1−iεπRJ(s, t).

Note that when ϕmax = 0, vi ≡ e,∀i ∈ S , we then have
ε = 0. Since ε is continuous at ϕmax = 0, we then have

limϕmax→0 cs,tε
= limϕmax→0 cs,t × limϕmax→0 ε
= (t− s)× limϕmax→0 ε
= 0,

which completes the proof.

Ethics

This work does not raise any ethical issues.

2The case of ϵt ∼ Exp(1) can be similarly argued.
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