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Abstract. Artificial neural networks (ANNs) can outperform 
the human ability of object recognition by supervised training 
of synaptic parameters with large datasets. Contrarily to the 
human brain, however, ANNs cannot continually learn, i.e. 
acquire new information without catastrophically forgetting 
previous knowledge. To solve this issue, we present a novel 
hybrid neural network based on CMOS logic and phase change 
memory (PCM) synapses, mixing a supervised convolutional 
neural network (CNN) with bio-inspired unsupervised learning 
and neuronal redundancy. We demonstrate high classification 
accuracy in MNIST and CIFAR10 datasets (98% and 85%, 
respectively) and energy-efficient continual learning of up to 
30% of non-trained classes with 83% average accuracy.  

Continual learning. ANNs, like multi-layer perceptrons and 
CNNs, show high and stable accuracy for pattern and object 
recognition [1]. However, as presented in Fig. 1a for the 
sequential training of 'A' and 'B' subsets in a standard CNN, 
they lack the necessary ‘plasticity’ for learning continually [2]. 
To overcome this limitation, also known as "stability-plasticity 
dilemma", we propose a novel neural network based on stable 
trained convolutional filters and bio-inspired unsupervised 
spike-timing-dependent plasticity (STDP), Fig. 1b [3]. 
Supervised-unsupervised network. Fig. 2a shows the main 
blocks of our architecture: (i) the CNN, (ii) the combinational 
logic and (iii) the unsupervised winner-take-all (WTA) 
network. First, the CNN is trained with a subset of input 
patterns, called trained classes, to develop the filters by offline 
supervised training. Then, the whole network is operated, 
where also new patterns, called non-trained classes, can be 
learnt and classified thanks to the unsupervised network (Fig. 
2b). In the CNN, input images are convolved with 20x20 
trained filters that are extracted from the first convolutional 
layer of the networks in Fig. 3. Two types of filters are used, 
the class filters (Fig. 3a), each trained to recognize only a 
specific class of the dataset, and the feature filters (Fig. 3b), 
each specialized in extracting a certain feature [4]. The filters 
were trained with respect to a fixed threshold for directly 
mapping a specific feature. This generates a pattern of binary 
responses, which are equal to either VDD, when the feature is 
found, or 0, when the feature is not found. Fig. 4a shows the 
circuit used for convolution, exploiting the analogue in-
memory matrix-vector multiplication (MVM) with PCM 
devices [5]. We always used 16 different filters, 7 class filters 
and 9 feature filters, resulting in a 4x4 feature map. Fig. 4b 
shows the average feature maps for the MNIST dataset with 3 
non-trained classes. These patterns have variable density P (i.e. 
active signals over total ones); thus, they must be equalized 
before the unsupervised block. Fig. 4c shows the equalization 
layer, i.e. a combinational logic with a 4x4 output pattern with 
P=25% (Fig. 4d). The logic gives higher priority to class filters. 
Finally, the equalized pattern feeds the WTA network with 
unsupervised learning via STDP and inhibitory synapses [3]. 
Implementation of PCM synapses. We used PCM synapses 
with one-transistor/one-resistor (1T1R) structure for both the 
CNN and the WTA. Fig. 5 shows the cumulative distributions 
of measured conductance for the PCM synapses of Fig. 4a. 
Here, 10 levels were programmed to serve as analogue weights 
for the MVM [5]. The reset (high resistance) state of the PCM 
was used as reference. Fig. 6 illustrates the cumulative 

distributions of the current in response to a class filter (a) and 
a feature filter (b). As expected, only one class shows a high 
current in response to a class filter. The non-trained classes 
only respond to feature filters, as the features are general 
enough to be found in both trained and non-trained classes. We 
tested an unsupervised WTA network with 4x4 patterns and 3 
post-synaptic neurons (POSTs). Fig. 7 shows the equalized 
input patterns (a), the measured PCM conductances (b) and the 
POSTs firing activity (c). Presentation of two patterns in the 
first 500 ‘epochs’, i.e. input appearance every 10 ms (bio-
inspired) or faster (10 s) [6], results in STDP learning. The 
presentation of the third pattern in the next 500 epochs results 
in further unsupervised learning without forgetting the first two 
patterns. This supports the role of STDP for continual learning. 
MNIST dataset. Fig. 8a shows that higher testing accuracy is 
obtained for an increasing number of POSTs per non-trained 
class. This highlights the necessity of neuronal redundancy to 
classify patterns that have more than one feature map (Fig. 4b). 
Redundancy is indeed found in biological networks as a mean 
to support learning [7]. Fig. 8b shows that the global accuracy 
decreases from the ideal value of 98% for full training to 93% 
with 3 non-trained classes. Considering non-trained classes 2, 
5, 7, CMOS logic and PCM variability, a further 4% decrease 
is observed, as shown in the confusion matrix of Fig. 9. 
Energy efficiency. To reduce the energy consumption per 
input presentation, we introduced a burst-mode current 
integration for STDP and reduced the POST fire pulse applied 
to the PCM synapses to 100 ns (Fig. 10a) [3]. Fig. 10b shows 
that the unsupervised block requires an average energy 
consumption of 10-12 J for current integration and a 10-10 J for 
the consequent firing, which is lower than the average energy 
for convolution (10-7 J, Fig. 11). The non-trained classes 
require similar energy consumption in the MVM respect to the 
trained ones. The additional energy required by the non-trained 
patterns is given by the learning activity of STDP, which is 
however negligible respect to convolution, thus sustaining the 
energy-efficient approach to continual learning. 
CIFAR10 dataset. We tested our network for continual 
learning with the CIFAR10 dataset. Fig. 12 shows the 
recognition accuracy, reaching an 85% for fully trained dataset 
and 82% for 2 non-trained classes. Fig. 13 demonstrates 
continual learning for the non-trained "airplane" class, 
highlighting the fire activity of the POSTs, the equalization 
step for the new class and the learning procedure by STDP. The 
filters give three combinations of responses which highlights 
the role of neuronal redundancy for continual learning. 
Conclusions. We presented a mixed supervised-unsupervised 
neural network with PCM synapses for continual learning. 
Good accuracy was obtained for full testing (98% for MNIST, 
85% for CIFAR10) and learning of up to 30% non-trained 
classes via bio-inspired concepts such as STDP and neuronal 
redundancy. This novel network combines accuracy of 
supervised architectures and plasticity of unsupervised 
protocols for life-long learning autonomous systems. 
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Fig. 1. (a) Catastrophic forgetting in ANNs: 
“A” is no more recognized when “B” is 
learnt. (b) Plastic behavior of STDP.

Fig. 2. Scheme of the network. (a) The input is convolved with N filters, each giving a feature 
response. The responses select an equalized pattern from T(1)-T(M), M is a generic number, 
that is then classified by STDP. (b) WTA classification by inhibitory and excitatory synapses.

Fig. 3. Training methodology for 
extracting (a) NT=7 “class filters” 
and (b) 9 “feature filters”. 

Fig. 4. (a) MVM circuit. (b) Average feature map outputs after MVM of MNIST trained and non-trained 
(8, 9, 0) classes with the filters. (c) Implemented equalization circuit: signals R0-R6 come from class 
filters, the others from feature filters. (d) Example of equalized patterns (P=25%) for STDP classification.

 
Fig. 5. Distributions of 
measured conductance 
levels of our PCMs. 

Fig. 6.  Current distributions after MVM of 
trained and non-trained (8, 9, 0) MNIST classes 
with a “class filter” (a) and a feature filter (b).

Fig. 7. (a) Experimental demo of continual learning with a 
new incoming pattern at 500 epochs. (b) Time evolution of 
pattern and background synapses. (c) POSTs spiking.

 
Fig. 8. (a) Neuronal redundancy in MNIST. (b) 
Global accuracy for increasing number of new 
classes and 3 output neurons per class. 

Fig. 9. Classification with full 
circuit implementation for 
continual learning of 2, 5, 7.

Fig. 10. (a) Burst-mode operation of STDP with 100 ns 
𝑉 ா  pulses for integration power reduction. (b) Energy 
consumption in fire/integration during learning process.

 
Fig. 11. Energy 
consumption per 
class in MVM.  

Fig. 12. Continual 
learning accuracy 
for CIFAR10. 

Fig. 13. Experimental demonstration of continual learning for the non-trained class “airplane” from
CIFAR10. The new incoming class generates 3 different feature maps and thus 3 equalized patterns 
learnt by STDP. The POSTs spiking activities for all the classes highlight the neuronal redundancy.
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